API src

Found 3 results.

3 Days of Active Experiment using 8 Rotational Sensors and 5 Seismometers in November 2019:

We provide seismological data from a huddle test in Fürstenfeldbruck in November 2019 that was realized by University of Potsdam in collaboration with BGR and LMU. 8 rotational sensors (blueSeis-3A) were installed in a bunker beside FUR station (Streckeisen STS2.5) at the Geophysical Observatory of the Ludwig-Maximilians University Munich on the first day. For the second day the 8 rotational sensors were distributed in the field and co-located with 5 seismometers (Trillium Horizon 120s Nanometrics). The sensors were placed onto a rigid monument that consists of a 50 × 50 × 5 cm³ concrete plate.We recorded 2 fired explosions on the first day and 3 on the second day along with a vibroseis truck. The aim of the seismic experiment is to compare the performance of rotational sensors and seismometers with respect to different active sources. Waveform data is available from the GEOFON data centre, under network code 6V.

Wasserstoff fuer Brennstoffzellen aus dem Eisenschwammprozess

Der künftige Einsatz von Brennstoffzellen hängt von einer kostengünstigen Bereitstellung von Wasserstoff als wichtigstem Brennstoff ab. Gegenwärtig wird dieser Wasserstoff hauptsächlich aus Erdgas gewonnen, welches durch Wasserdampfreformierung zunächst zu Synthesegas umgesetzt wird. Das darin enthaltene Kohlenmonoxid muß anschließend in einer katalytischen Wassergasshiftreaktion zu Wasserstoff und CO2 konvertiert werden. Der Eisenschwammprozeß als kostengünstige Alternative bietet einerseits die Möglichkeit, die Energie solcher Synthesegase in Form des reduzierten Oxids (als Wüstit oder Eisenschwamm) zu speichern, gleichzeitig aber auch eine Reformierung und Konditionierung einer Vielfalt von Industrie- und Biomassegasen zu reinem Wasserstoff durchzuführen. Auf diese Weise kann Wasserstoff aus fossilen wie regenerativen Quellen in ein und derselben Anlage produziert werden, weshalb der Eisenschwammprozeß als echte Übergangstechnologie von einer fossilen zu einer regenerativen Energiewirtschaft angesehen werden kann. Als Kontaktmassen sind bisher industrielle sowie selbst hergestellte Hämatitpellets verwendet worden. Während in vorangegangenen Projekten die prinzipielle Anwendbarkeit des Eisenschwammprozesses mit variablen Reduktionsgasmischungen und Kontaktmassen untersucht wurde, soll der Prozeß nun unter realitätsnahen Bedingungen erforscht und optimiert werden, um sämtliche für ein Scale-Up benötigten Daten zu erhalten. Die Optimierung des Redoxprozesses setzt verläßliche Meßdaten voraus. die ab jetzt durch den Einsatz eines im Rahmen des Vorgängerprojekts finanzierten und selbst gebauten Laborreaktors erhalten werden können. Im Gegensatz zum bisher verwendeten kleinen Rohrofen gestattet dieser neue Reaktor die on-line Erfassung des Reaktionsumsatzes über permanente Wägung, weiters eine on-line Temperaturkontrolle und Gasanalyse; er erlaubt den Einsatz von pelletiertem oder granuliertem Erzmaterial in repräsentativen Mengen bis zu 6 kg und kann unter einstellbaren, definierten Strömungsverhältnissen gefahren werden. Die Ergebnisse von Untersuchungen im Laborreaktor stellen die Grundlagen für die Planung und Konstruktion einer größeren Anlage sowie für energetische und ökonomische Bilanzrechnungen dar. Der Vergleich großtechnisch am Markt befindlicher sowie selbst hergestellter Eisenerzpellets bezüglich Reaktivität und Zyklenbeständigkeit ergab erfolgreiche Ansätze für Verbesserungen des Reaktionsumsatzes durch Modifikation der Zusammensetzung und des Pelletierprozesses. Da ein kostengünstiger und langlebiger Eisenschwammkatalysator für die praktische Realisierbarkeit des Prozesses entscheidend ist, soll eine systematische Materialoptimierung, einerseits auf Basis der Verbesserung kommerzieller Pellets durch Dotation mit diversen Katalysatoren, andererseits durch Entwicklung von Optimalpellets im Labor, durchgeführt werden.

Untersuchung der Stratosphaerendynamik auf kleinen und mittleren Skalen mit Hilfe von CRISTA-Satellitendaten

1