Sensebox der Rudolf Steiner Schule Siegen.
The profile 2N was recorded in 1986 as part of the DEKORP project, the German deep seismic reflection program. The focus of the DEKORP project was on deep crustal and lithospheric structures and therefore originally not on structures at shallower depths. From today's perspective, however, this depth range is of great interest for a wide range of possible technical applications (including medium-depth and deep geothermal projects). The original data is published by Stiller et al. (2021). The southernmost 68 km of the 219 km long profile 2N were reprocessed on behalf of the Hessian Agency of Nature Conservation, Environment and Geology (HLNUG). The focus of the reprocessing was on improving the resolution / mapping of geological structures down to a depth of 6 km (approx. 3 s TWT) to describe the prolongation of faults and geological structures in more detail than in previous studies. In order to achieve these goals and in view of the fact that today's processing and evaluation methods have been improved considerably compared to the 1990‘s, a state-of-the-art reprocessing was implemented. In comparison with the original processing (Stiller et al. (2021)), more sophisticated processing steps like CRS (Common Reflection Surface) instead of CDP (Common Depth Point) stacking, turning-ray tomography and prestack time and depth migration were carried out. The reprocessing results of the DEKORP 2N survey comprise all datasets newly achieved in addition to the datasets from the original processing (Stiller et al. (2021)), i.e. (1) the migrated CRS image gathers as unstacked data, and (2) the pure CRS stack, the poststack-time as well as prestack-time and prestack-depth migrated sections as stacked data. Moreover, (3) all velocity models used for the different versions including (4) the separate first-break tomography inversion, are contained. All reprocessed data come in SEGY trace format, the final sections additionally in PDF graphic format. A reprocessing report is included as well as again all meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment purposes. The DEKORP 2 survey, consisting of the three segments 86-2Q, 86-2N and 84-2S, starts in the sub-Variscan foredeep of the Münsterland Basin and ends in the Moldanubian region at the Danube. The central part crosses the Rhenish Massif (Rhenohercynian), the Spessart Mountains of the Mid-German Crystalline High (Saxothuringian) and the meteorite impact location of the "Nördlinger Ries". The 219 km long, SSE-NNW striking DEKORP 2N line provides a cross-section through the Rhenish Massif from the sub-Variscan Münsterland Basin in the north to the Rhenohercynian Taunus Mountains in the south. The profile is the northern continuation of DEKORP 2S, which intersects at profile km 7.72. The reprocessed datasets contain a sub-section of the entire 2N with a total length of 67.84 km of full CDP fold, covering the profile’s southern part through the state of Hesse. The DEKORP '86-2N profile is of particular interest to investigate the seismic resolution of the Rhenish Massif and its different structures, such as the Siegen anticline, the Dill syncline, and the Lahn anticline. In the most southern part, the profile reaches into the Rhenohercynian Taunus Mountains until the Taunus ridge. The seismic sections of 2N show clear, deep reaching reflections along the prolongation of the whole profile supporting newer theories of nappe structures in the hessian part of the Rhenish Massif. The reflections are more clearly visible than in the original processing. All visible structures are mainly SE-dipping reflections in the upper crust, which represent lithologic contrasts as well as thrust faults known from surface geology. In the lower crust highly reflective predominantly SE-dipping reflectors can be identified. Moho reflections are clearly identifiable and deepening to the NW.
The profile 3A was recorded in 1990 as part of the DEKORP project, the German deep seismic reflection program. The focus of the DEKORP project was on deep crustal and lithospheric structures and therefore originally not on structures at shallower depths. From today's perspective, however, this depth range is of great interest for a wide range of possible technical applications (including medium-depth and deep geothermal projects). The original data is published by Stiller et al. (2021). On behalf of the Hessian Agency of Nature Conservation, Environment and Geology (HLNUG). From the 128 km long profile 3A the southernmost 104 km (plus additional 9 km northwards with decreasing CDP coverage to avoid boundary effects during migration) were reprocessed. As a particularity, also a set of 6 cross-lines, each ca. 9.6 km in length and perpendicular to the main line, were surveyed along DEKORP 3A to get information about possible cross-dips. Five of those short cross-lines (Q12-Q16) were reprocessed in 2D and 3D as well. The focus of reprocessing of the old data was on improving the resolution / mapping of geological structures down to a depth of 6 km (approx. 3 s TWT) to describe the prolongation of faults and geological structures in more detail than in previous studies. In order to achieve these goals and in view of the fact that today's processing and evaluation methods have been improved considerably compared to the 1990‘s, a state-of-the-art reprocessing was implemented. In comparison with the original processing (Stiller et al. (2021)), more sophisticated processing steps like CRS (Common Reflection Surface) instead of CDP (Common Depth Point) stacking, turning-ray tomography and prestack time and depth migration were carried out. The reprocessing results of the DEKORP 3A survey comprise all datasets newly achieved in addition to the datasets from the original processing (Stiller et al. (2021)), i.e. (1) the migrated CRS image gathers as unstacked data, and (2) the pure CRS stack, the poststack-time as well as prestack-time and prestack-depth migrated sections as stacked data. Moreover, (3) all velocity models used for the different versions including (4) the separate first-break tomography inversion, are contained. Additionally, the results of the 2D- and 3D-reprocessing of cross-lines Q12-Q16 are included. All reprocessed data come in SEGY trace format, the final sections additionally in PDF graphic format. A reprocessing report is included as well as again all meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment purposes. Detailed information about acquisition and reprocessing parameters can be found in the accompanying Technical Report (Stiller & Agafonova, 2022). The DEKORP 3 survey was a combined seismic survey investigating the Variscan structures of the Rhenohercynian and the Saxothuringian. Consisting of three seismic lines it starts in the Rhenohercynian Hessian Depression (DEKORP 3A), crosses the Saxothuringian Mid-German Crystalline High (DEKORP 3B/MVE (West)) and runs parallel to the northern margin of the Moldanubian (DEKORP 3B/MVE (East)). The 128 km long DEKORP 3A profile runs N-S within the Hessian Depression from the Solling Dome in the Rhenohercynian to the Vogelsberg Volcano of the Saxothuringian Mid-German Crystalline High. The middle part of the profile crosses the "Northern Phyllite Zone". The reprocessed datasets contain a sub-section of the entire profile with a total length of 104.1 km of full CDP coverage, covering the territory of the state of Hesse. The reprocessed part of 3A is intersected by five short cross-lines along the profile at km 31.75, 53.55, 73.75, 89.85, 109.85 and by DEKORP 3B/MVE (West) at km 120.75 at its southern end. The DEKORP '90-3A profile is of particular interest to investigate the seismic resolution of the crust beneath the Permo-Mesozoic to Tertiary Hessian depression, the Kassel graben structure, as well as the tertiary volcanic fields of the Reinhardswald, Habichtswald, Knüll, Söhrewald and stopping just north of the large Cenozoic Vogelsberg complex.
The dataset contains a set of structural and non-structural attributes collected using the GFZ RRVS (Remote Rapid Visual Screening) methodology. It is composed by 6249 randomly distributed buildings in the urban area of Chía (Colombia). The survey has been carried out between May and July 2020 using a Remote Rapid Visual Screening system developed by GFZ and employing omnidirectional images from Google StreetView (and footprints from OpenStreetMap (OSM), both with vintages of May 2020. The buildings were inspected by dozens of local students of civil engineering students from the Universidad de La Sabana (Chía, Colombia). Their attribute values in terms of the GEM v.2.0 taxonomy.
The profile 2S was recorded in 1984 as part of the DEKORP project, the German deep seismic reflection program. The focus of the DEKORP project was on deep crustal and lithospheric structures and therefore originally not on structures at shallower depths. From today's perspective, however, this depth range is of great interest for a wide range of possible technical applications (including medium-depth and deep geothermal projects). The original data is published by Stiller et al. (2020). The northernmost 50 km of the 250 km long profile 2S were reprocessed on behalf of the Hessian Agency of Nature Conservation, Environment and Geology (HLNUG). The focus of the reprocessing was on improving the resolution / mapping of geological structures down to a depth of 6 km (approx. 3 s TWT) to describe the prolongation of faults and geological structures in more detail than in previous studies. In order to achieve these goals and in view of the fact that today's processing and evaluation methods have been improved considerably compared to the 1990‘s, a state-of-the-art reprocessing was implemented. In comparison with the original processing (Stiller et al. (2020)), more sophisticated processing steps like CRS (Common Reflection Surface) instead of CDP (Common Depth Point) stacking, turning-ray tomography and prestack time and depth migration were carried out. The reprocessing results of the DEKORP 2S survey comprise all datasets newly achieved in addition to the datasets from the original processing (Stiller et al. (2020)), i.e. (1) the migrated CRS image gathers as unstacked data, and (2) the pure CRS stack, the poststack-time as well as prestack-time and prestack-depth migrated sections as stacked data. Moreover, (3) all velocity models used for the different versions including (4) the separate first-break tomography inversion, are contained. All reprocessed data come in SEGY trace format, the final sections additionally in PDF graphic format. A reprocessing report is included as well as again all meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment purposes. The DEKORP 2 survey, consisting of the three segments 86-2Q, 86-2N and 84-2S, starts in the sub-Variscan foredeep of the Münsterland Basin and ends in the Moldanubian region at the Danube. The central part crosses the Rhenish Massif (Rhenohercynian), the Spessart Mountains of the Mid-German Crystalline High (Saxothuringian) and the meteorite impact location of the "Nördlinger Ries". DEKORP '84-2S, was the first DEKORP line and the only one which mainly used explosives as the seismic source. The 250 km long, SE-NW striking profile extends from the Rhenohercynian Taunus Mountains to the Danube thereby crossing the Spessart Mountains, the Hessian Trough and the "Nördlinger Ries". The profile DEKORP 2S is the southern continuation of DEKORP 2N, which intersects at profile km 246.08. The reprocessed datasets contain a sub-section of the entire 2S profile with a total length of 50 km of full CDP fold, covering the profile’s northern part through the state of Hesse. The DEKORP '84-2S profile is of particular interest to investigate the seismic resolution of the Rhenohercynian Taunus Mountains including the Taunus ridge, as well as the Tertiary Hessian Trough, the Permian Wetterau nappe and a small part of the crystalline Spessart Mountains. The seismic sections of 2S show clearly visible, predominantly SE-dipping reflectors indicating flat-and-ramp tectonics and a differentiation into a highly reflective lower crust and a less reflective upper crust. Due to the use of explosive shots with relatively large spacing as the seismic source, less new information could be achieved for the uppermost crust compared to the original processing and to other DEKORP (vibroseis) surveys. A clear Moho reflection is visible throughout the whole profile section at a depth of ca. 26 to 28 km.
The profile DEKORP 3B/MVE, consisting of the two segments West and East, was recorded in 1990 as part of the DEKORP project, the German deep seismic reflection program. The focus of the DEKORP project was on deep crustal and lithospheric structures and therefore originally not on structures at shallower depths. From today's perspective, however, this depth range is of great interest for a wide range of possible technical applications (including medium-depth and deep geothermal projects). The original data is published by Stiller et al. (2021). The westernmost 91 km of the 208 km long profile 3B (West) were reprocessed on behalf of the Hessian Agency of Nature Conservation, Environment and Geology (HLNUG). As a particularity, also a set of 18 cross-lines, each ca. 12 km in length and perpendicular to the main lines, were surveyed along DEKORP 3B/MVE to get information about possible cross-dips. Four of those short cross-lines were reprocessed in 2D as well. The focus of the reprocessing of the old data was on improving the resolution / mapping of geological structures down to a depth of 6 km (approx. 3 s TWT) to describe the prolongation of faults and geological structures in more detail than in previous studies. In order to achieve these goals and in view of the fact that today's processing and evaluation methods have been improved considerably compared to the 1990‘s, a state-of-the-art reprocessing was implemented. In comparison with the original processing (Stiller et al. (2021)), more sophisticated processing steps like CRS (Common Reflection Surface) instead of CDP (Common Depth Point) stacking, turning-ray tomography and prestack time and depth migration were carried out. The reprocessing results of the DEKORP 3B (West) survey comprise all datasets newly achieved in addition to the datasets from the original processing (Stiller et al. (2021)), i.e. (1) the migrated CRS image gathers as unstacked data, and (2) the pure CRS stack, the poststack-time as well as prestack-time and prestack-depth migrated sections as stacked data. Moreover, (3) all velocity models used for the different versions including (4) the separate first-break tomography inversion, are contained. Additionally, the results of the 2D-reprocessing of cross-lines Q21-Q24 are included. All reprocessed data come in SEGY trace format, the final sections additionally in PDF graphic format. A reprocessing report is included as well as again all meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment purposes. The DEKORP 3 survey was a combined seismic survey investigating the Variscan structures of the Rhenohercynian and the Saxothuringian. Consisting of three seismic lines it starts in the Rhenohercynian Hessian Depression (DEKORP 3A), crosses the Saxothuringian Mid-German Crystalline High (DEKORP 3B/MVE (West)) and runs parallel to the northern margin of the Moldanubian (DEKORP 3B/MVE (East)). The 207.65 km long DEKORP 3B (West) profile trends NW-SE and intersects DEKORP 3A in the Tertiary volcanic field within the "Northern Phyllite Zone". It crosses the Hessian Depression of the Rhenohercynian, runs through the Rhön Tertiary volcanic province and the Mesozoic Franconian Basin to the Bohemian Massif. The line ends at the Franconian Line. The reprocessed datasets contain a sub-section of the entire 3B (West) profile with a total length of 90.8 km of full CDP coverage, covering the territory of the state of Hesse, i. e. from the profile’s starting point in the NW to the SE until the Rhön volcanic complex. The reprocessed part of 3B (West) is intersected by four short cross-lines along the profile at km 8.75, 32.6, 64.75, 84.35 and by DEKORP 3A at km 42.3. The DEKORP '90-3B profile is of particular interest to investigate the seismic resolution of the Hessian depression, the east-hessian Buntsandstein nappe as well as the tertiary volcanic fields of the Kellerwald and Rhön.
Hausrückseite, 4. Stock, Innenhof
Origin | Count |
---|---|
Bund | 12 |
Land | 4 |
Wissenschaft | 21 |
Zivilgesellschaft | 10 |
Type | Count |
---|---|
Förderprogramm | 7 |
Messwerte | 13 |
Strukturierter Datensatz | 3 |
unbekannt | 23 |
License | Count |
---|---|
geschlossen | 5 |
offen | 35 |
unbekannt | 3 |
Language | Count |
---|---|
Deutsch | 16 |
Englisch | 25 |
andere | 2 |
Resource type | Count |
---|---|
Archiv | 7 |
Bild | 2 |
Datei | 3 |
Keine | 23 |
Webseite | 14 |
Topic | Count |
---|---|
Boden | 30 |
Lebewesen & Lebensräume | 17 |
Luft | 19 |
Mensch & Umwelt | 43 |
Wasser | 11 |
Weitere | 43 |