API src

Found 2134 results.

Similar terms

s/shm/THM/gi

Digitales Höhenmodell Hamburg DGM 10

Abgeleitetes, flächendeckendes digitales Geländemodell mit einer Rasterweite von 10 Meter auf Basis des DGM1. Für die Fläche der Freien und Hansestadt Hamburg (ohne das Gebiet des hamburgischen Wattenmeeres) wurde in 2020 eine Laserscanvermessungen (Airborne Laserscanning) durchgeführt. Die Daten liegen im Lagestatus 310 (ETRS89/UTM) vor, mit Höhenangaben über Normalhöhennull (NHN), gemäß DE_DHHN2016_NH. Die Genauigkeit eines einzelnen Messpunktes liegt in eindeutig definierten Bereichen, wie z.B. auf Straßenflächen, bei ca. ± 105 cm. In Bereichen von Abschattungen (Brücken), Vegetation, insbesondere Flächen in Wald- und Strauchgebieten und bei stark geneigtem Gelände, ist die Genauigkeit geringer. Standardmäßig werden vom LGV folgende Rasterweiten angeboten: DGM 1 (Rasterweite 1m), DGM 10 (Rasterweite 10m), DGM 25 (Rasterweite 25m). Eine jährliche Aktualisierung dieser Daten erfolgt über Luftbildbefliegungen. Neben der reinen Bereitstellung der Höheninformation als regelmäßiges Gitter werden die Daten auch als Dienstleistung in einer Dreiecksvermaschung (TIN) abgegeben. Dabei ist ein Datenaustausch mit 2D- und 3D-CAD-Systemen sichergestellt. Als weitere Dienstleistung können z.B. Höhenlinien und Profile abgeleitet oder Volumina und Neigungen errechnet werden. Durch Integration weiterer Geobasis- und Fachdaten (Vektor- und Rasterdaten) können weitere Dienstleistungen z.B. für die Bereiche Wasserwirtschaft, Tiefbau, Umwelt und Stadtplanung sowie Energieversorgung groß- und kleinräumige Anwendungen abgeleitet werden.

Digitales Höhenmodell Hamburg DGM 1

Aus Laserscanvermessungen (Airborne Laserscanning) oder photogrammetrischen Produkten abgeleitetes, flächendeckendes digitales Geländemodell mit einer Rasterweite von 1 Meter für die Fläche der Freien und Hansestadt Hamburg. Die Daten stammen jeweils aus den landesweiten 3D-Laserscanbefliegungen aus 2010, 2020 und 2022 und liegen im Lagestatus ETRS89_UTM32 (Lagestatus 310) und mit Höhenangaben über Normalhöhennull (NHN), gemäß DE_DHHN2016_NH vor. Eine punktuelle Aktualisierung dieser Daten erfolgt über photogrammetrische Produkte und ist ggf. in den Metadaten der einzelnen Jahrgänge dokumentiert. Die Genauigkeit eines einzelnen Messpunktes liegt in eindeutig definierten Bereichen, wie z.B. auf Straßenflächen, bei ca. ± 15 cm. In Bereichen von Abschattungen (z. B.: Brücken), dichter Vegetation, insbesondere Flächen in Wald- und Strauchgebieten und bei stark geneigtem Gelände, ist die Genauigkeit geringer. Standardmäßig wird vom LGV ab dem Jahr 2022 folgende Rasterweite angeboten: DGM 1 (Rasterweite 1m). Ältere Jahrgänge haben zusätzlich noch folgende Rasterweiten: DGM 10 (Rasterweite 10m) DGM 25 (Rasterweite 25m) Neben der reinen Bereitstellung der Höheninformation als regelmäßiges Gitter werden die Daten auch als Dienstleistung in einer Dreiecksvermaschung (TIN) abgegeben. Dabei ist ein Datenaustausch mit 2D- und 3D-CAD-Systemen sichergestellt. Als weitere Dienstleistung können z.B. Höhenlinien und Profile abgeleitet oder Volumina und Neigungen errechnet werden. Durch Integration weiterer Geobasis- und Fachdaten (Vektor- und Rasterdaten) können weitere Dienstleistungen z.B. für die Bereiche Wasserwirtschaft, Tiefbau, Umwelt und Stadtplanung sowie Energieversorgung für groß- und kleinräumige Anwendungen abgeleitet werden. Aus Laserscanvermessungen (Airborne Laserscanning) oder photogrammetrischen Produkten abgeleitetes, flächendeckendes digitales Geländemodell mit einer Rasterweite von 1 Meter für die Fläche der Freien und Hansestadt Hamburg. Die Daten stammen jeweils aus den landesweiten 3D-Laserscanbefliegungen aus 2010, 2020 und 2022 und liegen im Lagestatus ETRS89_UTM32 (Lagestatus 310) und mit Höhenangaben über Normalhöhennull (NHN), gemäß DE_DHHN2016_NH vor. Eine punktuelle Aktualisierung dieser Daten erfolgt über photogrammetrische Produkte und ist ggf. in den Metadaten der einzelnen Jahrgänge dokumentiert. Die Genauigkeit eines einzelnen Messpunktes liegt in eindeutig definierten Bereichen, wie z.B. auf Straßenflächen, bei ca. ± 15 cm. In Bereichen von Abschattungen (z. B.: Brücken), dichter Vegetation, insbesondere Flächen in Wald- und Strauchgebieten und bei stark geneigtem Gelände, ist die Genauigkeit geringer. Standardmäßig wird vom LGV ab dem Jahr 2022 folgende Rasterweite angeboten: DGM 1 (Rasterweite 1m). Ältere Jahrgänge haben zusätzlich noch folgende Rasterweiten: DGM 10 (Rasterweite 10m) DGM 25 (Rasterweite 25m) Neben der reinen Bereitstellung der Höheninformation als regelmäßiges Gitter werden die Daten auch als Dienstleistung in einer Dreiecksvermaschung (TIN) abgegeben. Dabei ist ein Datenaustausch mit 2D- und 3D-CAD-Systemen sichergestellt. Als weitere Dienstleistung können z.B. Höhenlinien und Profile abgeleitet oder Volumina und Neigungen errechnet werden. Durch Integration weiterer Geobasis- und Fachdaten (Vektor- und Rasterdaten) können weitere Dienstleistungen z.B. für die Bereiche Wasserwirtschaft, Tiefbau, Umwelt und Stadtplanung sowie Energieversorgung für groß- und kleinräumige Anwendungen abgeleitet werden.

INSPIRE SH Schutzgebiete in Schleswig-Holstein

Der INSPIRE-Datensatz enthält die Gebietsabgrenzungen der Biosphärenreservate, Naturschutzgebiete, EG-Vogelschutzgebiete (entspricht SPA-Gebiete), FFH-Gebiete, RAMSAR und Naturparke des Landesamt für Umwelt (LfU); die Gebietsabgrenzung des Nationalparks des Landesbetriebes für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein (LKN); die derzeit in ihrer Ausdehnung, Erhaltung und wissenschaftlichen Qualität hinreichend bekannten archäologischen Kulturdenkmale (aKD), aller als Schutzzonen ausgewiesenen archäologischen Welterbestätten und Grabungsschutzgebiete (GSG) des Archäologischen Landesamtes Schleswig-Holstein (ALSH) mit Ausnahme des Gebietes der kreisfreien Hansestadt Lübeck; die Baudenkmale, Gartendenkmale und Denkmalbereiche des Landesamt für Denkmalpflege Schleswig-Holstein (LDSH); sowie die Gebietsabgrenzungen bestehender Landschaftsschutzgebiete (LSG), Naturdenkmale (ND) und geschützten Landschaftsbestandteile (GLB) der Kreise und kreisfreien Städte in Schleswig-Holstein.

Digitales Höhenmodell Hamburg DGM 25

Abgeleitetes, flächendeckendes digitales Geländemodell mit einer Rasterweite von 25 Meter auf Basis des DGM1. Für die Fläche der Freien und Hansestadt Hamburg (ohne das Gebiet des hamburgischen Wattenmeeres) wurde in 2020 eine Laserscanvermessung (Airborne Laserscanning) durchgeführt. Die Daten liegen im Lagestatus 310 (ETRS89/UTM) vor, mit Höhenangaben über Normalhöhennull (NHN), gemäß DE_DHHN2016_NH. Die Genauigkeit eines einzelnen Messpunktes liegt in eindeutig definierten Bereichen, wie z.B. auf Straßenflächen, bei ca. ± 255 cm. In Bereichen von Abschattungen (Brücken), Vegetation, insbesondere Flächen in Wald- und Strauchgebieten und bei stark geneigtem Gelände, ist die Genauigkeit geringer. Standardmäßig werden vom LGV folgende Rasterweiten angeboten: DGM 1 (Rasterweite 1m), DGM 10 (Rasterweite 10m), DGM 25 (Rasterweite 25m). Eine jährliche Aktualisierung dieser Daten erfolgt über Luftbildbefliegungen. Neben der reinen Bereitstellung der Höheninformation als regelmäßiges Gitter werden die Daten auch als Dienstleistung in einer Dreiecksvermaschung (TIN) abgegeben. Dabei ist ein Datenaustausch mit 2D- und 3D-CAD-Systemen sichergestellt. Als weitere Dienstleistung können z.B. Höhenlinien und Profile abgeleitet oder Volumina und Neigungen errechnet werden. Durch Integration weiterer Geobasis- und Fachdaten (Vektor- und Rasterdaten) können weitere Dienstleistungen z.B. für die Bereiche Wasserwirtschaft, Tiefbau, Umwelt und Stadtplanung sowie Energieversorgung groß- und kleinräumige Anwendungen abgeleitet werden.

Digitales Geländemodell

Das Digitale Geländemodell (DGM) beschreibt die Grenzfläche zwischen der Erdoberfläche bzw. Wasseroberfläche und der Luft, ohne Vegetation und Bebauung. Es besteht aus einem regelmäßigen Gitter und wird in der Gitterweite 1 m bzw. 5 m zum Download bereitgestellt.

Reduzierung der Schadstoffabgabe mit PCP-haltigen Impraegniermitteln behandeltem Holz

Millionen von Wohn- und Arbeitsraeumen, Schulen, landwirtschaftlichen Gebaeuden etc. sind mit pentachlorphenolhaltigen Holzschutzmitteln oder Lasuren behandelt worden; die Halbwertzeit von PCP liegt bei 7 Jahren. Durch chemische Absorption, Verdampfen (Erwaermen), Abschleifen etc. koennten Schaeden gemindert oder aufgehoben werden.

Schwerpunktprogramm (SPP) 1689: Climate Engineering: Risiken, Herausforderungen, Möglichkeiten?, Climate Engineering durch Modifikation der Arktischen Zirren im Winter: Risiken und Durchführbarkeit (AWiCiT)

Das sogenannte 'Climate Engineering' beschreibt ein gezieltes Eingreifen ins Klimasystem mit dem Ziel, der globalen Erwärmung entgegen zu wirken. Zusätzlich zu dem Entfernen von Kohlendioxid und der Beeinflussung von Solarstrahlung (solar radiation management), wurde eine Methode vorgeschlagen, die zu mehr Emission von langwelliger Strahlung in den Weltall führen soll. Hierbei soll der wärmende Effekt der Zirruswolken reduziert werden. Wir wollen diese Methode in unserem Forschungsantrag genauer untersuchen. Wir planen uns auf die mittleren und hohen Breiten der Nordhemisphäre im Winter zu konzentrieren, um die Strahlungseffekte von Zirren auf die Solarstrahlung zu minimieren. Insbesondere möchten wir folgender Frage nachgehen: Ist das Ausdünnen von arktischen Zirren im Winter (AWiCiT) durchführbar und was ist die maximale Abkühlung, die hiermit erreicht werden kann? Die hiermit verbundenen Risiken und Nebenwirkungen des AWiCiT wollen wir auf der regionalen Skala hinsichtlich möglicher Änderungen der arktischen Stratosphäre insbesondere Auswirkungen auf die Ozonschicht sowie mögliche Veränderungen in tiefer liegenden Wolken mit dem gekoppelten Wettervorhersage/Chemiemodell ICON-ART studieren. Mögliche Auswirkungen auf die globale Zirkulation, Meeresströmungen sowie die Meereisbedeckung werden mit Hilfe des globalen gekoppelten Aerosol-Atmosphären-Ozean Klimamodells MPI-ESM-HAM untersucht. Um die oben genannten Fragen zu beantworten, müssen wir die gegenwärtigen globalen Zirkulationsmodelle validieren insbesondere hinsichtlich ihrer Fähigkeit die beobachtete Ausbreitung und Höhe der Zirruswolken im arktischen Winter zu reproduzieren. Des Weiteren werden wir die Transportwege der natürlichen Eiskeime und der Impf-Eiskeime unten den dynamischen Bedingungen im arktischen Winter analysieren um die Lebensdauer der Impf-Eiskeime in der Impfregion abzuschätzen. Sind die Höhen und Flugrouten der kommerziellen Langstreckenflüge geeignet um einen Großteil des Arktischen Zirrus zu impfen oder sollte die Impfgegend in mittlere Breiten ausgedehnt werden? Ist Bismut(III)-iodid (BiI3), das als Impf-Eiskeim hierfür vorgeschlagen wird, unter diesen Umständen der am besten geeignete Impfstoff? Das Ausdünnen der Zirren ist nur dann effektiv, wenn der natürlich Zirrus hauptsächlich durch homogenes Gefrieren von Lösungströpfchen entsteht. Wenn er primär durch heterogene Nukleation gebildet werden würde, würde Impfen zu einer Erwärmung statt Abkühlung führen können. Deshalb müssen die Eigenschaften der Zirren noch besser verstanden werden, insbesondere der Anteil der Zirren, der im heutigen Klima durch heterogene Nukleation gebildet wird.

Schwerpunktprogramm (SPP) 1689: Climate Engineering: Risiken, Herausforderungen, Möglichkeiten?, Grenzen der Wirksamkeit verschiedener Methoden des solaren Strahlungmanagement

Absenkung der CO2 Emissionen, Anpassung und 'Climate Engineering' (CE) werden allgemein als drei unabhängige Vorgehensweisen gegen die negativen Auswirkungen des Klimawandels angesehen. Im Rahmen dieses Projektes zeigen wir die Grenzen des 'Solar Radiation Management' (SRM) durch Sulfataerosol-Eintrag in die Stratosphäre (SAI) und marine Wolkenimpfung (MCB) als Maßnahmen zur Reduktion der globalen bzw. regionalen Temperatur auf. Zum ersten Mal werden dabei die Auswirkungen von gleichzeitig ausgeführtem SAI und MCB umfassend quantifiziert. Wir vermuten, dass die Begrenzung der Wirksamkeit von SAI und MCB bedeutende Auswirkungen auf die rechtliche und politische Betrachtung hat, die das Zusammenwirken und die zeitliche Reihenfolge von Emissionsminderungs-, Anpassungs-, und 'Climate Engineering'- Maßnahmen sowie die Politik der Klimagerechtigkeit bestimmen. Komplexe globale und regionale numerische Simulationsmodelle der Atmosphäre, die dem Stand des Wissens entsprechen, und die eine detaillierte Beschreibung der Atmosphärenphysik und Chemie beinhalten, stellen das wesentliche Werkzeug für die Quantifizierung der Effekte dieser Maßnahmen dar. Die Ergebnisse erlaube es die physikalischen Grenzen der angedachten Maßnahmen zu bestimmen. Die Ergebnisse des Vorhabens dienen als wichtige Grundlagen für andere Projekte im SPP, um eine integrale Bewertung von 'CO2 Mitigation, Adaption und Climate Engineering' zu ermöglichen.

INSPIRE SH HH Hydro ATKIS DLM50

Der Datensatz für das INSPIRE Thema Annex 1 Gewässernetz Hydro - Physische Gewässer wurde aus dem ATKIS DLM50 nach der INSPIRE Produktspezifikation der AdV abgeleitet.

INSPIRE SH Hydro – Physische Gewässer ALKIS

Der Datensatz für das INSPIRE Thema Annex 1 Gewässernetz Hydro - Physische Gewässer wurde aus dem ALKIS nach der INSPIRE Produktspezifikation der AdV abgeleitet.

1 2 3 4 5212 213 214