API src

Found 15 results.

Surface deformation and topography data from analogue modelling experiments addressing triaxial tectonics in regions of distributed extension

This data set includes the results of high-resolution digital elevation models (DEM) and digital image correlation (DIC) analysis applied to analogue modelling experiments. Twenty generic analogue models are extended on top of a rubber sheet. Two benchmark experiments are also reported. Detailed descriptions of the experiments can be found in Liu et al. (submitted) to which this data set is supplement. The data presented here are visualized as topography and the horizontal cumulative surface strain (principal strain and slip rake).

Digital Image Correlation data from experiments of releasing bend evolution within different strength wet kaolin

The data set includes the Digital Image Correlation (DIC) results for four experiments of releasing bends along dextral strike-slip faults that were performed at the University of Massachusetts at Amherst (USA). Gabriel et al. (in prep.) used the DIC data sets to investigate how releasing bend fault systems evolve within different strength wet kaolin. Information on the experimental set up and methods can be found in the main text and supplement to Gabriel et al. (in prep.). The data here include the incremental displacement time series, strain animation and surface elevation data at the end of the two experiments with different clay strength, which are presented within Gabriel et al. (in prep). We also include in this data repository incremental displacement time series and strain animations from two experiments that repeat the conditions of the experiments featured in Gabriel et al. (2025).

Overviews and videos of top view imagery, topography data and DIC analysis results from analogue models of basin inversion

This data set includes videos depicting the surface evolution (time-lapse photography, topography data and Digital Image Correlation [DIC] analysis) of 11 analogue models, divided in three model series (A, B and C), simulating rifting and subsequent inversion tectonics. In these models we test how orthogonal or oblique extension, followed by either orthogonal or oblique compression, as well as syn-rift sedimentation, influenced the reactivation of rift structures and the development of new inversion structures. We compare these models with an intracontinental inverted basin in NE Brazil (Araripe Basin). All experiments were performed at the Tectonic Modelling Laboratory of the University of Bern (UB). We used an experimental set-up involving two long mobile sidewalls, two rubber sidewalls (fixed between the mobile walls, closing the short model ends), and a mobile and a fixed base plate. We positioned a 5 cm high block consisting of an intercalation of foam (1 cm thick) and Plexiglas (0.5 cm thick) bars on the top of the base plates. Then we added layers of viscous and brittle analogue materials representing the ductile and brittle lower and upper crust in our experiments, which were 3 cm and 6 cm thick, respectively. A seed made of the same viscous material was positioned at the base of the brittle layer, in order to localize the formation of an initial graben in our models. The standard model deformation rate was 20 mm/h, over a duration of 2 hours for a total of 40 mm of divergence, followed by 2 hours of convergence at the same rate (except for Models B3 and C3, since the oblique rifting did not create space for 40 mm of orthogonal inversion). For syn-rift sedimentation, we applied an intercalation of feldspar and quartz sand in the graben. Model parameters and detailed description of model set-up are summarized in Table 1, and results and their interpretation can be found in Richetti et al. (2023).

Digital Volume Correlation (DVC) data from an analogue experiment exploring kinematic coupling of brittle and viscous deformation

This dataset includes volumetric data sets from a Digital Volume Correlation (DVC) analysis for recreating images of a re-analyzed analogue models previously presented in (Zwaan et al., 2018). Using a brittle-viscous two-layer setup, this experiment focused on the evolution of a rift-pass structure. On top of the viscous layer, two viscous seeds are placed with a right-stepping stair-case offset to simulate two propagating rift segments, confining a central rift-pass block (Fig. 1). The selected model was analyzed by means of Digital Volume Correlation (DVC) applied on X-Ray computed tomography (XRCT) volumes. The data set includes DVC data in the form of .mat files for incremental (i.e., 20 min intervals) and cumulative displacement components. In addition, this dataset provides a MATLAB script for 1) recreating volumetric displacement sets of subsequent time steps 2) calculating finite stretches and 3) rigid-body rotations. The used experiment was performed at the Tectonic Modelling Laboratory of the University of Bern (UB). DVC analysis was performed at the Royal Holloway University London (RHUL). The model consists of a two-layer brittle-viscous set up with a total thickness of 8 cm and the set up lies on top of a 5 cm thick foam-plexiglass base with a length and width of 800 mm by 305 mm, respectively. Before model construction, the foam-plexiglass assemblage is placed between longitudinal side walls and expands during the course of the experiment as the mobile sidewalls move apart. The applied divergence velocity is 7.5 mm/h and with has an orthogonal direction with respect to the viscous seeds. This results in a maximum displacement of 30 mm after a total run time of 4h. Detailed descriptions of the experiment, mechanical properties as well as monitoring techniques can be found in Schmid et al. (2024).

DVC and 3D stereo DIC data from analogue models exploring interaction of viscous flow and surface deformation in rotational rift systems

This dataset includes surface 3D stereoscopic Digital Image Correlation (3D stereo DIC) images and videos of 10 analogue models on crustal scale rifting with a rotational component. In addition, this dataset provides CT imagery of four analogue models that have been analyzed by means of Digital Volume Correlation (DVC) applied on X-Ray computed tomography volumes. Data of CT scanned models also includes slices of the volumetric displacement set for each displacement component. Using a brittle-viscous two-layer setup, the experiments focused on surface rift propagation, internal viscous flow driven by a horizontal pressure gradient and the interaction of internal and surface deformation. All experiments were performed at the Tectonic Modelling Laboratory of the University of Bern (UB). 3D stereo DIC analyses were performed at the GFZ German Research Centre for Geosciences (GFZ) and DVC analyses were performed at the Royal Holloway University London (RHUL). All models consist of a two-layer brittle-viscous set up with a total thickness of 6 cm. Thickness variations in brittle and ductile layers are expressed by the ratio RBD = brittle layer thickness/ductile layer thickness, which ranges from RBD = 0.5 to RBD = 2. The model set up lies on top of a 5 cm thick foam base with a trapezoidal shape with a height of 900 mm and a pair of bases with widths of 310 mm and 350 mm at the far ends, respectively. The foam block is sliced into segments such that 7 interlayered 0.5 cm thick plexiglass bars prevent foam collapse under the model weight. Before model construction, the foam-plexiglass assemblage is placed between longitudinal side walls. The experimental set-up is such that rotational extension in one part of the model domain is separated from rotational shortening in the other part of the model domain by a vertical rotation axis (Fig. 1). During the model run, the foam homogeneously expands in the domain undergoing extension and homogeneously contracts in the domain undergoing shortening. The applied velocity for all models is 10 mm/h and refers to the divergence of the sidewalls furthest away from the rotation axis which decreases linearly towards the rotation axis. This results in a maximum displacement of 40 mm at the outermost circular segment after a total run time of 4h.

Experimental data of analogue models addressing the influence of oblique convergence and inheritance on sliver tectonics

This dataset includes video sequences depicting the evolution in map view and lateral view of 7 analogue experiments studying mantle-scale subduction systems. The experiments are performed under a natural gravity field and are designed to understand the role of convergence obliquity on upper plate deformation and partitioning, with a particular emphasis on the role played by lithospheric inherited structures on the development of sliver tectonics. All experiments were performed at the Laboratory of Tectonic modelling of the University of Rennes 1 (France). The experimental set-up corresponds to a lithosphere and sub-lithospheric upper mantle system. The lithospheric plates are simulated with PDMS silicone (Polydimethylsiloxane Silicone) with different viscosities and densities, and the upper mantle with glucose syrup. In particular, for the overriding plate, we simulate the presence of a weaker volcanic arc that can eventually be decoupled from the forearc by a pre-existing discontinuity. The materials are placed into a Plexiglas tank, where the impermeable bottom of the tank represents the 660 km discontinuity. The subduction is initiated by manually forcing the slab into the mantle and it then evolves under the combined effects of internal buoyancy forces (slab pull) and external boundary forces. The subducting plate is pushed toward the trench at a constant velocity of 1.5 cm/min while the overriding plate is maintained fixed during the duration of the experiments. The evolution of the experiments is monitored by DSLR cameras (24 Mpx) taking pictures every 30 seconds at the top and on one side of the experiments. Pictures are then assembled into video-sequences. The scale bar, with black & white rectangles corresponds to 10 cm. The set of experiments consists of one reference model (MODEL-01) with orthogonal convergence, and six models with oblique convergence (Table 1). Among these models, three do not embed a pre-existing lithospheric discontinuity in the overriding plate (MODEL-02, MODEL-03, and MODEL-04) while the three other (MODEL-05, MODEL-06, and MODEL-07) have such a discontinuity. For the models with oblique convergence, we vary the angle between the convergence direction and the trench from 80° (MODEL-02 and MODEL-05) to 60° (MODEL-03 and MODEL-06) and 50° (MODEL-04 and MODEL-07). For details on the experimental set-up, and interpretation of the results, please refer to Suárez et al. (submitted to Tectonophysics) to which these data are supplementary material.

Experimental data of analogue models addressing the influence of crustal strength, tectonic inheritance and stretching/ shortening rates on crustal deformation and basin reactivation

This dataset includes video sequences and strain analysis of 12 analogue models studying crustal-scale deformation and basin reactivation, performed at the Laboratory of Tectonic modelling of the University of Rennes 1. These models show how parameters such as crustal strength, tectonic inheritance and boundary conditions (ishortening/ stretching) control both the distribution of crustal strain and the possibility for pre-existing structures to be reactivated. This dataset includes top-view movies of the 12 models, including strain analysis based on displacement vectors obtained from digital image correlation. Detailed descriptions of models can be found in Guillaume et al. (2022, special issue of Solid Earth on Analogue modelling of basin inversion) to which this dataset is supplementary.

3D stereo DIC data from analogue models exploring fault growth and rift propagation in rotational rift systems

This dataset includes surface 3D stereoscopic Digital Image Correlation (3D stereo DIC) images and videos of 9 analogue models on crustal scale rifting with a rotational component. Using a brittle-viscous two-layer setup, the experiments focused on near-surface fault growth, rift segment interaction and rift propagation. All experiments were performed at the Tectonic Modelling Laboratory of the University of Bern (UB). All models consist of a two-layer brittle-viscous set up with a total thickness of 6 cm. Thickness variations in ductile and brittle layers are expressed by the ratio RBD = brittle layer thickness/ductile layer thickness, which ranges from RBD = 1 to RBD = 3. The model set up lies on top of a 5 cm thick foam base with a trapezoidal shape with a height of 900 mm and a pair of bases of 310 mm and 350 mm. The foam block is sliced into segments such that 7 interlayered 0.5 cm thick plexiglass bars prevent foam collapse under the model weight. The foam base is initially compressed between the longitudinal side walls and homogeneously expands during the rotational opening. Applied velocities refer to the divergence of the sidewalls at the outermost point (i.e., furthest away from the rotation axis) and decrease linearly towards the rotation axis. These velocities vary from 10 mm/h over a total run time of 4 h up to 40 mm/h over a total run time of one hour, resulting in identical total extension of ca 13% (given an initial model width of 31 cm) for all models. Detailed descriptions of the experiments as well as monitoring techniques can be found in Schmid et al. (2021).

Digital Image Correlation of strike slip experiments in wet kaolin at different strain rates and boundary conditions

The data set includes the digital image correlation of 16 dextral strike-slip experiments performed at the University of Massachusetts at Amherst (USA). The DIC data sets were used for a machine learning project to build a CNN that can predict off-fault deformation from active fault trace maps. The experimental set up and methods are described with the main text and supplement to Chaipornkaew et al (in prep). To map active fault geometry and calculate the off-fault deformation we use the Digital Image Correlation (DIC) technique of Particle Image Velocimetry (PIV) to produce incremental horizontal displacement maps. Strain maps of the entire region of interest can be calculated from the displacements maps to determine the fault maps and estimate off-fault strain throughout the Region of Interest (ROI). We subdivide each ROI into five subdomains, windows, for training the CNN. This allows a larger dataset from the experimental results. The data posted here include the incremental displacement time series and animations of strain for the entire ROI.

Digital image correlation data from analogue modelling experiments addressing magma emplacement along simple shear and transtensional fault zones

This data set includes the results of digital image correlation analysis applied to nine experiments (Table 1) on magma-tectonic interaction performed at the Helmholtz Laboratory for Tectonic Modelling (HelTec) of the GFZ German Research Centre for Geosciences in Potsdam in the framework of EPOS transnational access activities in 2017. The models use silicone oil (PDMS G30M, Rudolf et al., 2016) and Quartz sand (G12, Rosenau et al., 2018) to simulate pre-, syn- and post-tectonic intrusion of granitic magma into upper crustal shear zones of simple shear and transtensional (15° obliquity) kinematics. Three reference experiments (simple shear, transtension, intrusion) are also reported. Detailed descriptions of the experiments can be found in Michail et al. (submitted) to which this data set is supplement. The models have been monitored by means of digital image correlation (DIC) analysis including Particle Image Velocimetry (PIV; Adam et al., 2005) and Structure from Motion photogrammetry (SfM; Donnadieu et al., 2003; Westoby et al., 2012). DIC analysis yields quantitative model surface deformation information by means of 3D surface topography and displacements from which surface strain has been calculated. The data presented here are visualized as surface deformation maps and movies, as well as digital elevation and intrusion models. The results of a shape analysis of the model plutons is provided, too.

1 2