API src

Found 1316 results.

Similar terms

s/smc/RMC/gi

INSPIRE Elevation / GMK: Potentieller Bodenfeuchteindex BB

Der interoperable INSPIRE-Datensatz beinhaltet Daten vom LBGR über den Bodenfeuchteindex in Brandenburg, zugeordnet in das INSPIRE-Schema Höhe. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the soil moisture index in the State of Brandenburg from the LBGR, assigned to the INSPIRE annex schema Elevation. The data set is provided via a compliant view and download service.

Analyse des Stör- und Unfallverhaltens von SMR mit dem Systemcode AC², TP: RUB PSS

Analyse des Stör- und Unfallverhaltens von SMR mit dem Systemcode AC², TP: USTUTT-IKE

Implementierung und Validierung ausgewählter Modelle zur Thermohydraulik im Kühlkreislauf und Lagerbecken OpenFoam

Code-Entwicklungen für eine verbesserte Modellierung von Wärmeabfuhrsystemen mit Kondensationsvorgängen, Teilprojekt A

Entwicklung eines Verfahrens zur Separation von Coatings und Textilien zur Wiederverwertung der Basisrohstoffe

Zielsetzung: Das Forschungsprojekt hat die Entwicklung eines Verfahrens zur Trennung von Beschichtungen und Textilien zum Ziel. Speziell geht es um persönliche Schutzausrüstung (PSA) in Form von Arbeitsschutzhandschuhen mit Nitrilkautschuk-Beschichtung, deren Basisrohstoffe zurückgewonnen und wiederverwertet werden sollen. Ansprüche an das Vorhaben sind das Schließen von Lücken in der Kreislaufwirtschaft sowie Vermeidung von Abfällen. Daher wird angestrebt, ein Downcycling der gewonnenen Rohstoffe zu vermeiden und aus ihnen wieder beschichtete Textilien herzustellen. Zur Umsetzung dieses Vorhabens soll ein mehrstufiges Recyclingverfahren zum Trennen der in den Schutzhandschuhen enthaltenen Wertstoffe entwickelt werden. Die von den Projektpartnern zu erarbeitenden und zu untersuchten Prozessschritte beinhalten dabei neben Wasch- und Sortiervorgängen auch das Schreddern und Feinmalen der Arbeitsschutzhandschuhe mit anschließendem Sieben oder Windsichten zur Rückgewinnung der Ausgangsmaterialien, um diese schmelzfiltern oder granulieren zu können. Anlass des Projektes ist der Anfall hoher Abfallmengen an beschichteten Handschuhen, was bspw. bei der Daimler Truck AG rund 5,8 Mio. Paare pro Jahr ausmacht. Potenziell als Abfall anfallen können ca. 124 Mio. Paare pro Jahr (ca. 6.200 t), wenn man von der Gesamtmenge produzierter Ware in diesem Segment ausgeht. Die beschichteten Handschuhe werden am Endes ihres Gebrauchs der Müllverbrennung zugeführt. Grund der thermischen Verwertung ist die Untrennbarkeit der Beschichtungen vom Substrat mit der bestehenden Prozesstechnik. Bei der Seiz Industriehandschuhe GmbH machen die zur Entsorgung aussortierten Handschuhe ca. 35 t aus, was 7 % von 500 t Reinigungsware entspricht. Unbeschichtete Textilien werden aufgerissen und z. T. in Abmischungen mit Neufasern in Vliesstoffen für den nicht sichtbaren Bereich im Automobil, als Putzlappen, Füllstoffe und in weiteren Anwendungen eingesetzt. Diese Verwendung recycelbarer Wertstoffe ist bisher für beschichtete Handschuhe nicht möglich. Eine Rückführung der Handschuhrohstoffe kann jedoch den Rohstoffverbrauch für Neuprodukte reduzieren und somit eine Energieeinsparung bei der Produktion begünstigen. Die nebenstehende Abbildung führt eine Soll-Ist-Darstellung der Kreislaufwirtschaft im geplanten Projekt auf. Beim Recycling von Arbeitsschutzkleidung allgemein, und bei Handschuhen im Besonderen, muss beachtet werden, dass es sich um Funktionstextilien handelt mit der Aufgabe, ihren Träger vor Umwelteinwirkungen zu schützen. Die Handschuhe stellen einen Verbundwerkstoff dar, der aus Polyamid 6.6 (Nylon) und Nitril-Butadien-Kautschuk (NBR) besteht. Der Nylon-Bestandteil ist ein linear aufgebautes Polyamid aus der Gruppe der Copolymere, welches nach dem Schmelzen zu Endlosfasern (Filamenten) ausgesponnen und zur textilen Fläche verstrickt wird. Der Synthesekautschuk für die Handschuhbeschichtung ist das Co-Polymerisat von Acrylnitril und 3-Butadien und wird zum Erreichen von Chemikalienfestigkeit auf die Arbeitsschutzhandschuhen aufgebracht. Die Arbeitsschutzhandschuhe mit NBR-Beschichtung werden derzeit einer Wiederverwendung nach Wiederaufbereitung durch Waschen zugeführt. Diese kann die Handschuhe jedoch nicht ewig vor Verschleiß und daher der thermischen Verwertung bewahren. Grund ist, dass derzeit keine passenden Trennverfahren für NBR-PA-Verbunde bekannt sind. Die Herstellung neuer Arbeitsschutzhandschuhe aus wiederaufbereiteten Bestandteilen ist ein Bestreben des Forschungsprojektes. Die bisherigen Recyclingansätze innerhalb der Textilindustrie sind dafür jedoch nicht geeignet. Im Rahmen des Projektes soll weiterhin eine Analyse des Produktportfolios beim Schutzhandschuhhersteller Seiz erfolgen, um Sortiervorgaben und Prozesswege für das Recycling zu definieren. Weiterhin sollen Vorgaben für Neuentwicklungen und die Beschaffung von Rohstoffen festgelegt werden, um die Produkte umweltneutraler zu gestalten. (Text gekürzt)

Indikator: Gesamtrohstoffproduktivität

<p>Indikator: Gesamtrohstoffproduktivität</p><p>Die wichtigsten Fakten</p><p><ul><li>Die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gesamtrohstoffproduktivitt#alphabar">Gesamtrohstoffproduktivität</a>⁠ stieg von 2010 bis 2022 um 27 %.</li><li>Die Gesamtrohstoffproduktivität soll nach dem Ziel in der Nachhaltigkeitsstrategie von 2010 bis 2030 pro Jahr um durchschnittlich 1,6 % wachsen.</li><li>Nachdem das durchschnittliche Wachstum viele Jahre unterhalb dieses Zielpfads verblieb, lag die Entwicklung nun zum ersten Mal darüber.</li><li>Die Gesamtrohstoffproduktivität ist ein Maß für die Effizienz der Rohstoffnutzung und bezieht auch Rohstoffe ein, die für die Herstellung der importierten Güter benötigt wurden.</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Primärrohstoffe werden vor allem im Bergbau, aber auch in der Forst- und Landwirtschaft gewonnen. Diese wirtschaftlichen Aktivitäten haben teilweise massive Umweltwirkungen. Ein Ziel der Umweltpolitik ist deshalb, dass die Volkswirtschaft Rohstoffe möglichst effizient einsetzt. Um diese Entwicklung zu messen, setzt der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ „Gesamtrohstoffproduktivität“ die Leistung der Volkswirtschaft mit der Rohstoffinanspruchnahme in Bezug.</p><p>Deutschland im- und exportiert jedoch zu einem großen Teil verarbeitete Güter und fertige Produkte. Der „Primärrohstoffeinsatz“ gibt das Ausmaß der tatsächlich eingesetzten Primärrohstoffe wieder. Er basiert auf den Rohstoff-Äquivalenten. Damit umfasst er das Gesamtgewicht der Primärrohstoffe, die benötigt werden, um die Güter herzustellen, die in der deutschen Volkswirtschaft produziert oder in diese importiert werden.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gesamtrohstoffproduktivitt#alphabar">Gesamtrohstoffproduktivität</a>⁠ erhöhte sich in Deutschland zwischen 2010 und 2022 um 27 %. Ein deutlicher Anstieg der Gesamtrohstoffproduktivität ist nach vorläufiger Berechnung im Jahr 2022 zu verzeichnen gewesen. Grund war ein deutliches Absinken des Rohmaterialeinsatzes (⁠<a href="https://www.umweltbundesamt.de/service/glossar/r?tag=RMI#alphabar">RMI</a>⁠) seit 2019. Das Bruttoinlandsprodukt ging in diesem Zeitraum lediglich zum Jahr 2020 zurück, stieg dann aber rasch wieder an. Zu beachten ist, dass 2020 ein Ausnahmejahr war, da u.a. aufgrund der COVID-19-Pandemie die Nachfrage und damit verbundene Lieferketten weltweit beeinflusst waren.</p><p>In der Neuauflage der<a href="https://www.bundesregierung.de/breg-de/themen/nachhaltigkeitspolitik/die-deutsche-nachhaltigkeitsstrategie-318846">Deutschen Nachhaltigkeitsstrategie</a>von 2016 hat sich die Bundesregierung für das weitere Wachstum der Gesamtrohstoffproduktivität ein neues Ziel gesetzt: Das durchschnittliche jährliche Wachstum der Jahre 2000 bis 2010 von rund 1,6 % soll bis ins Jahr 2030 fortgesetzt werden. Das Wachstum von 2010 bis 2022 lag nach dem starken Anstieg der Gesamtrohstoffproduktivität zum Jahr 2022 nun erstmal über diesem Zielpfad.</p><p>Das<a href="https://www.bmuv.de/themen/ressourcen/deutsches-ressourceneffizienzprogramm">Deutsche Ressourceneffizienzprogramm III</a>(ProgRess III) zeichnet für die Jahre ab 2020 eine Vielzahl von Maßnahmen auf, mit denen die Rohstoffproduktivität weiter gesteigert werden soll. Im aktuellen Programm werden nun unter anderem auch die Themen ressourceneffiziente Mobilität und Potenziale und Risiken der Digitalisierung für die Ressourceneffizienz betrachtet. Die Bundesregierung hat zudem in 2024 die<a href="https://www.bmuv.de/themen/kreislaufwirtschaft/kreislaufwirtschaftsstrategie">Nationale Kreislaufwirtschaftsstrategie (NKWS)</a>veröffentlicht, welche Ziele und Maßnahmen zum zirkulären Wirtschaften und zur Ressourcenschonung aus allen relevanten Strategien zusammenführt. Die Gesamtrohstoffproduktivität ist darin auch als ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ verankert.</p><p>Wie wird der Indikator berechnet?</p><p>Die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gesamtrohstoffproduktivitt#alphabar">Gesamtrohstoffproduktivität</a>⁠ ergibt sich aus dem Verhältnis zweier Größen: Den Zähler bildet die Summe aus Bruttoinlandsprodukt und dem monetären Wert der deutschen Importe. Diese Größe wird durch die Volkswirtschaftliche Gesamtrechnung des Statistischen Bundesamtes bereitgestellt. Der Nenner enthält die Angaben zum „Primärrohstoffeinsatz“ in Deutschland durch Produktion und Importe. Beide Größen werden jeweils als Index (2010=100) dargestellt. Das Verfahren zur Bestimmung der indirekten Importe (⁠<a href="https://www.umweltbundesamt.de/service/glossar/r?tag=Rohstoffquivalente#alphabar">Rohstoffäquivalente</a>⁠) ist in einem<a href="https://www.umweltbundesamt.de/publikationen/rohstoffe-fuer-deutschland">Forschungsbericht</a>beschrieben. Aufgrund methodischer Anpassungen weichen die Zeitreihen ab 2010 von bisher veröffentlichten Zahlen ab. Merkliche Veränderungen treten insbesondere bei den Erzen auf, siehe den<a href="https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/rohstoffe-materialfluesse-wasser/Publikationen/Downloads/statistischer-bericht-rohstoffaequivalente-5853101217005.xlsx">Statistischen Bericht "Rohstoffäquivalente - Berichtszeitraum 2000-2021"</a>. Für die Berechnung der diesem ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ zu Grunde liegenden Indexwerte nutzt das Statistische Bundesamt exaktere als die dort veröffentlichten Daten. Die Ergebnisse daraus sind in der Tabelle „<a href="https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/rohstoffe-materialfluesse-wasser/Tabellen/gesamtrohstoffproduktivitaet-Index.html">Gesamtrohstoffproduktivität und ihre Komponenten, Index 2010 = 100</a>“ veröffentlicht.</p><p><strong>Ausführliche Informationen zum Thema finden Sie im Daten-Artikel „<a href="https://www.umweltbundesamt.de/daten/ressourcen-abfall/rohstoffe-als-ressource/rohstoffproduktivitaet">Rohstoffproduktivität</a>".</strong></p>

Projektierung eines herstellerunabhängigen Recyclingprozesses von OP-Instrumenten der Asklepios Kliniken

Zielsetzung: Die Gesundheitsversorgung von Menschen ist eine sehr ressourcenintensive Aufgabe. Das Fraunhofer ISI gibt an, dass das Gesundheitswesen jährlich bis zu 107 Millionen Tonnen an Rohstoffen verbraucht. Damit ist der Gesundheitssektor der fünftgrößte Rohstoffkonsument in Deutschland. Ein hoher Rohstoffkonsum setzt einen hohen Ressourceneinsatz voraus und führt zu einem hohen Abfallaufkommen. Aus diesem Grund wundert es nicht, dass die Krankenhäuser in Deutschland auch der fünftgrößte Müllproduzent sind. Täglich fallen pro Klinik durchschnittlich sieben bis acht Tonnen Abfall an. Ein hoher Anteil dieses Abfalls sind hausmüllähnliche Abfälle, an deren Sammlung und Entsorgung keine besonderen Anforderungen gestellt werden müssen und teilweise recycelbar sind. Aufgrund fehlender Standards werden die oft hochwertigen Materialien jedoch nicht recycelt, sondern mit dem Restmüll entsorgt und anschließend verbrannt. Das Verbrennen von Abfällen ist jedoch mit hohen CO2-Emissionen verbunden. Dies ist auch der Grund weswegen die Müllverbrennung in das nationale Brennstoffemissionshandelsgesetz aufgenommen wird und hier mit steigenden Kosten für die Abfallverursacher zu rechnen ist. Ziel des Projekts ist es, hochwertige Materialien separat für ein stoffliches Recycling zu erfassen, die als sortenreine Fraktionen bisher verloren gingen, das Restmüllaufkommen in Krankenhäusern zu reduzieren, durch Recycling von Materialien wertvolle Rohstoffe wiederaufzubereiten und damit den gesetzlichen Anforderungen der Abfalltrennung gerechter zu werden. Zwei Aspekte im Sinne der Umweltentlastung werden mit diesem Projekt beabsichtigt: Schonung von Ressourcen durch das Recycling von Wertstoffen und Reduktion von CO2-Emissionen durch Müllverbrennung.

Bodenfeuchteindex (BFI_10_w2: 10 m Rasterdaten) (WMS Dienst)

Der modifizierte Bodenfeuchte-Index (BFi) stellt ein Maß für die reliefbedingten, potentiellen Feuchteverhältnisse des Bodens dar. Er errechnet sich einerseits aus dem komplexen Reliefparameter Einzugsgebietsgröße, also der potentiell durch Abfluss zur Verfügung stehenden Wassermenge und andererseits aus dem lokalen Reliefparameter Neigung. Die Neigung steuert die Fließgeschwindigkeit und damit die Verweildauer des abfließenden Wassers. Weitere Details zum Verfahren (ohne Modifikation) finden sich bei BÖHNER & KÖTHE (2003). Der modifizierte Bodenfeuchte-Index ist ein leistungsfähiger Reliefparameter. Es gelingt u.a., dass breite Talböden einen einheitlichen hohen Bodenfeuchte-Index aufweisen und nicht wie z.B. bei MOORE et al. (1993) hohe Indizes nur auf die schmalen Abflusslinien in den Talböden konzentriert bleiben (vgl. BÖHNER & KÖTHE 2003). Die Modifikation des Bodenfeuchte-Index besteht in erster Linie in der Gewichtung der Hangneigung. Der verwendete Gewichtungsfaktor beträgt den Wert 2 (Standardwert ist 1). Der relativ hohe Gewichtungsfaktor 2 führt zwar dazu, dass im Bergland der Bodenfeuchte-Index recht undifferenziert ist und bereits die Endmoränen der Geest ähnlich geringe Werte wie das Bergland aufweisen. Dafür sind aber alle sehr flach geneigten Gebiete stark differenziert. Da Niedersachsen überwiegend ein flach geneigtes Relief aufweist und da der Zusammenhang Boden -Relief in grundwassernahen Standorten i.d.R. stärker ist, wurde sich für einen hohen Gewichtungsfaktor entschieden. BÖHNER, J. & KÖTHE, R. (2003): Bodenregionalisierung und Prozeßmodellierung: Instrumente für den Bodenschutz. – Peterm. Geogr. Mitt., 147, 2003/3: 72-82; Gotha.

Bodenfeuchteindex (BFI_10_w2: 10 m Rasterdaten)

Der modifizierte Bodenfeuchte-Index (BFi) stellt ein Maß für die reliefbedingten, potentiellen Feuchteverhältnisse des Bodens dar. Er errechnet sich einerseits aus dem komplexen Reliefparameter Einzugsgebietsgröße, also der potentiell durch Abfluss zur Verfügung stehenden Wassermenge und andererseits aus dem lokalen Reliefparameter Neigung. Die Neigung steuert die Fließgeschwindigkeit und damit die Verweildauer des abfließenden Wassers. Weitere Details zum Verfahren (ohne Modifikation) finden sich bei BÖHNER & KÖTHE (2003). Der modifizierte Bodenfeuchte-Index ist ein leistungsfähiger Reliefparameter. Es gelingt u.a., dass breite Talböden einen einheitlichen hohen Bodenfeuchte-Index aufweisen und nicht wie z.B. bei MOORE et al. (1993) hohe Indizes nur auf die schmalen Abflusslinien in den Talböden konzentriert bleiben (vgl. BÖHNER & KÖTHE 2003). Die Modifikation des Bodenfeuchte-Index besteht in erster Linie in der Gewichtung der Hangneigung. Der verwendete Gewichtungsfaktor beträgt den Wert 2 (Standardwert ist 1). Der relativ hohe Gewichtungsfaktor 2 führt zwar dazu, dass im Bergland der Bodenfeuchte-Index recht undifferenziert ist und bereits die Endmoränen der Geest ähnlich geringe Werte wie das Bergland aufweisen. Dafür sind aber alle sehr flach geneigten Gebiete stark differenziert. Da Niedersachsen überwiegend ein flach geneigtes Relief aufweist und da der Zusammenhang Boden -Relief in grundwassernahen Standorten i.d.R. stärker ist, wurde sich für einen hohen Gewichtungsfaktor entschieden. BÖHNER, J. & KÖTHE, R. (2003): Bodenregionalisierung und Prozeßmodellierung: Instrumente für den Bodenschutz. – Peterm. Geogr. Mitt., 147, 2003/3: 72-82; Gotha.

1 2 3 4 5130 131 132