Der Datensatz beinhaltet Daten vom LBGR über den Bodenfeuchteindex und wird über je einen Darstellungs- und Downloaddienst bereitgestellt. Der Bodenfeuchteindex stellt ein dimensionsloses Maß für die potenziellen, reliefbedingten Feuchteverhältnisse des Bodens dar. Er quantifiziert die potenzielle Wasserabflussmenge in Abhängigkeit von der Einzugsgebietsgröße (potentieller Abfluss) und der Neigung (Verweildauer des abfließenden Wassers).
Der interoperable INSPIRE-Datensatz beinhaltet Daten vom LBGR über den Bodenfeuchteindex in Brandenburg, zugeordnet in das INSPIRE-Zielschema Höhenlage. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the soil moisture index in the State of Brandenburg from the LBGR, assigned to the INSPIRE target schema Elevation. The data set is provided via a compliant view and download service.
Die Serie beinhaltet Daten vom LBGR über Geomorphografische Auswertungen Brandenburgs und umfasst eine Sammlung geomorphometrischer und geomorphografischer Ableitungen, die aus dem Digitalen Höhenmodell (DGM2 mit Bodenauflösung 2 x 2 m Rasterweite; Höhenauflösung von +/- 20 - 50 cm) für Brandenburg berechnet wurden. 1. Lokale Parameter: Hangneigung, Exposition, Divergenz-Konvergenz Index; 2. Komplexe Parameter: Höhe über Tiefenlinie (dicht), Höhe über Tiefenlinie (ausgedünnt), Tiefenlinien (dicht), Tiefenlinien (ausgedünnt), Kulminationslinien, Höhe unter Kulminationslinie, Potentieller Bodenfeuchteindex, Multiresolution Index for Valley Bottom Flatness; 3. Kombinierte Parameter: Scheitelbereichsindex, Terrain Classification Index for Lowlands; 4. Geomorphografische Karten: Reliefeinheiten 1, Reliefeinheiten 2 (glaziale Hochflächen undifferenziert), Reliefeinheiten 2 (glaziale Hochflächen differenziert), Senkenbereiche (klassifiziert), Geschlossene Hohlformen.
<p>Die Rohstoffproduktivität stieg zwischen 1994 und 2020 um rund 74 Prozent. Ziel des „Deutschen Ressourceneffizienzprogramms“ (ProgRess) war eine Verdopplung. Dieses Ziel wurde verfehlt. Seit der Veröffentlichung von ProgRess III im Jahr 2020 wird die „Gesamtrohstoffproduktivität“ abgebildet. Dieser weiterentwickelte Indikator ist Teil der Nationalen Kreislaufwirtschaftsstrategie (NKWS) von 2024.</p><p>Entwicklung der Rohstoffproduktivität</p><p>Die Rohstoffproduktivität in Deutschland stieg laut Daten des Statistischen Bundesamtes von 1994 bis 2020 um 73,6 %. Der abiotische Direkte Materialeinsatz sank in diesem Zeitraum um 21,6 %. Das Bruttoinlandsprodukt (BIP) stieg im selben Zeitraum um 36,0 % (siehe Abb. „Rohstoffproduktivität“). Das Jahr 2020 war allerdings durch die Lockdowns der Corona-Pandemie und damit verbundener geringerer wirtschaftlicher Aktivität und Nachfrage nach Rohstoffen geprägt.</p><p>Die Rohstoffproduktivität stieg in diesem Zeitraum nicht stetig. Drei Beispiele:</p><p>Insgesamt entwickelte sich die Rohstoffproduktivität in die angestrebte Richtung. Allerdings wurde seit dem Jahr 1994 das ursprünglich gesetzte Ziel des Deutschen Ressourceneffizienzprogramms (<a href="https://www.bmuv.de/themen/ressourcen/deutsches-ressourceneffizienzprogramm">ProgRess</a>) nicht realisiert: eine Verdopplung der Rohstoffproduktivität bis 2020. </p><p>Indikator "Rohstoffproduktivität"</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> „Rohstoffproduktivität“ drückt aus, wie effizient abiotische Primärmaterialien in Deutschland eingesetzt wurden, um das Bruttoinlandsprodukt (BIP) zu erwirtschaften. Die Bundesregierung hat mit dem Deutschen Ressourceneffizienzprogramm ursprünglich das Ziel vorgegeben, die Rohstoffproduktivität bis zum Jahr 2020 im Vergleich zum Jahr 1994 zu verdoppeln. Mit der Verabschiedung des dritten Deutschen Ressourceneffizienzprogramms im Jahre 2020 wurde der Indikator durch die „Gesamtrohstoffproduktivität“ als zentraler Indikator weiterentwickelt (s. unten). Die <a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gesamtrohstoffproduktivitt#alphabar">Gesamtrohstoffproduktivität</a> ist auch in der 2024 veröffentlichten <a href="https://www.bmuv.de/download/nationale-kreislaufwirtschaftsstrategie-nkws">Nationalen Kreislaufwirtschaftsstrategie (NKWS)</a> neben weiteren Indikatoren und Zielen verankert.</p><p>Um die Rohstoffproduktivität zu ermitteln, wird ein Quotient gebildet (siehe Schaubild „Stoffstromindikatoren“): Das Bruttoinlandsprodukt (BIP) wird mit den in Deutschland eingesetzten abiotischen Materialien in Beziehung gesetzt. Die abiotischen Materialien umfassen inländische Rohstoffentnahmen und importierte Materialien (abiotischer Direkter Materialeinsatz, siehe auch <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DMI#alphabar">DMI</a> im Schaubild „Stoffstromindikatoren“). Die Rohstoffproduktivität erlaubt eine erste Trendaussage zur Effizienz der Rohstoffnutzung in unserer Wirtschaft über einen langen Zeitraum.</p><p>Die Basis des Indikators „Rohstoffproduktivität“: der abiotische Direkte Materialeinsatz</p><p>Zur Berechnung der Rohstoffproduktivität wird der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> „abiotischer Direkter Materialeinsatz“ verwendet. Der zugrundeliegende Indikator „Direkter Materialeinsatz“ wird im Englischen als „Direct Material Input“ (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DMI#alphabar">DMI</a>) bezeichnet.</p><p>Der abiotische Direkte Materialeinsatz ermöglicht es, Umfang und Charakteristik der nicht-erneuerbaren Materialnutzung in einer Volkswirtschaft aus der Perspektive der Produktion darzustellen. Er berücksichtigt inländische Entnahmen von nicht-erneuerbaren Primärrohstoffen aus der Natur. Weiterhin sind alle eingeführten abiotischen Rohstoffe, <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Halbwaren#alphabar">Halbwaren</a> und Fertigwaren mit ihrem Eigengewicht Bestandteil des Indikators.<br><br>Der Direkte Materialeinsatz ist zentraler Bestandteil volkswirtschaftlicher Materialflussrechnungen.</p><p>Entwicklung des abiotischen Direkten Materialeinsatzes</p><p>Für die Deutung der Rohstoffproduktivität und deren Verlauf ist die Entwicklung des abiotischen Direkten Materialeinsatzes wichtig. Im Jahr der Wirtschaftskrise 2009 nutzte die deutsche Wirtschaft 1.203 Millionen Tonnen (Mio. t) nicht-erneuerbarer Materialien. Das waren knapp 21 % weniger als im Jahr 1994.</p><p>Im Jahr 2011 stieg der abiotische Direkte Materialeinsatz vorübergehend recht stark auf 1.322 Mio. t an. Dies war vor allem auf eine konjunkturbedingte Steigerung der inländischen Entnahme von mineralischen Baurohstoffen und weiter steigende Importe von Energieträgern und Metallerzeugnissen zurückzuführen. 2020 sank der Materialeinsatz wieder auf 1.187 Mio. t. Damit beträgt das Minus im Jahr 2020 gegenüber 1994 knapp 24 %. Letzte Zahlen des Statistischen Bundesamtes zeigen, dass der direkte abiotische Materialeinsatz bis 2022 mit 1.149 Mio. t. weiter leicht gesunken ist (siehe Abb. „Entwicklung des abiotischen Direkten Materialeinsatzes“).</p><p>Komponenten des abiotischen Direkten Materialeinsatzes</p><p>Das Statistische Bundesamt schlüsselt die Komponenten auf, aus denen sich der abiotische Direkte Materialeinsatz zusammensetzt. In den Jahren von 1994 bis 2022 gab es Veränderungen bei der Entnahme inländischer abiotischer Rohstoffe und der Einfuhr abiotischer Güter: Während die Entnahme von abiotischen Rohstoffen im Inland zwischen 1994 und 2022 um 410 Millionen Tonnen (– 37 %) zurückgegangen ist, stieg die Einfuhr von nicht-erneuerbaren Rohstoffen sowie Halb- und Fertigwaren um 45 Mio. t an (+ 11%). Der Anteil der importierten Güter am gesamten nicht-erneuerbaren Primärmaterialeinsatz erhöhte sich damit von 26 % im Jahre 1994 auf 38 % im Jahre 2022.</p><p>Betrachtet man die Entwicklung der verschiedenen Rohstoffarten zwischen 1994 und 2022 genauer, fallen folgende Entwicklungen auf (siehe Abb. „Entnahme abiotischer Rohstoffe und Einfuhr abiotischer Güter“):</p><p>Erfassung der indirekten Importe</p><p>Der abiotische Direkte Materialeinsatz berücksichtigt zwar die direkten, aber nicht die sogenannten „indirekten Materialströme“ der Einfuhren. Dazu gehören Rohstoffe, die im Ausland zur Erzeugung der importierten Güter genutzt wurden. Diese sind in den von der Handelsstatistik erfassten Mengen nicht enthalten. <br><br>Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> Rohstoffproduktivität kann daher einen vermeintlichen Produktivitätsfortschritt vorspiegeln, wenn im Inland entnommene oder importierte Rohstoffe durch die Einfuhr bereits weiter verarbeiteter Produkte ersetzt werden.</p><p>Das ist durchaus realistisch: So nahmen zwischen den Jahren 1994 und 2022 die Einfuhren an überwiegend abiotischen Fertigwaren um 114 % deutlich stärker zu, als die von <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Halbwaren#alphabar">Halbwaren</a>. Deren Importe gingen sogar leicht zurück. Die von Rohstoffen sanken bis 2022 ebenfalls um 3 % (siehe Abb. „Abiotische Importe nach Deutschland nach Verarbeitungsgrad“). Bei Halbwaren handelt es sich um bereits be- oder verarbeitete Rohstoffe, die im Regelfall weiterer Be- oder Verarbeitung bedürfen, bevor sie als Fertigwaren benutzbar sind. Hierzu zählen beispielsweise Rohmetalle, mineralische Baustoffe wie Zement oder Schnittholz.</p><p>Die Anstiege der Fertigwaren gelten gleichermaßen für metallische Güter wie auch für Produkte aus fossilen Energieträgern, etwa Kunststoffe. Mit dem zunehmenden Import von Fertigwaren werden rohstoffintensive Herstellungsprozesse mitsamt den meist erheblichen Umwelteinwirkungen der Rohstoffgewinnung und -aufbereitung verstärkt ins Ausland verlagert.</p><p>Ergänzung des Indikators „Rohstoffproduktivität“ um indirekte Importe</p><p>Der Verlagerungseffekt der Rohstoffnutzung ins Ausland lässt sich durch die Umrechnung der Importe in <a href="https://www.umweltbundesamt.de/service/glossar/r?tag=Rohstoffquivalente#alphabar">Rohstoffäquivalente</a> abbilden – wie etwa beim <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> <strong>„Rohstoffverbrauch“</strong> (engl. „Raw Material Input“, <a href="https://www.umweltbundesamt.de/service/glossar/r?tag=RMI#alphabar">RMI</a>). Der Indikator berücksichtigt ergänzend zum direkten Materialeinsatz auch Importgüter mit den Massen an Rohstoffen, die im Ausland zu deren Herstellung erforderlich waren (siehe „Schaubild Stoffstromindikatoren“). Diese werden in der Fachsprache als „indirekte Importe“ bezeichnet. Der RMI stellt also eine Vergleichbarkeit zwischen den Einfuhren und inländischen Entnahmen her, indem der Primärrohstoffverbrauch im In- und Ausland gleichermaßen abgebildet wird.</p><p>Für eine Einschätzung, wie viele Rohstoffe eine Volkswirtschaft verwendet, macht es einen Unterschied, ob indirekte Stoffströme berücksichtigt werden oder nicht. Zwischen den Jahren 2010 und 2021 (letztes verfügbares Jahr) stieg die Summe aus abiotischer Rohstoffentnahme sowie direkten und indirekten Importen (RMIabiot) um mehr als 6 %. Der <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DMI#alphabar">DMI</a>abiot, der die indirekten Importe nicht berücksichtigt, sank im selben Zeitraum jedoch um ca. 6 % (siehe Abb. „Rohstoffproduktivität“).</p><p>Bedeutung der Biomasse nimmt zu</p><p>Der abiotische Direkte Materialeinsatz bei der Berechnung der Rohstoffproduktivität für das Deutsche Ressourceneffizienzprogramm erfasst nur nicht-erneuerbare Rohstoffe. Das bedeutet, dass <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a> bei der Berechnung ausgeklammert wird. Doch die Bedeutung von Biomasse für die Rohstoffnutzung steigt, denn durch Biomasse können knapper werdende fossile und mineralische Rohstoffe ersetzt werden.<br><br>Sowohl der Anbau biotischer Rohstoffe als auch ihre Verarbeitung und Nutzung sind mit erheblichen Umwelteinwirkungen verbunden. Weiterhin sind die nachhaltig zu bewirtschaftenden Anbauflächen begrenzt. Deshalb ist es von wachsender Bedeutung, biotische Rohstoffe in die Berechnungen der Materialindikatoren zur Rohstoffproduktivität einfließen zu lassen.</p><p>Ein erweiterter Produktivitätsindikator: die Gesamtrohstoffproduktivität</p><p>Mit Verabschiedung des <a href="https://www.umweltbundesamt.de/themen/zweites-deutsches-ressourceneffizienzprogramm">2. Deutschen Ressourceneffizienzprogramms (ProgRess II)</a> und der Neuauflage der <a href="https://www.bundesregierung.de/breg-de/themen/nachhaltigkeitspolitik/die-deutsche-nachhaltigkeitsstrategie-318846">Deutschen Nachhaltigkeitsstrategie</a> wurde dem <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> „Rohstoffproduktivität“ eine weitere Produktivitätsgröße an die Seite gestellt: die „Gesamtrohstoffproduktivität“ (siehe Abb. „Gesamtrohstoffproduktivität“). Diese Größe beinhaltet – anders als der bisherige Indikator – neben den abiotischen auch die biotischen Rohstoffe und berücksichtigt nicht nur die Tonnage der importierten Güter, sondern den gesamten damit verbundenen <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrrohstoffeinsatz#alphabar">Primärrohstoffeinsatz</a> (<a href="https://www.umweltbundesamt.de/service/glossar/r?tag=Rohstoffquivalente#alphabar">Rohstoffäquivalente</a>). Die <a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gesamtrohstoffproduktivitt#alphabar">Gesamtrohstoffproduktivität</a> wird seit Veröffentlichung des <a href="https://www.bmuv.de/publikation/deutsches-ressourceneffizienzprogramm-iii-2020-bis-2023">Deutschen Ressourceneffizienzprogramms III</a> ausschließlich berichtet. Der Indikator ist auch in der <a href="https://www.bmuv.de/download/nationale-kreislaufwirtschaftsstrategie-nkws">Nationalen Kreislaufwirtschaftsstrategie (NKWS)</a> von 2024 verankert.</p><p>Zwischen den Jahren 2010 und 2030 soll der Wert jährlich im Durchschnitt um 1,6 % wachsen. Das Wachstum von 2010 bis 2022 lag nach dem starken Anstieg der Gesamtrohstoffproduktivität zum Jahr 2022 nun erstmal über diesem Zielpfad.</p><p>Der Indikator wird <a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-gesamtrohstoffproduktivitaet">hier</a> ausführlich vorgestellt.</p>
In der Tschechischen Republik wird der Bau und Betrieb eines SMR-Kernkraftwerks in Tušimice bei Chomutov (Region Ústí nad Labem) geplant (SMR steht für „Small Modular Reactor“). Dabei handelt es sich um Kernreaktoren mit einer reduzierten elektrischen Nettoleistung, die einzeln oder im Verbund mehrerer Einheiten betrieben werden können. Das Ministerium für Umwelt der Tschechischen Republik informierte das Bundesministerium für Umwelt, Klimaschutz, Naturschutz und nukleare Sicherheit sowie das Sächsische Staatsministerium für Umwelt und Landwirtschaft (SMUL) im Mai 2025 über das Vorhaben (Notifizierung) des geplanten Neubaus eines SMR-Kernkraftwerks am Standort Tušimice in der Tschechischen Republik. Das SMUL beteiligt sich am Verfahren zur grenzüberschreitenden Umweltverträglichkeitsprüfung für den Freistaat Sachsen. Das Niedersächsische Ministerium für Umwelt, Energie und Klimaschutz sowie das Bayerische Staatsministerium für Umwelt und Verbraucherschutz beteiligen sich ebenfalls am Verfahren. Die Federführung obliegt dem SMUL. Zunächst wird ein Scoping-Verfahren zur Festlegung der Inhalte und Umfänge der UVP-Dokumentation eingeleitet. Das Scoping-Verfahren ist ein unselbstständiges Vorverfahren, in dem nur der Untersuchungsrahmen für die Umweltverträglichkeitsprüfung festgelegt wird. Die inhaltlich-fachlichen und technischen Fragen stehen dagegen erst im Rahmen der eigentlichen Umweltverträglichkeitsprüfung zur Diskussion. Stellungnahmen zum Scoping-Verfahren werden in deutscher Sprache vom Ministerium für Umwelt der Tschechischen Republik bis zum 14. Juli 2025 angenommen (siehe auch Datei „Auslegungsinformation_Bekanntmachung“): Ministerstvo životního prostředí (Ministry of the Environment), Vršovická 1442/65, 100 10 Praha 10, Czech Republic, E-Mail: smr_tusimice@mzp.gov.cz - Mit der letzten Aktualisierung des UVP-Portals zu diesem Vorhaben wurde die Gemeinsame Stellungnahme des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft, des Bayerischen Staatsministeriums für Umwelt und Verbraucherschutz sowie des Niedersächsischen Ministeriums für Umwelt, Energie und Klimaschutz im Rahmen des Scopings zur grenzüberschreitenden Umweltverträglichkeitsprüfung im UVP-Portal veröffentlicht.
Der modifizierte Bodenfeuchte-Index (BFi) stellt ein Maß für die reliefbedingten, potentiellen Feuchteverhältnisse des Bodens dar. Er errechnet sich einerseits aus dem komplexen Reliefparameter Einzugsgebietsgröße, also der potentiell durch Abfluss zur Verfügung stehenden Wassermenge und andererseits aus dem lokalen Reliefparameter Neigung. Die Neigung steuert die Fließgeschwindigkeit und damit die Verweildauer des abfließenden Wassers. Weitere Details zum Verfahren (ohne Modifikation) finden sich bei BÖHNER & KÖTHE (2003). Der modifizierte Bodenfeuchte-Index ist ein leistungsfähiger Reliefparameter. Es gelingt u.a., dass breite Talböden einen einheitlichen hohen Bodenfeuchte-Index aufweisen und nicht wie z.B. bei MOORE et al. (1993) hohe Indizes nur auf die schmalen Abflusslinien in den Talböden konzentriert bleiben (vgl. BÖHNER & KÖTHE 2003). Die Modifikation des Bodenfeuchte-Index besteht in erster Linie in der Gewichtung der Hangneigung. Der verwendete Gewichtungsfaktor beträgt den Wert 2 (Standardwert ist 1). Der relativ hohe Gewichtungsfaktor 2 führt zwar dazu, dass im Bergland der Bodenfeuchte-Index recht undifferenziert ist und bereits die Endmoränen der Geest ähnlich geringe Werte wie das Bergland aufweisen. Dafür sind aber alle sehr flach geneigten Gebiete stark differenziert. Da Niedersachsen überwiegend ein flach geneigtes Relief aufweist und da der Zusammenhang Boden -Relief in grundwassernahen Standorten i.d.R. stärker ist, wurde sich für einen hohen Gewichtungsfaktor entschieden. BÖHNER, J. & KÖTHE, R. (2003): Bodenregionalisierung und Prozeßmodellierung: Instrumente für den Bodenschutz. – Peterm. Geogr. Mitt., 147, 2003/3: 72-82; Gotha.
Der Terrain Classification Index = (TCIlow) ist ein dimensionsloser Index im Wertebereich von 0-2. Er überhöht geringste Höhendifferenzen, insbesondere in Tiefenbereichen. Auch bei geringsten Reliefunterschieden werden Gerinne und flache Senken erkennbar. In der Nähe von anthropogenen Bauwerken wie Deichen, Dämmen oder Halden können Reste oder Artefakte die Werte verfälschen. Der Reliefklassifikationsindex TCIlow beruht auf dem nach 10m generalisierten digitalen Höhenmodel von Niedersachsen (DGM1) und wird aus den komplexen Reliefparametern Höhe über Tiefenlinie, Einzugsgebietsgröße und modifizierten Bodenfeuchteindex berechnet (BOCK, BÖHNER, CONRAD, KÖTHE & RINGELER (2007)). BOCK, M., BÖHNER, J., CONRAD, O., KÖTHE, R. & RINGELER, A. (2007): Methods for creating Functional Soil Databases and applying Digital Soil Mapping with SAGA GIS. - In: Hengl, T. et al. (Eds.) Status and prospect of soil information in south-eastern Europe: soil databases, projects and applications. - EUR 22646 EN, 149-163, Scientific and Technical Research series, Office for Official Publications of the European Communities; Luxemburg.
<p>Die wichtigsten Fakten</p><p><ul><li>Die <a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gesamtrohstoffproduktivitt#alphabar">Gesamtrohstoffproduktivität</a> stieg von 2010 bis 2022 um 27 %.</li><li>Die Gesamtrohstoffproduktivität soll nach dem Ziel in der Nachhaltigkeitsstrategie von 2010 bis 2030 pro Jahr um durchschnittlich 1,6 % wachsen.</li><li>Nachdem das durchschnittliche Wachstum viele Jahre unterhalb dieses Zielpfads verblieb, lag die Entwicklung nun zum ersten Mal darüber.</li><li>Die Gesamtrohstoffproduktivität ist ein Maß für die Effizienz der Rohstoffnutzung und bezieht auch Rohstoffe ein, die für die Herstellung der importierten Güter benötigt wurden.</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Primärrohstoffe werden vor allem im Bergbau, aber auch in der Forst- und Landwirtschaft gewonnen. Diese wirtschaftlichen Aktivitäten haben teilweise massive Umweltwirkungen. Ein Ziel der Umweltpolitik ist deshalb, dass die Volkswirtschaft Rohstoffe möglichst effizient einsetzt. Um diese Entwicklung zu messen, setzt der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> „Gesamtrohstoffproduktivität“ die Leistung der Volkswirtschaft mit der Rohstoffinanspruchnahme in Bezug.</p><p>Deutschland im- und exportiert jedoch zu einem großen Teil verarbeitete Güter und fertige Produkte. Der „Primärrohstoffeinsatz“ gibt das Ausmaß der tatsächlich eingesetzten Primärrohstoffe wieder. Er basiert auf den Rohstoff-Äquivalenten. Damit umfasst er das Gesamtgewicht der Primärrohstoffe, die benötigt werden, um die Güter herzustellen, die in der deutschen Volkswirtschaft produziert oder in diese importiert werden.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Die <a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gesamtrohstoffproduktivitt#alphabar">Gesamtrohstoffproduktivität</a> erhöhte sich in Deutschland zwischen 2010 und 2022 um 27 %. Ein deutlicher Anstieg der Gesamtrohstoffproduktivität ist nach vorläufiger Berechnung im Jahr 2022 zu verzeichnen gewesen. Grund war ein deutliches Absinken des Rohmaterialeinsatzes (<a href="https://www.umweltbundesamt.de/service/glossar/r?tag=RMI#alphabar">RMI</a>) seit 2019. Das Bruttoinlandsprodukt ging in diesem Zeitraum lediglich zum Jahr 2020 zurück, stieg dann aber rasch wieder an. Zu beachten ist, dass 2020 ein Ausnahmejahr war, da u.a. aufgrund der COVID-19-Pandemie die Nachfrage und damit verbundene Lieferketten weltweit beeinflusst waren.</p><p>In der Neuauflage der <a href="https://www.bundesregierung.de/breg-de/themen/nachhaltigkeitspolitik/die-deutsche-nachhaltigkeitsstrategie-318846">Deutschen Nachhaltigkeitsstrategie</a> von 2016 hat sich die Bundesregierung für das weitere Wachstum der Gesamtrohstoffproduktivität ein neues Ziel gesetzt: Das durchschnittliche jährliche Wachstum der Jahre 2000 bis 2010 von rund 1,6 % soll bis ins Jahr 2030 fortgesetzt werden. Das Wachstum von 2010 bis 2022 lag nach dem starken Anstieg der Gesamtrohstoffproduktivität zum Jahr 2022 nun erstmal über diesem Zielpfad.</p><p>Das <a href="https://www.bmuv.de/themen/ressourcen/deutsches-ressourceneffizienzprogramm">Deutsche Ressourceneffizienzprogramm III</a> (ProgRess III) zeichnet für die Jahre ab 2020 eine Vielzahl von Maßnahmen auf, mit denen die Rohstoffproduktivität weiter gesteigert werden soll. Im aktuellen Programm werden nun unter anderem auch die Themen ressourceneffiziente Mobilität und Potenziale und Risiken der Digitalisierung für die Ressourceneffizienz betrachtet. Die Bundesregierung hat zudem in 2024 die <a href="https://www.bmuv.de/themen/kreislaufwirtschaft/kreislaufwirtschaftsstrategie">Nationale Kreislaufwirtschaftsstrategie (NKWS)</a> veröffentlicht, welche Ziele und Maßnahmen zum zirkulären Wirtschaften und zur Ressourcenschonung aus allen relevanten Strategien zusammenführt. Die Gesamtrohstoffproduktivität ist darin auch als <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> verankert.</p><p>Wie wird der Indikator berechnet?</p><p>Die <a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gesamtrohstoffproduktivitt#alphabar">Gesamtrohstoffproduktivität</a> ergibt sich aus dem Verhältnis zweier Größen: Den Zähler bildet die Summe aus Bruttoinlandsprodukt und dem monetären Wert der deutschen Importe. Diese Größe wird durch die Volkswirtschaftliche Gesamtrechnung des Statistischen Bundesamtes bereitgestellt. Der Nenner enthält die Angaben zum „Primärrohstoffeinsatz“ in Deutschland durch Produktion und Importe. Beide Größen werden jeweils als Index (2010=100) dargestellt. Das Verfahren zur Bestimmung der indirekten Importe (<a href="https://www.umweltbundesamt.de/service/glossar/r?tag=Rohstoffquivalente#alphabar">Rohstoffäquivalente</a>) ist in einem <a href="https://www.umweltbundesamt.de/publikationen/rohstoffe-fuer-deutschland">Forschungsbericht</a> beschrieben. Aufgrund methodischer Anpassungen weichen die Zeitreihen ab 2010 von bisher veröffentlichten Zahlen ab. Merkliche Veränderungen treten insbesondere bei den Erzen auf, siehe den <a href="https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/rohstoffe-materialfluesse-wasser/Publikationen/Downloads/statistischer-bericht-rohstoffaequivalente-5853101217005.xlsx">Statistischen Bericht "Rohstoffäquivalente - Berichtszeitraum 2000-2021"</a>. Für die Berechnung der diesem <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> zu Grunde liegenden Indexwerte nutzt das Statistische Bundesamt exaktere als die dort veröffentlichten Daten. Die Ergebnisse daraus sind in der Tabelle „<a href="https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/rohstoffe-materialfluesse-wasser/Tabellen/gesamtrohstoffproduktivitaet-Index.html">Gesamtrohstoffproduktivität und ihre Komponenten, Index 2010 = 100</a>“ veröffentlicht.</p><p><strong>Ausführliche Informationen zum Thema finden Sie im Daten-Artikel „<a href="https://www.umweltbundesamt.de/daten/ressourcen-abfall/rohstoffe-als-ressource/rohstoffproduktivitaet">Rohstoffproduktivität</a>".</strong></p>
| Origin | Count |
|---|---|
| Bund | 361 |
| Europa | 2 |
| Kommune | 23 |
| Land | 934 |
| Wissenschaft | 4 |
| Zivilgesellschaft | 21 |
| Type | Count |
|---|---|
| Chemische Verbindung | 17 |
| Daten und Messstellen | 889 |
| Förderprogramm | 173 |
| Gesetzestext | 2 |
| Text | 107 |
| Umweltprüfung | 1 |
| unbekannt | 99 |
| License | Count |
|---|---|
| geschlossen | 195 |
| offen | 1083 |
| unbekannt | 8 |
| Language | Count |
|---|---|
| Deutsch | 1231 |
| Englisch | 77 |
| Resource type | Count |
|---|---|
| Archiv | 888 |
| Bild | 1 |
| Datei | 14 |
| Dokument | 75 |
| Keine | 216 |
| Multimedia | 1 |
| Unbekannt | 2 |
| Webdienst | 17 |
| Webseite | 1022 |
| Topic | Count |
|---|---|
| Boden | 1208 |
| Lebewesen und Lebensräume | 1116 |
| Luft | 1084 |
| Mensch und Umwelt | 1286 |
| Wasser | 1057 |
| Weitere | 1248 |