Der Dienst Straßenquerschnittsflächen SIB Hamburg stellt die in der Hamburger Straßeninformationsbank (HH-SIB) gehaltenen Straßenquerschnittsflächen dar. Hierbei wird unterschieden zwischen der Art der Straßenquerschnittsfläche und der Oberfläche der Straßenquerschnittsfläche. Da die Hamburger Straßeninformationsbank Daten nur linear referenziert abbildet sind die Flächen nur in Trapezform abbildbar. Es handelt sich dementsprechend nur um eine generalisierte Abbildung. Die Daten stammen aus einer Erfassung von 2016 welche auf den Autobahnen, Bundesstraßen, den Bedarfsumleitungen, der Haupthafenroute sowie den Hauptverkehrsstraßen stattgefunden hat. Die Daten sind gemäß der Anweisung Straßendatenbank (ASB 2.03) aufgenommen.
Der Datensatz enthält die Einzugsbereiche von Haltestellen des Hamburger Verkehrsverbunds (HVV) im Hamburger Stadtgebiet. Der Einzugsbereich (Realfußwegdistanz) von Fernverkehr, Regionalbahn (RE/RB/AKN), S-Bahn und U-Bahn beträgt 720 m um die Haltestellen, der Einzugsbereich von Bushaltestellen beträgt 480 m um die Haltestellen. Für die zugehörigen Haltestellen ist der Haltestelleneingang bzw. der Bahnsteigzugang maßgeblich. Bei großen Haltestellen gibt es entsprechend z.T. mehrere Haltestellenbereiche je Haltestelle. Der Datensatz enthält zudem verschiedene Attribute, wie z.B. den zugehörigen Haltestellennamen, die HaltestellenID, die Art des Transportmittels, die jeweiligen anfahrenden Liniennummern, die Anzahl der anfahrenden Linien (nur bei den Haltestellen), die Anzahl der Anfahrten pro Tag (nur bei den Haltestellen) und die Anzahl der erschlossenen Einwohner (nur bei den Einzugsbereichen). Der Datensatz wird vom HVV bereitgestellt und jährlich im Laufe des Frühjahrs auf den aktuellen Jahresfahrplan aktualisiert. Quellen für die Auswertung der Einzugsbereiche: Haltestellen des HVV mit dem Stand des jeweiligen Jahresfahrplans Fahrplandaten des HVV mit dem Stand des jeweiligen Jahresfahrplans zugrundeliegendes Fußwegenetz: OSM Aufbereitung aus 2020 zugrundeliegende Einwohnerdaten: Adressdaten aus Melderegister, Statistisches Amt für Hamburg und Schleswig-Holstein, Stand 31.12.2021
Webanwendung mit ca. 230 Merkmalen der Amtlichen Statistik; u. a. Daten zu den Bereichen Bevölkerung, Wanderungen, Arbeitsmarkt, SGB II, Bautätigkeit, Produzierendes Gewerbe, Handel, Tourismus, Verkehr und Verdienste. Die Aktualisierung der hinterlegten Datenbank erfolgt täglich.
Das Projekt "Entwicklung eines Verfahrens zur Separation von Coatings und Textilien zur Wiederverwertung der Basisrohstoffe" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Friedrich Seiz GmbH.Zielsetzung: Das Forschungsprojekt hat die Entwicklung eines Verfahrens zur Trennung von Beschichtungen und Textilien zum Ziel. Speziell geht es um persönliche Schutzausrüstung (PSA) in Form von Arbeitsschutzhandschuhen mit Nitrilkautschuk-Beschichtung, deren Basisrohstoffe zurückgewonnen und wiederverwertet werden sollen. Ansprüche an das Vorhaben sind das Schließen von Lücken in der Kreislaufwirtschaft sowie Vermeidung von Abfällen. Daher wird angestrebt, ein Downcycling der gewonnenen Rohstoffe zu vermeiden und aus ihnen wieder beschichtete Textilien herzustellen. Zur Umsetzung dieses Vorhabens soll ein mehrstufiges Recyclingverfahren zum Trennen der in den Schutzhandschuhen enthaltenen Wertstoffe entwickelt werden. Die von den Projektpartnern zu erarbeitenden und zu untersuchten Prozessschritte beinhalten dabei neben Wasch- und Sortiervorgängen auch das Schreddern und Feinmalen der Arbeitsschutzhandschuhe mit anschließendem Sieben oder Windsichten zur Rückgewinnung der Ausgangsmaterialien, um diese schmelzfiltern oder granulieren zu können. Anlass des Projektes ist der Anfall hoher Abfallmengen an beschichteten Handschuhen, was bspw. bei der Daimler Truck AG rund 5,8 Mio. Paare pro Jahr ausmacht. Potenziell als Abfall anfallen können ca. 124 Mio. Paare pro Jahr (ca. 6.200 t), wenn man von der Gesamtmenge produzierter Ware in diesem Segment ausgeht. Die beschichteten Handschuhe werden am Endes ihres Gebrauchs der Müllverbrennung zugeführt. Grund der thermischen Verwertung ist die Untrennbarkeit der Beschichtungen vom Substrat mit der bestehenden Prozesstechnik. Bei der Seiz Industriehandschuhe GmbH machen die zur Entsorgung aussortierten Handschuhe ca. 35 t aus, was 7 % von 500 t Reinigungsware entspricht. Unbeschichtete Textilien werden aufgerissen und z. T. in Abmischungen mit Neufasern in Vliesstoffen für den nicht sichtbaren Bereich im Automobil, als Putzlappen, Füllstoffe und in weiteren Anwendungen eingesetzt. Diese Verwendung recycelbarer Wertstoffe ist bisher für beschichtete Handschuhe nicht möglich. Eine Rückführung der Handschuhrohstoffe kann jedoch den Rohstoffverbrauch für Neuprodukte reduzieren und somit eine Energieeinsparung bei der Produktion begünstigen. Die nebenstehende Abbildung führt eine Soll-Ist-Darstellung der Kreislaufwirtschaft im geplanten Projekt auf. Beim Recycling von Arbeitsschutzkleidung allgemein, und bei Handschuhen im Besonderen, muss beachtet werden, dass es sich um Funktionstextilien handelt mit der Aufgabe, ihren Träger vor Umwelteinwirkungen zu schützen. Die Handschuhe stellen einen Verbundwerkstoff dar, der aus Polyamid 6.6 (Nylon) und Nitril-Butadien-Kautschuk (NBR) besteht. Der Nylon-Bestandteil ist ein linear aufgebautes Polyamid aus der Gruppe der Copolymere, welches nach dem Schmelzen zu Endlosfasern (Filamenten) ausgesponnen und zur textilen Fläche verstrickt wird. Der Synthesekautschuk für die Handschuhbeschichtung ist das Co-Polymerisat von Acrylnitril und 3-Butadien und wird zum Erreichen von Chemikalienfestigkeit auf die Arbeitsschutzhandschuhen aufgebracht. Die Arbeitsschutzhandschuhe mit NBR-Beschichtung werden derzeit einer Wiederverwendung nach Wiederaufbereitung durch Waschen zugeführt. Diese kann die Handschuhe jedoch nicht ewig vor Verschleiß und daher der thermischen Verwertung bewahren. Grund ist, dass derzeit keine passenden Trennverfahren für NBR-PA-Verbunde bekannt sind. Die Herstellung neuer Arbeitsschutzhandschuhe aus wiederaufbereiteten Bestandteilen ist ein Bestreben des Forschungsprojektes. Die bisherigen Recyclingansätze innerhalb der Textilindustrie sind dafür jedoch nicht geeignet. Im Rahmen des Projektes soll weiterhin eine Analyse des Produktportfolios beim Schutzhandschuhhersteller Seiz erfolgen, um Sortiervorgaben und Prozesswege für das Recycling zu definieren. Weiterhin sollen Vorgaben für Neuentwicklungen und die Beschaffung von Rohstoffen festgelegt werden, um die Produkte umweltneutraler zu gestalten. (Text gekürzt)
Das Projekt "Schwerpunktprogramm (SPP) 1689: Climate Engineering: Risiken, Herausforderungen, Möglichkeiten?, Climate Engineering durch Modifikation der Arktischen Zirren im Winter: Risiken und Durchführbarkeit (AWiCiT)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Department Troposphärenforschung.Das sogenannte 'Climate Engineering' beschreibt ein gezieltes Eingreifen ins Klimasystem mit dem Ziel, der globalen Erwärmung entgegen zu wirken. Zusätzlich zu dem Entfernen von Kohlendioxid und der Beeinflussung von Solarstrahlung (solar radiation management), wurde eine Methode vorgeschlagen, die zu mehr Emission von langwelliger Strahlung in den Weltall führen soll. Hierbei soll der wärmende Effekt der Zirruswolken reduziert werden. Wir wollen diese Methode in unserem Forschungsantrag genauer untersuchen. Wir planen uns auf die mittleren und hohen Breiten der Nordhemisphäre im Winter zu konzentrieren, um die Strahlungseffekte von Zirren auf die Solarstrahlung zu minimieren. Insbesondere möchten wir folgender Frage nachgehen: Ist das Ausdünnen von arktischen Zirren im Winter (AWiCiT) durchführbar und was ist die maximale Abkühlung, die hiermit erreicht werden kann? Die hiermit verbundenen Risiken und Nebenwirkungen des AWiCiT wollen wir auf der regionalen Skala hinsichtlich möglicher Änderungen der arktischen Stratosphäre insbesondere Auswirkungen auf die Ozonschicht sowie mögliche Veränderungen in tiefer liegenden Wolken mit dem gekoppelten Wettervorhersage/Chemiemodell ICON-ART studieren. Mögliche Auswirkungen auf die globale Zirkulation, Meeresströmungen sowie die Meereisbedeckung werden mit Hilfe des globalen gekoppelten Aerosol-Atmosphären-Ozean Klimamodells MPI-ESM-HAM untersucht. Um die oben genannten Fragen zu beantworten, müssen wir die gegenwärtigen globalen Zirkulationsmodelle validieren insbesondere hinsichtlich ihrer Fähigkeit die beobachtete Ausbreitung und Höhe der Zirruswolken im arktischen Winter zu reproduzieren. Des Weiteren werden wir die Transportwege der natürlichen Eiskeime und der Impf-Eiskeime unten den dynamischen Bedingungen im arktischen Winter analysieren um die Lebensdauer der Impf-Eiskeime in der Impfregion abzuschätzen. Sind die Höhen und Flugrouten der kommerziellen Langstreckenflüge geeignet um einen Großteil des Arktischen Zirrus zu impfen oder sollte die Impfgegend in mittlere Breiten ausgedehnt werden? Ist Bismut(III)-iodid (BiI3), das als Impf-Eiskeim hierfür vorgeschlagen wird, unter diesen Umständen der am besten geeignete Impfstoff? Das Ausdünnen der Zirren ist nur dann effektiv, wenn der natürlich Zirrus hauptsächlich durch homogenes Gefrieren von Lösungströpfchen entsteht. Wenn er primär durch heterogene Nukleation gebildet werden würde, würde Impfen zu einer Erwärmung statt Abkühlung führen können. Deshalb müssen die Eigenschaften der Zirren noch besser verstanden werden, insbesondere der Anteil der Zirren, der im heutigen Klima durch heterogene Nukleation gebildet wird.
Das Projekt "Biologischer Abbau technisch relevanter Polymere und synthetischer Polymere" wird/wurde ausgeführt durch: Universität Münster, Institut für Mikrobiologie.Polymere stellen eine sehr umfangreiche Gruppe chemischer Verbindungen dar, die verschiedenen Stoffklassen angehoeren. Sie kommen in aussergewoehnlich grossen Mengen in unserer Biosphaere vor. Es handelt sich dabei um Substanzen, die aus solchen Molekuelen aufgebaut sind, in denen eine Art oder mehrere Arten von Atomen oder Atomgruppierungen wiederholt aneinandergereiht sind. Polymere sind auch Hauptbestandteil der Kunststoffe. Hierbei handelt es sich um Materialien, deren wesentliche Bestandteile aus makromolekularen organischen Verbindungen bestehen, die synthetisch oder durch Abwandeln von Naturprodukten oder durch biotechnologische Produktion entstehen. Der Abbau von Polymeren in Kunststoffen sowie von natuerlichen und synthetischen Kautschuken durch Bakterien und Pilze ist auf biochemischer und molekularer Ebene bisher wenig erforscht worden. Ein Verstaendnis der ablaufenden Vorgaenge koennte dazu beitragen, biotechnologische Verfahren zu entwickeln, solche polymeren Werkstoffe und Verpackungsmaterialien zu entsorgen oder in wiederverwertbare Substanzen zu ueberfuehren. Fuer wasserloesliche, technisch relevante Polymere ist die Kenntnis und ein Verstaendnis des Abbaus besonders wichtig, weil diese meist nicht rezyklisiert oder deponiert werden koennen. Darueber hinaus tragen Kenntnisse ueber die biologischen Abbaumechanismen dazu bei, polymere Materialien zu entwickeln, die gegenueber einem Abbau inert sind und die fuer besonders langlebige Anwendungen geeignet sind. Die am Abbau von aus Biosynthesen hervorgegangenen Polyamide, Poly(aepfelsaeure) und Naturkautschuk beteiligten Proteine sollen charakterisiert und deren Strukturgene kloniert werden. Daneben zielen Untersuchungen auch auf die Aufklaerung des mikrobiellen Abbaus synthetischer Polymere wie zB Polyethylenglykol, Polyvinylalkohol oder Polyacrylsaeure sowie synthetischer Kautschuk ab.
Das Projekt "Regionale Wirksamkeit und Auswirkungen von Marine-Cloud-Brightening-Anwendungen (RegMCB)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Wissenschaftler sowie Politiker erwägen die regionale Verwendung von Marine Cloud Brightening (RegMCB) als mögliche Solar Radiation Management Technologie um die Erderwärmung durch anthropogene Treibhausgase gezielt zu verlangsamen. Während theoretische Arbeiten bezeugen, dass dieser Ansatz prinzipiell einen kühlenden Effekt im Klimasystem erzeugen kann, verbleiben enorme Unsicherheiten bezüglich der Wirksamkeit und der potentiellen Auswirkungen dieses Ansatzes. Dennoch werden erste MCB Feldexperimente in Australien bereits durchgeführt und sind auch in anderen Ländern in der Planung.Der aufhellende Effekt in marinen Wolken durch die kontinuierliche Emission von Seesalz in die untere Troposphäre ist bis heute nur hinreichend verstanden. Der Grad der Wirksamkeit dieser Technologie basiert hauptsächlich auf entweder hoch-aufgelösten Modellrechnungen, welche räumlich und zeitlich stark eingeschränkt sind, oder auf globalen Klimamodellrechnungen, welche auf stark vereinfachten Annahmen über den Ausstoß von Seesalzpartikeln basieren. Diese Lücke zwischen bisher verwendeten Modellansätzen werden wir innerhalb dieses Forschungsantrags schließen. Mit Hilfe von Simulationen von möglichen MCB Strategien innerhalb des Kalifornischen Stratocumulus Wolkendecks, werden wir den Wirksamkeitsgrad dieser Technologie unter realistischen Annahmen quantifizieren, und gleichzeitig potentielle Auswirkungen auf der regionalen Skala identifizieren und quantifizieren können.Innerhalb dieses Projektes werden wir eine vereinfachte Version von ICON-HAM, einem Klimamodell mit einer umfassenden Parametrisierung der Aerosolmikrophysik inklusive Strahlungskopplung und Aerosol-Wolken-Wechselwirkungen, entwickeln und verifizieren. Unser Modellansatz beinhaltet die volle Komplexität ICON-HAMs für Seesalzgrößenverteilungen während alle anderen Aerosolspezien mit konstanten Hintergrundkonzentrationen vorgeschrieben werden. Diese Modellversion wird wir mithilfe von Beobachtungen des Kalifornischen Stratocumulus Wolkendecks verifiziert werden. Das Kalifornische Deck ist eins der vier subtropischen Stratocumulusregionen weltweit und ist im Vergleich zu den anderen Decks am umfassendsten vermessen und verstanden. Innerhalb von RegMCB werden wissenschaftliche Erkenntnisse gewonnen welche uns helfen werden den Wirksamkeitsgrad und die Grenzen dieser Technologie zu quantifizieren. Innerhalb dieses Antrages werden erstmals Simulationen durchgeführt welche auf realistischen MCB Szenarien basieren und die nötige Komplexität beinhalten Aerosol-Wolken-Wechselwirkungen korrekt abzubilden. Gleichzeitig tragen die hier vorgeschlagenen Arbeiten zu einer Verbesserung unseres Verständnisses und der Repräsentation von Aerosol-Wolken-Wechselwirkungen in marinen Stratocumuli allgmein bei.
Das Projekt "Schwerpunktprogramm (SPP) 1689: Climate Engineering: Risiken, Herausforderungen, Möglichkeiten?, Grenzen der Wirksamkeit verschiedener Methoden des solaren Strahlungmanagement" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Atmosphärische Aerosolforschung.Absenkung der CO2 Emissionen, Anpassung und 'Climate Engineering' (CE) werden allgemein als drei unabhängige Vorgehensweisen gegen die negativen Auswirkungen des Klimawandels angesehen. Im Rahmen dieses Projektes zeigen wir die Grenzen des 'Solar Radiation Management' (SRM) durch Sulfataerosol-Eintrag in die Stratosphäre (SAI) und marine Wolkenimpfung (MCB) als Maßnahmen zur Reduktion der globalen bzw. regionalen Temperatur auf. Zum ersten Mal werden dabei die Auswirkungen von gleichzeitig ausgeführtem SAI und MCB umfassend quantifiziert. Wir vermuten, dass die Begrenzung der Wirksamkeit von SAI und MCB bedeutende Auswirkungen auf die rechtliche und politische Betrachtung hat, die das Zusammenwirken und die zeitliche Reihenfolge von Emissionsminderungs-, Anpassungs-, und 'Climate Engineering'- Maßnahmen sowie die Politik der Klimagerechtigkeit bestimmen. Komplexe globale und regionale numerische Simulationsmodelle der Atmosphäre, die dem Stand des Wissens entsprechen, und die eine detaillierte Beschreibung der Atmosphärenphysik und Chemie beinhalten, stellen das wesentliche Werkzeug für die Quantifizierung der Effekte dieser Maßnahmen dar. Die Ergebnisse erlaube es die physikalischen Grenzen der angedachten Maßnahmen zu bestimmen. Die Ergebnisse des Vorhabens dienen als wichtige Grundlagen für andere Projekte im SPP, um eine integrale Bewertung von 'CO2 Mitigation, Adaption und Climate Engineering' zu ermöglichen.
TT-SIB® ist eine Straßen-Informations-Bank (SIB) auf Grundlage der Anweisung Straßendatenbank (ASB) Wesentliches Merkmal ist die Verarbeitung von vermessungstechnischen Daten nach einem objektorientierten Prinzip und deren Visualisierung in einem geografischen Informationssystem. Die TT-SIB® ermöglicht ein maßnahmenorientiertes Arbeiten mit allen Objektklassen, Stammdaten und der Geographie.
Solar radiation modification is highly controversial. The implementation of invasive geoengineering technologies would entail serious and largely unforeseeable ecological, and geopolitical risks. Considerable scientific disagreement exists around the extent of the risks, how they relate to increased risks of climate change, and whether uncertainties could be resolved. In expert workshops held in 2022 the scientific, technical, and geopolitical viability and desirability of SRM was discussed. This discussion paper presents a blended overview of the academic literature on solar geoengineering and the positions expressed at expert workshops, as well as personal assessments from the authors.
Origin | Count |
---|---|
Bund | 104 |
Land | 41 |
Wissenschaft | 3 |
Type | Count |
---|---|
Förderprogramm | 56 |
Gesetzestext | 2 |
Messwerte | 2 |
Text | 28 |
Umweltprüfung | 6 |
unbekannt | 45 |
License | Count |
---|---|
geschlossen | 43 |
offen | 89 |
unbekannt | 5 |
Language | Count |
---|---|
Deutsch | 114 |
Englisch | 27 |
andere | 2 |
Resource type | Count |
---|---|
Archiv | 9 |
Bild | 2 |
Dokument | 13 |
Keine | 73 |
Webdienst | 14 |
Webseite | 50 |
Topic | Count |
---|---|
Boden | 65 |
Lebewesen & Lebensräume | 83 |
Luft | 72 |
Mensch & Umwelt | 133 |
Wasser | 64 |
Weitere | 127 |