API src

Found 121 results.

Soil N dynamics as affected by different land use in Western and Southern China

Das Projekt "Soil N dynamics as affected by different land use in Western and Southern China" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Bodenkunde und Standortslehre durchgeführt. The aim of the research project is to quantify the stocks and turnover of soil nitrogen in Western and Southern China as dependent from soil structure and land use. Key soil characteristics are determined at representative sites with regional specific land use and degradation status. The investigations will follow a land use gradient of natural forests, arable and pasture soils, the latter ones considering different degradation and rehabilitation status. The actual and potential soil nitrogen turnover will be horizon-wise quantified and related to soil structure and land use impacts. Beside mineral nitrogen, also preliminary organic N compounds using physical and chemical extraction will be detected. Parameters for the investigations are, beside total C and N stocks and distribution, gross and net N mineralization, nitrification, microbial biomass C and N and microbial respiration and indicators for soil N turnover like active N pools and light fraction of organic matter. In the last phase the structure of the soil microbial microbial community will be determined and related to indicators of nitrogen status and efficiency. The research activities will be carried out in close co-operation with the Institute for Soil and Water Conservation/ Yangling University at loess soils and the Nanjing Institute for Soil Science/ Chinese Academy for Science in Nanjing at red soil sites.

Pasture rehabilitation on, and management of degraded areas in the Andes of South Ecuador

Das Projekt "Pasture rehabilitation on, and management of degraded areas in the Andes of South Ecuador" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fachgruppe Biologie, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Pflanzenphysiologie durchgeführt. Project abstract: This knowledge transfer project will be centered in the San Francisco valley in the South Ecuadorian Andes. However, the problem of abandoning pastures because of heavy infestation by weeds, in particular by bracken fern (Pteridium spec.), is a general issue in the tropical Andes. Pastures which have been abandoned for that reason amount meanwhile to 11Prozent of the area of the San Francisco valley. Infestation by bracken fern and shrubs is a consequence of the traditional use of fire for clearing of the natural forest and pasture management. Growth of both, bracken and woody weeds, is fostered by recurrent burning. In a 2-phase experiment on a heavily bracken-infested slope at c. 2000 m altitude, substantial control of the weed and subsequent pasture rehabilitation could be achieved. In the planned project, this procedure shall be scaled-up to farm level and the altitudinal range of repasturisation shall be extended from 1000 m to 2400 m altitude. To that end local farmers will put respective parts of their land to the projects disposal and public authorities will provide man-power. There are several challenges to be met: (i) Long-term bracken infestation has depleted the soils from nutrients, in particular P and N. Therefore targeted fertilization is needed for profitable grass productivity. (ii) Since bracken can never be completely eradicated, its regrowth must be suppressed by trampling, i.e. frequent grazing. A sustainable grazing management has to be developed which corresponds to soil fertility. (iii) The dominating pasture grass is the C4-type grass Setaria sphacelata. It is growing well in a warm climate but its competitive strength in the harsher climate above 2000 m is low. Bracken as a C3-type plant is less dependent on the temperature. To this adds that it occurs in 2 species in the area, one of which is an upland type. Thus the climate gradient over the elevational transect will influence the competitive strength of both competitors. Therefore the suitability of the traditional monoculture of this grass species for pasture rehabilitation shall be tested in the context of a comprehensive pasture management experiment which the farmers will be involved. (iv) A special problem is the high oxalate concentration in the growing parts of the Setaria leaves which can cause calcaemia in cattle. In a pot experiment which will be run in collaboration with a research team of the UTPL, feeding quality and toxicity of a monotonous diet of Setaria will be tested. Beside the experimental areas, demonstration sites will be installed where regular training workshops will be organized to encourage the farmers to apply the developed rehabilitation and management strategy to their own farms.

Upwelling in the Atlantic sector of the Southern Ocean

Das Projekt "Upwelling in the Atlantic sector of the Southern Ocean" wird vom Umweltbundesamt gefördert und von Universität Bremen, Institut für Umweltphysik, Abteilung Ozeanographie durchgeführt. Upwelling is an important process in setting the characteristic of the mixed layer. Upwelling also provides a pathway for gases, nutrients, and other compounds from the ocean's interior into the mixed layer and ultimately into the atmosphere. Since the upwelling velocities are small, they cannot be measured directly. Recently, Rhein et al. (2010) exploited the helium isotope disequilibria found in the equatorial eastern Atlantic to infer upwelling speeds, upwelling rates, and vertical heat fluxes between the mixed layer and the ocean's interior. The disequilibrium in the mixed layer is caused by upwelling of 3He-enriched water from the interior. The surplus 3He is introduced into the deep ocean by hydrothermal activities.A first survey of historical Helium isotope data in the Antarctic Circumpolar Current (ACC) and the Weddell Sea showed, that the mixed layer is also enriched with 3He, which in summer months is supplied by upwelling of water from below the mixed layer. Although the first estimates of upwelling velocities from the historical data set look promising, the present Helium data lack a sufficient resolution in the upper 200-300m to determine the horizontal and vertical He gradients, necessary for the compilation of the upwelling velocity and of the contribution of diapycnal mixing. Here we propose to take the historical He data, and a new dedicated He data sets to be taken in November 2010 - February 2011 during the POLARSTERN cruise ANT 27/2 and January- February 2012 during POLARSTERN cruise ANT28/3 to calculate upwelling speeds and -rates in the Weddell Sea and the ACC, as well as heat fluxes between the interior and the mixed layer.This proposal is part of the Cluster ' Eddies and Upwelling: Major Factors in the Carbon Budget ofthe Southern Ocean'

Water consumption and carbon capture by trees of an evergreen and a dry forest in the Andes of South Ecuador as functional indicators of slow environmental changes

Das Projekt "Water consumption and carbon capture by trees of an evergreen and a dry forest in the Andes of South Ecuador as functional indicators of slow environmental changes" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fachgruppe Biologie, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Pflanzenphysiologie durchgeführt. This transfer project contributes to the development of a multifactorial indicator prototype for global change effects. It uses water and carbon relations of trees as primary functional indicators of subtle environmental changes which cannot be directly observed. Acquisition of carbon by a tree and its concomitant water loss by transpiration is coupled as water use efficiency (WUE), which as a parameter integrating two ecophysiological processes should display a high sensitivity to ambiental conditions. The project is based on a new model allowing computation of the entire crown. Parameterization of the model is by data of leaf gas exchange, total water loss, and structural data of the crown. Total water consumption will be determined either by stem flow monitoring or by the D2O injection method. Net carbon gain by the entire crown can be calculated from a crown-specific WUE. The described measurements will be supplemented by data on stem growth, phenology (longevity of leaves and foliage dynamics), long-term water relations (13C discrimination data) and tree hydrology (natural abundance of deuterium). To extend the indicator from the single tree scale to a wider area, project C5 will collaborate with project C6 which will investigate WUE using multispectral satellite and airborne data. For calibration transfer functions to remotely sensed data must be developed. Since Eddie covariance analysis cannot be used, project C6 will measure atmospheric dynamics of heat and water vapour above the canopy of an assemblage of such trees by scintillometry. These measurements shall be calibrated by C5. Of all trees on the study plots total transpiration will be measured and correlated with simultaneously recorded scintillometer data. Thus projects C5 and C6 will use the same plots and trees. Using the calibrated scintillometer data, project C6 will up-scale the functional indicator WUE to the landscape level. Because of their general applicability, functional indicators like WUE are especially useful for modelling approaches.

Transports and variability-driving mechanisms in Flemish Pass at the western boundary of the subpolar North Atlantic (FLEPVAR)

Das Projekt "Transports and variability-driving mechanisms in Flemish Pass at the western boundary of the subpolar North Atlantic (FLEPVAR)" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Fachbereich Geowissenschaften, Institut für Meereskunde durchgeführt. Labrador Sea Water (LSW) formed in the Labrador Sea constitutes the lightest contribution to North Atlantic Deep Water (NADW), a conglomerate of water masses that form the cold return flow of the Atlantic meridional overturning circulation (MOC). Climate variability can be modulated by changes in the MOC strength; such changes are thought to be linked to variations in LSW formation. The Deep Western Boundary Current (DWBC) is the main southward pathway for newly formed LSW. Topographic obstacles at the southern exit of the Labrador Sea split the DWBC into an upper branch carrying LSW through Flemish Pass (1200m sill depth) and a branch carrying all NADW components along the continental slope around Flemish Cap. Up to now, transports through Flemish Pass and their contribution to the MOC are still uncertain, the importance of the pass for the export of LSW and its associated variability are yet unknown. In this project the transports through Flemish Pass will be quantified, and mechanisms driving and governing the variability of the flow will be investigated. The project focuses on the following questions: What is the magnitude of transports for waters passing through Flemish Pass and their associated variability? Which processes drive the variability? What is the relevance of the deep water export through Flemish Pass for the MOC, especially when compared to the DWBC export? Are both deep water export pathways (through Flemish Pass or around Flemish Cap) coupled? What processes govern the inflow of deep water into Flemish Pass? To answers these questions, ship-based measurements and time series from moored instruments in the Flemish Pass will be analyzed in conjunction with output from two state-of-the-art Ocean models run at high-resolution.

Identification of the processes leading to ikaite formation in polar sea ice

Das Projekt "Identification of the processes leading to ikaite formation in polar sea ice" wird vom Umweltbundesamt gefördert und von Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung durchgeführt. Die Entscheidung die Versuche zur Ikait Bildung in Polarem Meereis nicht in Eistankversuchen, sondern in Laborversuchen mit einer geringeren Komplexität durchzuführen, hat zu vielen grundlegenden neuen Erkenntnissen geführt. Zum einen konnten wir zeigen, dass die vielfach publizierte Aussage, dass das vorhanden sein von Phosphat eine Grundvoraussetzung für die Ikait Bildung in Polarem Meereis ist, nicht zutrifft. Vielmehr haben wir gezeigt, dass die Ikait Fällung einen wichtigen Einfluss auf die Nährstoffdynamik im Meereissystem haben könnte. Wir konnten wir zeigen, dass unter Meereis Bedingungen Ikait das einzig zu erwartende Kalzium Karbonat Polymorph ist. In einem nächsten Schritt, sind nun die hier gewonnenen Erkenntnisse aus 'Eisfreien' Experimenten um den Parameter 'Eis' zu erweitern um herauszufinden, welche Bedingungen genau zu den Kristallen in der Form und Größe führen wie sie in natürlichen Systemen zu beobachten sind. Als eine der wichtigsten Erkenntnisse erachten wir jedoch die Ergebnisse zur Phosphat Anreicherung durch die Ikait Bildung. Bei zukünftigen Expeditionen wird nun zu untersuchen sein inwieweit die bisher beobachtete Phosphatanreicherung mit dem Vorhandensein von Ikait Kristallen korreliert.

Einfluss von Dürre auf das Waldsterben in Europa und Westkanada (Water03 - IDDEC)

Das Projekt "Einfluss von Dürre auf das Waldsterben in Europa und Westkanada (Water03 - IDDEC)" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Fachgebiet für Ökoklimatologie durchgeführt. While many forests and woodlands may be at increasing risk of climate-induced dieback, significant knowledge gaps remain in our understanding of the causes of climate-induced tree mortality. Recent publications underscore the critical importance of understanding the mechanisms that trigger plant mortality (Adams et al., 2009), particularly regarding features and traits that could be used as physiological indicators of tree death (McDowell et al., 2008). Alterations in wood formation and structure often occur prior to visual symptoms of crown decline. Thus, physiological, morphological, and anatomical traits related to xylem ('water-conducting pipes') may provide early-warning signals of drought-induced dieback. A better mechanistic understanding of drought-induced forest dieback would improve our ability to predict tree mortality and future changes in forest composition and coverage. The project aims at studying how drought episodes promote dieback via changes in xylem structure. Different genotypes of aspen (parkland region and the southern boundary of the boreal forest in western Canada), oak (Southern Europe) and pine (experiment) will be studied along gradients of moisture availability. Xylem-related traits that will be measured include ring-width, number of missing rings, quantitative wood anatomical structures (diameter and frequency of vessels/ tracheids, inter-vessel pit structure) as well as cavitation resistance, hydraulic conductivity, and water potentials.

Investigation of reactive halogen species in a smog chamber and in the field

Das Projekt "Investigation of reactive halogen species in a smog chamber and in the field" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Umweltphysik durchgeführt. The objective of the proposed activities as part of the DFG research group HaloProc is the investigation of Reactive Halogen (RH) chemistry in the atmosphere by Differential Optical Absorption Spectroscopy. The importance of RH includes the destruction of ozone, change in the chemical balance, increased deposition of toxic compounds (like mercury) and potential indirect effects on global climate. In our laboratory experiments we observed events of 'Bromine Explosion' (auto catalytic release of reactive bromine from salt surfaces - key to ozone destruction) that were strongly dependent on pH and humidity. Our measurements from field campaigns in Namibia/Botsuana, Southern Russia and Mauritania during HaloProc1 showed 1 to 2 orders of magnitude lower BrO and IO levels than expected based on previous observations at salt flats. Environmental conditions might have strong influence, which would be consistent with the smog chamber studies. One of the main questions of the second phase is under which conditions RH activation take place does. It is of great interest whether reactions of chlorine and iodine compounds on salt surfaces are similar to those of bromine, and whether different RH compounds interact with each other. In addition, oxides of nitrogen might be important for their role in the reactivation of RH. Proposed field campaigns in Namibia and South Russia will allow us to investigate the sources, sinks and transformations of RH compounds. This work will be complemented by corresponding smog chamber experiments with measurements of different halogen oxides as well as photochemical model calculations.

Work Package II - Material processing at Haean Basin scale: The role of hyporheic exchange and the riparian zone in NO3 and DOC export from catchments

Das Projekt "Work Package II - Material processing at Haean Basin scale: The role of hyporheic exchange and the riparian zone in NO3 and DOC export from catchments" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fachgruppe Geowissenschaften, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Hydrologie durchgeführt. The hydrogeochemical dynamics in mountainous areas of the Korean Peninsula are mainly driven by a monsoon-type climate. To examine the interplay between hydrological processes and the mobilization and subsequent transport and export of nitrate and DOC from catchments, a field study was initiated in the Haean catchment in north-eastern South Korea under highly variable hydrologic conditions. In order to identify nitrate and DOC source areas, a subcatchment (blue dragon river) within the Haean basin, which includes different types of landuses (forest, dry land farming, and rice paddies), was selected. In 2009, high frequency surface water samples were collected at several locations during summer storm events. A similar but more comprehensive sampling routine was completed in 2010. In order to investigate the groundwater level fluctuations relative to the hydraulic potentials, a piezometer transect was installed across a second order stream of the subcatchment. The results so far suggest deep groundwater seepage to the aquifer with practically no base flow contributions to the stream in the mid-elevation range of the catchment. In 2009 the focus of research was within the subcatchment, in 2010 additionally a second piezometer transect was installed at a third order stream in the lower part of the catchment (main stem of the Mandae River) where more dynamic groundwater/surface water interactions are assumed due to expected higher groundwater levels in this part of the basin. In order to investigate these interactions piezometers equipped with temperature sensors and pressure transducers were installed directly into the river bed. Based on the observed temperature time series and the hydraulic potentials the water fluxes between the groundwater and the river can be calculated using the finite-difference numerical code, VS2DH. VS2DH solves Richard s equation for variably-saturated water flow, and the advection-conduction equation for energy transport. The field data collected at the second piezometer transect suggest that the investigated river reach exhibits primarily losing surface conditions throughout most of the year. Gaining groundwater conditions at the river reach are evident after monsoonal extreme precipitation events. At the transect streambed aggradation and degradation due to bedload transport was observed. Significant erosion has been reported throughout the catchment after extreme events. Results indicate that the event-based changes in streambed elevation, is an additional control on groundwater and surface water exchange. The streambed flux reversals were found to occur in conjunction with cooler in-stream temperatures at potential GW discharge locations. The export of nitrate and DOC were found to be variable in time and strongly correlated to the hydrologic dynamics, i.e. the monsoon and pre- and post-monsoon hydrological conditions. usw.

Climate indicators on the local scale for past, present and future and platform data management

Das Projekt "Climate indicators on the local scale for past, present and future and platform data management" wird vom Umweltbundesamt gefördert und von Philipps-Universität Marburg, Fachgebiet Klimageographie und Umweltmodellierung durchgeführt. Predicting future climate change is in itself already difficult, especially in such complex ecosystems as the Andean mountain rain and dry forest as well as the Paramo. The common tools to simulate global climate change are global circulation models (GCM). Because of their coarse resolution they are not able to capture atmospheric processes affecting the local climate. For this reason a dynamical downscaling approach will be used to develop a highly resolved spatial and temporal Climatic Indicator System (hrCIS) to derive ecologically relevant climate change indicators affecting the ecosystems of South Ecuador. A local-limited area model (LAM) will be used to (i) generate a highly resolved gridded climatology for present day (hrCISpr) based on reanalysis data and (ii) to generate a highly resolved gridded climatology for projected future (hrCISpf) based on the new Representative Concentration Pathways (RCP) scenario data. The output of the LAM for present day will be validated with in-situ measurement data and satellite-derived products to ensure the accuracy of the model for the simulations of the projected future. On the basis of statistical analysis of both climatologies changes in climate indicators such as air temperature and precipitation regime will be described. The proper storage, curation and accessibility of environmental data is of crucial importance for global change research particularly for monitoring purposes. This proposal will offer an adequate data management system for the Platform for Biodiversity and Ecosystem Monitoring and Research. This will be archived by extending the web-based information management system FOR816DW (a data warehouse for collaborative ecological research units) with features like automatic upload interfaces, a workbench for integrative analysis and an user defined alert system, which will facilitate environmental monitoring for scientist as well as stakeholders. Beside the development of these innovations a main objective is the transfer of knowledge and information (know how, source code, and collection data) to our partners in Ecuador. For this, and to bring together the existing data sources, we cooperate with university and non-university parties in the joint establishment of a Data access platform for environmental data of the region. This will include considerations on long-term accessibility, which is envisaged by a data transfer to the planned German national data infrastructure GFBio.

1 2 3 4 511 12 13