API src

Found 4 results.

3-D-Deutschland (3-D-D): A three-dimensional lithospheric-scale thermal model of Germany

We present a 3-D lithospheric-scale model covering the area of Germany that images the regional structural configuration. The model comprises 31 lithostratigraphic units: seawater, 14 sedimentary units, 14 crystalline crustal units and 2 lithospheric mantle units. The corresponding surfaces are integrated from previous studies of the Central European Basin System, the Upper Rhine Graben and the Molasse Basin, together with published geological and geophysical data. The model is a result of a combined workflow consisting of 3-D structural, gravity and thermal modelling applied to derive the 3-D thermal configuration.The top surface elevations and thicknesses of corresponding layers of the 3-D-D model are provided as ASCII files, one for each individual layer of the model. The columns in each file are identical: the Easting is given in the “X COORD (UTM Zone 32N)”, the Northing is in the “Y COORD (UTM Zone 32N)”, the top surface elevation of each layer is given as "TOP (m.a.s.l)", the thickness of each layer is given as "THICKNESS (m)".

Reprocessed deep seismic reflection profile DEKORP 1988-9N across the Northern Upper Rhine Graben, Southwest Germany

The profile 9N was recorded in 1988 as part of the DEKORP project, the German deep seismic reflection program. The focus of the DEKORP project was on deep crustal and lithospheric structures and therefore originally not on structures at lower depths. From today's perspective, however, this depth range is of great interest for a wide range of possible technical applications (including medium-depth and deep geothermal projects). The original data is published by Stiller et al. (2019). The profile 9N was reprocessed on behalf of the Hessian Agency of Nature Conservation, Environment and Geology (HLNUG). The focus of the reprocessing was on improving the resolution / mapping of geological structures down to a depth of 6 km (approx. 3 s TWT) to describe the prolongation of faults and geological structures in more detail than in previous studies. In order to achieve these goals and in view of the fact that today's processing and evaluation methods have improved considerably compared to the 1990‘s, a state-of-the-art reprocessing was implemented. In comparison with the original processing (Stiller et al. (2019), more sophisticated processing steps like CRS (Common Reflection Surface) instead of CDP (Common Depth Point) stacking, turning-ray tomography and prestack time and depth migration were carried out. The reprocessed DEKORP-9N survey comprises all datasets newly achieved in addition to the datasets from the original processing (Stiller et al. (2019)), i.e. (1) as unstacked data the raw data, the CRS processed data and the migrated image gathers, and (2) as stacked data the pure CRS stack, the poststack-time as well as prestack-time and prestack-depth migrated sections. Moreover, (3) all velocity models used for the different versions including (4) the separate first-break tomography inversion as well as (5) several attribute analyses (RMS amplitude, instantaneous frequency and phase, Q-factor and others) are contained. All reprocessed data come in SEGY trace format, the final sections additionally in PDF graphic format. A reprocessing report is included as well as again all meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment purposes. The DEKORP 9 survey was shot across the Tertiary Upper Rhine Graben, which intersects both the Saxothuringian and Moldanubian regions obliquely. Since the Eocene the Rhine Graben represents an active rift system. The 92 km long, E-W trending DEKORP'88-9N profile crosses the northern part of the Upper Rhine Graben. It starts in the crystalline Odenwald, crosses the Tertiary and Quarternary fill of the Rhine Graben and ends in the late Palaeozoic sequences of the Saar-Nahe Basin in the west. There it crosses the Permian rhyolitic Donnersberg intrusion. The DEKORP'88-9N profile is of particular interest to investigate the seismic resolution of the base of the cenozoic graben fill, the prolongation of faults in the sediments of the Northern Upper Rhine Graben, the transition to the crystalline Odenwald at the eastern border fault, the transition to the Saar-Nahe basin in the west and the transition from the crystalline Odenwald to the Buntsandstein Odenwald in the east of the profile. The additional attribute analyses were carried out to possibly detect previously unknown faults or fracture zones. The seismic sections of 9N show different crustal structures on both sides of the graben and some indications of dipping reflections in the mantle on the western side, which could refer to the genesis of the Upper Rhine Graben. An important new feature is the presence of a Permo-Triassic layer in the Upper Rhine Graben, which is significantly thicker than previously mapped (> 600 m) and thus the upper edge of the basement is situated over 600 m deeper than in the original data. The reprocessing of the DEKORP'88-9N profile was funded by the HLNUG in cooperation with the Agency for Geology and Mining of the state of Rhineland-Palatinate.

Deep seismic reflection profile DEKORP 1988-1C across the western Rhenish Massif, West Germany

The profile 1C was recorded in 1988 as part of the joint reflection venture DEKORP 1 of DEKORP (German Deep Seismic Reflection Program) and BELCORP (Belgian Continental Reflection Seismic Program) groups. The seismic survey of the ca. 75-km long line 1C was conducted to investigate the deep crustal structure of the western Rhenish Massif with high-fold near-vertical incidence vibroseis acquisition. The objectives of the experiment were to analyse deep Variscan and post-Variscan crustal structures in the region and to compare them with the results from the eastern Rhenish Massif gathered from the survey DEKORP 2N. The first results were presented by DEKORP Research Group (1991) and supplemented by many other researches. The Technical Report of line 1C gives detailed information about acquisition and processing parameters. The European Variscides, extending from the French Central Massif to the East European Platform, originated during the collision between Gondwana and Baltica in the Late Palaeozoic. Due to involvement of various crustal blocks in the orogenesis, the mountain belt is subdivided into distinct zones. The external fold-and-thrust belts of the Rhenohercynian and Saxothuringian as well as the predominantly crystalline body of the Moldanubian dominate the central European segment of the Variscides. Polyphase tectonic deformation, magmatism and metamorphic processes led to a complex interlinking between the units. The Rhenohercynian Zone is a foreland fold-and-thrust belt cropping out in the Rhenish Massif which extends from the Ardennes to the Harz Mountains. This geological unit consists predominantly of Devonian and Lower Carboniferous rocks affected by very low-grade metamorphism (DEKORP Research Group, 1991). The survey 1C was carried out in the western part of the Rhenish Massif and intersects the Variscan main structures almost perpendicular. It stretches from the Mosel Syncline to the Saar-Nahe Basin (WNW-ESE) crossing the Devonian metamorphic rocks of the Hunsrueck Mountains, the Northern Phyllite Zone and the Hunsrueck Boundary Fault separating the Rhenohercynian and Saxothuringian Zones. In the northwest 1C joins line 1B which runs through the Hocheifel area. In the southeast the line continues with 9N running across the northern part of the Upper Rhine Graben.

Deep seismic reflection profile DEKORP 1988-9N across the Northern Upper Rhine Graben, Southwest Germany

The profile 9N was recorded in 1988 as part of the DEKORP project, the German deep seismic reflection program. The seismic survey of the ca. 92-km long line 9N was conducted to investigate the deep crustal structure of the northern Upper Rhine Graben with high-fold near-vertical incidence vibroseis acquisition. The objectives of the survey were to delineate the geometry of the major faults, which control the graben subsidence, to map the geometry of deep crustal reflection patterns and to reveal variations of the seismic signature of the lower crust in the context of rift formation. The first results were discussed by Wenzel et al. (1991), summarized by Brun et al. (1992) and supplemented by many other researches. Since the Eocene the Upper Rhine Graben has represented an active rift system. It obliquely intersects the Saxothuringian and the Moldanubian domains, which are separated by the NW vergent and dextrally sheared Lalaye‐Lubine‐Baden‐Baden fault. In the northern Vosges and Black Forest massifs the shear zone is characterized by low-grade Devonian metasediments. The profile starts in the crystalline Odenwald in the east, intersects the Tertiary and Quaternary fill of the Rhine Graben and ends in the late Palaeozoic sequences of the Saar-Nahe Basin in the west, where it crosses the Permian rhyolitic Donnersberg intrusion. The profile 1C creates a continuation of the survey to the west. The seismic section of 9N shows different crustal structures on both sides of the graben and some indications of dipping reflections in the mantle on the western side, which could refer to the genesis of the Upper Rhine Graben.

1