Das Projekt "Global change and biodiversity feedbacks as drivers of the carbon cycle in the plant soil system" wird/wurde gefördert durch: Universität Zürich. Es wird/wurde ausgeführt durch: Universität Zürich, Geographisches Institut.Research aims - The aim of this project is to demonstrate whether increased biodiversity and net primary production lead to increased carbon storage in the ecosystem, especially in the largest carbon pool, the mineral soil, and thus reduces the release of greenhouse gases. Climate change (nitrogen deposition, summer droughts, vegetation fire) - We will analyse plant-soil feedbacks in laboratory experiments, using our newly build Multi Isotope labelling in Controlled Environment (MICE) facility, and in three of the field sites (tropical, temperate, boreal) using transplanted model mini-ecosystems. Global change includes many processes, and we focus on three processes, key to the terrestrial carbon cycle, i.e. increasing chronic atmospheric nitrogen deposition, widespread summer droughts, and more frequent wildfires, with yet unknown consequences for the carbon cycle. We will use the MICE facility to manipulate mini-ecosystems (plants and soil from the three field sites) and expose them to four climatic scenarios: todays equivalent climate (corresponding to the site), increased nitrogen deposition, drought and post-fire conditions (by pyrolising the plant biomass). The plant-soil system will be labelled with stable isotopes (13C, 15N) in order i) to investigate the changes in organic matter dynamics when climate changes are applied and ii) to produce highly labelled experimental material that could be traced in the field. We will transplant the manipulated mini-ecosystem, from the MICE facility to the three URPP GCB sites Siberia, Laegeren and Borneo (tropical, temperate, boreal). The mini-ecosystems will contain highly labelled material (13C and 15N in fresh biomass and charred biomass) in order to follow fluxes related to C losses from the soil (CO2 and organic matter dissolved in water), as well as processes involved in the stabilisation of soil C (microbial, physical and chemical mechanisms). Using a large number of replicates will allow us to follow the underlying processes of C stabilisation in soil and vegetation at a high spatial and temporal precision. Biodiversity experiment - We will use the MICE chambers to grow different species of trees and grasses labelled with 13C (and potentially 15N, 18O and 2H) under todays climatic conditions. Then we recombine the different species (1, 2, 4, 8 species) and transplant them to the temperate site at Laegeren. In the field we can follow the total carbon fluxes and the contributions from the isotopically labelled decomposing biomass, and the living biomass.
Das Projekt "European development of Superconducting Tapes: integrating novel materials and architectures into cost effective processes for power applications and magnets (EUROTAPES)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Agencia estatal consejo superior de investigaciones cientificas.High current coated conductors (CC s) have high potential for developing electrical power applications and very high field magnets. The key issues for market success are low cost robust processes, high performance and a reliable manufacturing methodology of long length conductors. In recent years EU researchers and companies have made substantial progress towards these goals, based on vacuum (PLD) and chemical deposition (CSD) methods, towards nanostructuring of films. This provides a unique opportunity for Europe to integrate these advances in high performance conductors. The EUROTAPES project will address two broad objectives: 1/ the integration of the latest developments into simple conductor architectures for low and medium cost applications and to deliver +500m tapes. Defining of quality control tools and protocols to enhance the processing throughput and yield to achieve a pre-commercial cost target of 100 Euro/kAm. 2/ Use of advanced methodologies to enhance performance (larger thickness and Ic, enhanced pinning for high fields, reduction of ac losses, increased mechanical strength). Demonstration of high critical currents (Ic greater than 400A/cm-w, at 77K and self-field and Ic greater than 1000A/cm-w at 5K and 15T) and pinning forces (Fp greater than 100GN/m3 at 60 K). The CSD and PLD technologies will be combined to achieve optimized tape architectures, nanostructures and processes to address a variety of HTS applications at self-field, high and ultrahigh magnetic fields. Up to month 36, 3 types of conductors will be developed (RABiT, ABAD and round wire); at Mid Term 2 will be chosen for demonstration during the final 18 months.
Das Projekt "Arctic biodiversity and indigenous people of Eastern Siberia in a changing climate" wird/wurde gefördert durch: Schweizerische Eidgenossenschaft, Kanton Basel-Stadt, Kanton Basel-Landschaft. Es wird/wurde ausgeführt durch: Universität Zürich, Geographisches Institut.Global warming, occurred from the 2nd half of the 20th century, has already intensively influenced on the Earths biota (Climate change, 2005). The average temperature of the planets surface, expected to rise further, will impact more on biological processes in the biosphere in particular and on the ecological situation of the whole planet. Climate change is expected to affect not only biological processes, but also every sector of society. In the short-run some of these impacts could be profitable, however in the longer term most of the effects could be harmful to local communities and society as a whole. Arctic regions are sensitive to climatic change because global warming is mostly noticeable at high latitudes, and Arctic processes are particularly vulnerable to effects of temperature (Chapin et al, 2009). This investigation is planned to be carried out in the Arctic regions of Eastern Siberia, Russia. Arctic indigenous people are dependent on subsistent harvesting. And changes in environment may cause severe changes to their livelihood. Therefore it is vital to conduct this investigation to get insights about subsistence practices of the Arctic inhabitants, the relation of the indigenous population to the environment and changes referred to global warming in the region.
Das Projekt "INQUA Project 1216 - RAISIN: Rates of soil forming processes obtained from soils and paleosols in well-defined settings" wird/wurde ausgeführt durch: Universität Zürich, Geographisches Institut.The project RAISIN represents a core project of the Focus Area Group PASTSOILS. One of the major goals of the Focus Area Group will be achieved through RAISIN: Rates of soil forming processes in different climates, obtained from soils and paleosols in settings where climatic conditions and duration of soil development are known, will be assessed and documented. Thus, the project will provide a solid base for future interpretation of paleosols in the frame of palaeo-environmental reconstructions. Numerous data on soil development with time, many of them based on soil chronosequence studies in various regions, have been published in the past decades. The main aim of the project is hence to bring together scientists working on rates of soil-forming processes in different regions of the world to share and discuss their results, review and compare published data and finally produce a document representing the current state of knowledge on soil formation rates in different climates. The outcome of the project will be published in a special issue of Quaternary International to make it available to the scientific public. Thus, a common standard for interpreting paleosols in soil-sediment successions in terms of duration and environmental conditions of soil development will be created. Moreover, gaps in our current knowledge will be identified in the process of reviewing existing data in the frame of the project. This will stimulate future research and possibly lead to collaborative projects aiming on closing the identified gaps step by step.
Das Projekt "Developing a Pool of Novel and Eco-Efficient Applications of Zeolite for the Agriculture Sector (ECO-ZEO)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Institut de Recerca i Tecnologia Agroalimentaries.The agriculture sector is vital for food, feed and bio-fuel production, but at the same time it is a major cause of environmental pollution and natural resource depletion. Sustainable solutions are demanded that will enable agriculture to produce more with less : become more productive and less harmful to the environment and human health. ECO-ZEO aims at the development of a new pool of Green crop protection products delivering a wide range of beneficial effects including reduced water consumption, increased crop yield, lower chemical input, crop protection and tolerance to abiotic stress and healthier conditions to workers in agriculture and agrochemical sectors. The ECO-ZEO products will rely on the innovative application of Zeolite 4A to the surface of leaves and fruits, adapted strategies for sustainable crop protection (such as chromatic masking, behavior interference and biocontrol), novel use of sustainable active ingredients and pigments, and?new configurations of additives for enhanced performance of the coating. The developed crop protection solutions will be lab- and field trialed for four crops: apple, tomato, table grape and orange. The best performing solutions will be validated through demonstration with European farmers. Sustainability, eco-efficiency and Life-cycle analyses will be performed throughout the project. Achieving both environmental and economic sustainability is one of the main added values of ECO-ZEO. ECO-ZEO will be achieved by means of a new innovation process in agricultural green products based on the alliance of Academia, Agro-Biotech SMEs and Industry. Firm plans for the full-scale exploitation of the developed products and technology will ensure this alliance will translate into market presence. The participation of SMEs is further enhanced by the allocation of 40,8% of EC Contribution to SMEs.
Das Projekt "Influence of permafrost on chemical and physical weathering" wird/wurde gefördert durch: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Universität Zürich, Geographisches Institut.With increasing temperatures, permafrost is continuously thawing. This will lead in future to different thermal and hydrological conditions in the soil and regolith in cold regions. Therefore, climate change is assumed to cause a marked change in weathering conditions in high Alpine areas. Long-term chemical weathering and physical erosion rates are interrelated processes. In order to better understand landscape response to climate change, it is important to quantify both processes. The planned investigations generally aim at the estimate of element denudation/weathering rates and short- and long-term erosion of high Swiss Alpine soils (Upper Engadine: Albula and Val Bever). Both types of sites will be considered: a) with and b) without permafrost. The main objectives include 1) the evaluation of chemical weathering mechanisms using tracers such as immobile elements and Sr-isotopes 2) the determination of soil erosion rates (long-term) using two different techniques: a) in situ produced cosmogenic 10Be in soil sections and b) the inventory of meteoric 10Be in soils. Short-term erosion rates will be estimated using 137Cs as tracer. 3) determination of organic matter stocks in soil and characterisation and 14C dating of labile and stable (resistant to a H2O2 treatment) organic matter fractions. 4) Mapping of present day permafrost distribution and monitoring of near-surface and ground surface temperatures is essential for the understanding and prediction of the weathering behaviour of high Alpine regions. An important and innovative aspect is that chemical weathering and particularly erosion rates will be characterised using a multi-method approach. A cross-check of all the methods used will allow an extended interpretation and mutual control of the results. Furthermore, novel or very recently developed methods (erosion rates determined by meteoric 10Be using a non-steady-state approach; spatial on-site detection and characterisation of permafrost using a highly novel 3-D geophysical approach, 14C dating of stable (H2O2-resistant) soil organic matter, etc.) will be applied for the first time in high Alpine regions. The expected new insights will lead to a better understanding of the processes of high mountain soils and are a further step towards improving climate-related modelling of fast warming scenarios and increasing system disequilibria.
Das Projekt "Development and application of a cell free in vitro method to determine the effects of cellular transport processes on the bioconcentration of environmental chemicals in zebrafish" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Institut für Hydrobiologie, Professur für Limnologie (Gewässerökologie).In my PhD thesis project I address the question: How do cellular transport proteins influence the actual dose of environmental chemicals in an organism through active transport? Chemicals in the environment can accumulate in tissues of organisms. This is called 'bioconcentration'. If a chemical has a high potential to bioconcentrate it can be more deleterious to an organism. Therefore, information on the bioconcentration potential of a chemical is necessary for determining its human and environmental health risiks and needs to be obtained, as for instance regulated by the REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) framework of the European Union. For determining bioconcentration of a chemical animal experiments need to be carried out. A way to avoid the animal experiments could be to use computer models that predict bioconcentration of a chemical. However, current models generally provide inaccurate predictions, because they do not take into account biological processes that are important for the uptake of a chemical by an organism. Thus, organisms are protected by an 'active barrier' that determine if a chemical can enter the organism or not. Consideration of these biological processes will help to improve computer models. Information on interaction of chemicals with important biological processes influencing the bioconcentration can also be obtained with animal-free in vitro tests. Within my PhD work I develop an in vitro test for determining interaction of chemicals with active cellular transport proteins that constitute an important component of the 'active barrier' of an organism against chemicals. Eventually, this test may be part of a tool kit of 'intelligent testing' that comprises in vitro tests and a computer model. This tool kit may contribute to the 3 Rs (reduce - refine - replace) of animal tests and make animal tests obsolete.
Das Projekt "Science and Technology Advancing Governance of Good Environmental Status (STAGES)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Centro Tecnologico del Mar - Fundacion Cetmar.The Marine Strategy Framework Directive is designed to deliver Good Environmental Status (GES) in EU marine waters by 2020. This Directive requires that Member States (MS) with marine territories put in place measures to achieve and maintain GES within a defined timeframe and according to eleven key descriptors of environmental status. However, there is a significant knowledge deficit which may hinder full implementation of the MSFD and the achievement of GES in EU waters.STAGES (Science and Technology Advancing Governance on Good Environmental Status) project is designed to directly address this knowledge deficit. The project has to overarching goals: i) to synthezise per major MSFD themes the information from research projects and ii) to develop a platform to ensure that the knowledge generated through European science and technology can be channeled to a broad range of relevant end users, to inform and facilitate implementation of the MSFD and the achievement of GES. To achieve this, STAGES will target a number of critical gaps in the knowledge transfer process. Firstly, STAGES will identify and synthesize relevant existing EU research results and make them available in a usable format for decision and policy making authorities. Through comprehensive scientific foresight targeted at MSFD knowledge gaps, STAGES will identify needs for futher research. STAGES will also develop innovative solutions to achieve an effective collaboration between the broad range of stakeholders necessary to support MSDF implementation, including policy and governance, science, industry and civil society. Moreover, the role and input of MSFD stakeholders will be central to the activities of the project and to the proposals for a science policy interface which will be delivered by the project. The partnership has been constructed to include a combination of EU/international organizations which can represent a broad constituency of MSFD stakeholders, and national organizations with responsibility to support research and provide advice on MSFD implementation at MS level.
Das Projekt "How Do Extreme Climate Events Affect Plant/Soil Interactions in Agroecosystems?" wird/wurde gefördert durch: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Universität Zürich, Geographisches Institut.A very high percentage of the agronomically used area in Switzerland is covered by grasslands. This land use type is present at various altitudes (up to alpine regions), where environmental conditions, community structure, nutrient dynamics and productivity vary in a wide range. Results obtained during phase 1 of the NCCR Climate, but also by other research groups globally, lead to the conclusion that - besides an increase in mean temperature - temperature variability will increase considerably in Central Europe (Schär et al. 2004). However, the response of entire grassland systems to drought and heat remains unclear. Many earlier studies focused only on soil or vegetation (often only above-ground; e.g. Pfisterer and Schmid 2002), but did not consider the entire ecosystem with its interactions between different ecosystem components (e.g., Kahmen et al. 2004). We know that heat affects photosynthesis and - as a consequence - net carbon fluxes and plant productivity, as reported for example for oak (NCCR Phase 1; Haldimann and Feller 2004). How climatic factors affect above- and below-ground processes in temperate grasslands and how to implement safe management strategies to mitigate changes is less known. We will focus on drought and heat effects on managed grasslands. In grasslands, much of the biological activity and resource turnover happens below-ground; here carbon stocks can be as large as the annual above-ground harvested biomass. However, harvest and grazing typically take place above a certain height (typically 3 - 7 cm above ground), leaving behind large quantities of organic carbon as stubble (standing living and dead biomass) and litter. While the plant biomass above the cutting/grazing height is important for agricultural purposes (yield), biomass below this height is relevant for regrowth after cutting/grazing, for the development and maintenance of the root system and therefore resource use, for the transfer but also loss of carbon, nitrogen and other nutrients to the soil, and for soil carbon sequestration (Avice et al. 1996). The quantities and contributions of these various components to the total ecosystem depend on the allocation of assimilates and nutrients in the plants, on the metabolic activities and on the redistribution during senescence (Avice et al. 1996, Jeuffroy et al. 2002) as well as on microbial activities in the soil. The so far poorly quantified transfer rate for carbon from above-ground litter to below-ground organic matter is a key issue in this context (Lal 2004). In addition, all these processes are influenced by climatic and environmental conditions. For example, Palta and Gregory (1997) reported that wheat allocated relatively more assimilates to the roots under limited water conditions compared to adequate soil water. Kahmen et al. (2004) found stable above-ground productivity but increased below-ground productivity under drought conditions in grasslands of varying species richness. (abbrevia
Das Projekt "Long-term Driving Factors & Land Use Policies in Europe" wird/wurde ausgeführt durch: Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg.The basic and unifying question of this project is to what extent and how ecosystems maintain their resilience towards the different impacting factors (i.e. climate change). This again impinges on biodiversity conservation strategies. Of special interest hereby is how different/similar ecosystems and species react in different vegetation zones and eco-regions under different climatic conditions and disturbance/driving factors? What are the thresholds of the resilience of ecosystems under increasing temperatures due to climatic change, and what will be the response of communities that have not experienced such disturbances in the past? This project will cover the whole northern boreal region using pristine Russian forests as a reference. It would provide a careful evaluation of this long geographical, political and historical gradient of different land-use politics and their biodiversity effects from Russia via the Baltic countries to central Europa. This would be helpful in understanding and predicting the future changes and choosing management strategies. Although there is a great deal of interest in the biological diversity in species/ecosystem and genetic level, it is only recently that researchers have started to investigate the processes that exert parallel influences on these different levels of biodiversity. Policy aimed at conserving biodiversity has focused on species diversity. Loss of genetic diversity, however, can affect population resistance, evolutionary genetic potential, and population fitness. Species diversity and genetic diversity may be correlated as a result of processes acting in parallel at the two levels. However, no intensive studies have been conducted so far to predict the conditions under which different relationships between species diversity and genetic diversity might arise and therefore when one level of diversity may be predicted using the other. In this project all these levels of biodiversity will be included in a interdisciplinated study. This project will address the integration of data depicting long-term landscape history with present day data (such as statistical, GIS and Remote Sensing data, etc.) and models predicting future developments.
Origin | Count |
---|---|
Bund | 15 |
Type | Count |
---|---|
Förderprogramm | 15 |
License | Count |
---|---|
offen | 15 |
Language | Count |
---|---|
Deutsch | 1 |
Englisch | 14 |
Resource type | Count |
---|---|
Keine | 14 |
Webseite | 1 |
Topic | Count |
---|---|
Boden | 15 |
Lebewesen & Lebensräume | 15 |
Luft | 12 |
Mensch & Umwelt | 15 |
Wasser | 13 |
Weitere | 15 |