API src

Found 141 results.

Related terms

Steine-Erden\Steinwolle-DE-2010

Herstellung von Steinwolle: Das Dämmaterial Steinwolle besteht zum größten Teil aus Basalt und Dolomit. Diese Rohstoffe werden zusammen mit verschiedenen Produktionsabfällen und Rezyklaten, die in Formsteine eingebunden sind, in einen schachtartigen Kupolofen mit Koks als Energieträger und mit O2-angereicherter Luft bei ca. 1500°C zum Schmelzen gebracht (#1+#2). Der Strahl flüssigen Gesteins wird im Anschluß mit einer Spinnmaschine meistens nach dem Kaskadenschleuderverfahren zerfasert und anschließend mit Bindemitteln (Harze) und Imprägniermitteln (Ölprodukte) besprüht. Der mittlere Faserdurchmesser beträgt 3-6 µm bei einer mittleren Länge von 3 mm (#3). Die losen Fasern werden auf einem Förderband zu einem Vlies gesammelt und auf die gewünschte Stärke gepreßt (#1). Anschließend werden sie in einem Ofen ausgehärtet (#2). Die internen Produktionsabfälle inklusive der Filterabfälle werden gesammelt, soweit wie nötig zerkleinert und mit Zement als Bindemittel zu Formkörpern verpreßt, die anschließend erneut aufgeschmolzen werden (#2). Als Quellen für die vorliegende Bilanzierung wurden die Studien #1-#3 untersucht. Die beiden letztgenannten stützen sich auf Primärdaten Deutscher und Schweizer marktbestimmender Hersteller mit dem Basisjahr ca. 1992. Ein Vergleich Deutscher und Schweizer Daten zeigt keine wesentlichen Unterschiede. Einen vollständigen Datensatz, der auch mit der Systematik von GEMIS kompatibel ist, stellt #1 (EMPA 1995) zur Verfügung. Dieser diente als Basis für die vorliegende Bilanzierung und wurde durch weitere Studien verifiziert und ergänzt. Die Datenqualität ist insgesamt als gut zu bezeichnen. Die Unsicherheit der Daten ist nach dem Vergleich der Studien als gering anzusehen. Verbesserungen des Datensatzes sind vor allen Dingen auf dem Wasserpfad, teilweise auch beim Rohstoffbedarf wünschenswert. Allokation: Als Nebenprodukte der Steinwollen-Herstellung fallen in geringen Mengen an Eisen und Granulat. Sie werden in dieser Studie nicht als Koppelprodukte betrachtet. Weder bei der Betrachtung physischer Parameter der Allokation noch bei der Betrachtung ökonomischer Parameter ergibt sich eine Signifikanz der Nebenprodukte. Daher wird keine Allokation zwischen den Steinwolle-Matten und den angesprochenen Nebenprodukten vorgenommen. Sämtliche betrachteten Prozeßparameter werden daher voll der Steinwolle angerechnet. Genese der Kennziffern Massenbilanz: Als Roh- und Hilfsstoffe werden massenmäßig vorwiegend Dolomit und Basalt in den Prozeß eingebracht (in GEMIS werden beide Stoffe mit den Daten der Extraktion des Kalksteins bilanziert). Neben den Primärrohstoffen werden auch Mineralien über Recyclingmaterial eingebracht. Dabei handelt es sich sowohl um interne Abfälle aus der Zerfaserung als auch um div. Wollabfälle von Baustellen und produktionsinterne Stäube (sie tauchen in der Input/Output-Bilanz von GEMIS nicht auf). Diese werden zusammen mit Zusatzsteinen (Felsbrocken/Kies) in Zement eingebunden als Briketts in den Prozeß eingebracht (#1). Bei der Aufstellung der einzelnen Rohstoffe bestehen leichte Abweichungen zwischen den deutschen und Schweizer Quellen (#2, #1). In der Gesamtsumme stimmen die Quellen jedoch sehr gut überein. Die Unterschiede beruhen auf Differenzen bei der Deklaration. In dieser Studie werden die Angaben der Schweizer Studie übernommen. Roh- und Hilfsstoffe, die weit weniger als 1 Masse% ausmachen (Ammoniumbicarbonat, Kalkhydrat, Salzsäure und Silan) werden aufgrund geringerer Relevanz und fehlender Vorketten nicht mitbilanziert. Zusätzlich zum aufgeführten Roh- und Hilfsstoffbedarf werden ca. 28 kg reiner Sauerstoff pro Tonne Steinwolle in den Prozeß eingebracht, um die Verbrennungsluft im Kupolofen anzureichern (#2). Nebenprodukte: Neben den Steinwollenmatten fällt ein Granulat der Steinwolle an, das nicht vollständig aufgefasert werden kann. Es wird jedoch nicht wieder in den Prozeß eingebracht, sondern als Schüttdämmstoff verwendet (#1). Außerdem fällt im Sumpf des Kupolofens Eisen an. Dieses ist als Eisen(II)- oder als Eisen(III)-Oxid in den Mineralien Basalt und Diabas enthalten. Als Folge der reduzierenden Ofenatmosphäre sammelt es sich in Ofensumpf und wird dort diskontinuierlich abgezogen (#2). Energiebedarf: Der Energiebedarf für die Herstellung der Steinwolle beträgt ca. 8170 MJ/t Steinwolle. Dabei gliedert er sich folgendermaßen nach den einzelnen Energieträgern: Tab.: Anteile Energieträger zur Energiebereitstellung bei der Herstellung von Steinwolle (#1+#3) Energieträger Menge in MJ/t Steinwolle Anteil in % Steinkohlenkoks 5115 63 Heizöl EL 1970 24 Strom 1085 13 Summe 8170 100 Steinkohlenkoks wird direkt im Schachtofen zum Schmelzen der Mineralien eingesetzt. Heizöl EL wird jeweils ungefähr zur Hälfte im Schmelzofen und in den Härteöfen eingesetzt. Der Strom wird unter anderem für Transportprozesse und die Rauchgasreinigung benötigt (#3). Prozessbedingte Luftemissionen: Prozeßbedingte Luftemissionen entstammen dem Kupolofen, dem Härteofen mit Kühlzone und der Sägeanlage. Die Abgase laufen alle über Filter im Falle des Kupolofens über eine weitergehende Rauchgasreinigung. Die besten verfügbaren Daten finden sich in #1 für die Schweiz. Sie werden in der vorliegenden Form in dieser Studie übernommen. Ein Vergleich mit #2 zeigt keine signifikanten Abweichungen. Wasserinanspruchnahme: Wasser wird vor allen Dingen und in großen Mengen zu Kühlzwecken eingesetzt. Von den 12,7 m³/t Steinwolle eingesetzten Wassers fallen 11,2 m³ als nicht oder nur gering verunreinigtes Abwasser an. Lediglich das in dieser Studie nicht betrachtete Sanitärwasser wird stärker verunreinigt einer Abwasserreinigung zugeführt (#1). Abwasserinhaltsstoffe: Da das Wasser vorwiegend zu Kühlzwecken eingesetzt wird, tritt keine nennenswerte stoffliche Verunreinigung auf. Reststoffe: Der mengenmäßig größte Teil der Reststoffe kann wieder in den Prozeß eingebracht werden. Weitere Abfälle wie Lösungsmittelabfälle, Altöle und Filtermaterial fallen nicht in nennenswerten Mengen an (#1). Sie werden in GEMIS nicht weiter betrachtet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 160% Produkt: Baustoffe

Markt für Eisenerzkonzentrat

technologyComment of iron ore beneficiation (IN): Milling and mechanical sorting. Average iron yield is 65% . The process so developed basically involves crushing, classification, processing of lumps, fines and slimes separately to produce concentrate suitable as lump and sinter fines and for pellet making. The quality is essentially defined as Fe contents, Level of SiO2 and Al2O3 contamination. The process aims at maximizing Fe recovery by subjecting the rejects/tailings generated from coarser size processing to fine size reduction and subsequent processing to recover iron values. technologyComment of iron ore beneficiation (RoW): Milling and mechanical sorting. Average iron yield is 84%. technologyComment of iron ore mine operation and beneficiation (CA-QC): Milling and mechanical sorting. Average iron yield is 75%. Specific data were collected on one of the two production site in Quebec. According to the documentation available, the technologies of the 2 mines seems similar. Uncertainity has been adjusted accordingly. technologyComment of niobium mine operation and beneficiation, from pyrochlore ore (BR, RoW): Open-pit mining is applied and hydraulic excavators are used to extract the ore with different grades, which is transported to stockpiles awaiting homogenization through earth-moving equipment in order to attain the same concentration. Conveyor belts (3.5 km) are utilized to transport the homogenized ore to the concentration unit. Initially, the ore passes through a jaw crusher and moves to the ball mills, where the pyrochlore grains (1 mm average diameter) are reduced to diameters less than 0.104 mm. In the ball mills, recycled water is added in order to i) granulate the concentrate and ii) remove the gas from the sintering unit. The granulated ore undergoes i) magnetic separation, where magnetite is removed and is sold as a coproduct and ii) desliming in order to remove fractions smaller than 5μm by utilizing cyclones. Then the ore enters the flotation process - last stage of the beneficiation process – where the pyrochlore particles come into contact with flotation chemicals (hydrochloric & fluorosilic acid, triethylamene and lime), thereby removing the solid fractions and producing pyrochlore concentrate and barite as a coproduct which is also sold. The produced concentrate contains 55% Nb2O5 and 11% water and moves to the sintering unit, via tubes or is transported in bags while the separated and unused minerals enter the tailings dam. In the sintering unit, the pyrochlore concentrate undergoes pelletizing, sintering, crushing and classification. These units not only accumulate the material but are also responsible for removing sulfur and water from the concentrate. Then the concentrate enters the dephosphorization unit, where phosphorus and lead are removed from the concentrate. The removal of sulphur and phosphorus have to be executed because of the local pyrochlore ore composition. Then the concentrate undergoes a carbothermic reduction by using charcoal and petroleum coke, producing a refined concentrate, 63% Nb2O5 and tailings with high lead content that are disposed in the tailings dam again. technologyComment of rare earth element mine operation and beneficiation, bastnaesite and monazite ore (CN-NM): Firstly, open pit, mining (drilling and blasting) is performed in order to obtain the iron ore and a minor quantity of rare earth ores (5−6 % rare earth oxide equivalent). Then, a two-step beneficiation process is applied to produce the REO concentrate. In the first step, ball milling and magnetic separation is used for the isolation of the iron ore. In the second step, the resulting REO tailing (containing monazite and bastnasite), is processed to get a 50% REO equivalent concentrate via flotation. technologyComment of rare earth oxides production, from rare earth oxide concentrate, 70% REO (CN-SC): This dataset refers to the separation (hydrochloric acid leaching) and refining (metallothermic reduction) process used in order to produce high-purity rare earth oxides (REO) from REO concentrate, 70% beneficiated. ''The concentrate is calcined at temperatures up to 600ºC to oxidize carbonaceous material. Then HCl leaching, alkaline treatment, and second HCl leaching is performed to produce a relatively pure rare earth chloride (95% REO). Hydrochloric acid leaching in Sichuan is capable of separating and recovering the majority of cerium oxide (CeO) in a short process. For this dataset, the entire quantity of Ce (50% cerium dioxide [CeO2]/REO) is assumed to be produced here as CeO2 with a grade of 98% REO. Foreground carbon dioxide CO2 emissions were calculated from chemical reactions of calcining beneficiated ores. Then metallothermic reduction produces the purest rare earth metals (99.99%) and is most common for heavy rare earths. The metals volatilize, are collected, and then condensed at temperatures of 300 to 400°C (Chinese Ministryof Environmental Protection 2009).'' Source: Lee, J. C. K., & Wen, Z. (2017). Rare Earths from Mines to Metals: Comparing Environmental Impacts from China's Main Production Pathways. Journal of Industrial Ecology, 21(5), 1277-1290. doi:10.1111/jiec.12491 technologyComment of scandium oxide production, from rare earth tailings (CN-NM): See general comment. technologyComment of vanadium-titanomagnetite mine operation and beneficiation (CN): Natural rutile resources are scarce in China. For that reason, the production of titanium stems from high-grade titanium slag, the production of which includes 2 processes: i) ore mining & dressing process and ii) titanium slag smelting process. During the ore mining and dressing process, ilmenite concentrate (47.82% TiO2) is produced through high-intensity magnetic separation of the middling ore, which is previously produced as a byproduct during the magnetic separation sub-process of the vanadium titano-magnetite ore. During the titanium slag smelting process, the produced ilmenite concentrate from the ore mining & dressing process is mixed with petroleum coke as the reducing agent and pitch as the bonding agent. Afterwards it enters the electric arc furnace, where it is smelted, separating iron from the ilmenite concentrate and obtaining high-grade titanium slag.

Abfallerzeuger, Abfallmengen (gefährliche Abfälle):Deutschland, Jahre, Abfallarten (EAV 2- und 6-Steller)

Chemischer Transportunfall in Kaiserslautern

Einem Bleichmittel wurde irrtümlich in einem Eisenbahnwaggon Salzsäure zugefügt. Dabei entstand eine größere Chlorgaswolke. Die Folge waren 67 Verletzte mit z.T. sehr starken Lungen- und Bronchialreizungen.

Chem-Anorg\Chlor(Amalgam)-DE-2000

Chlorherstellung (Amalgamverfahren): Chlor in elementarer Form (Cl2) wird heute elektrochemisch dargestellt. In diesem Prozess wird die Herstellung von Cl2 durch Elektrolyse von Natriumchlorid (NaCl) nach dem Amalgamverfahren bilanziert. Der Prozess liefert neben Chlor stets Natronlauge und Wasserstoff. Ausgangsstoff des Verfahrens ist Natriumchlorid in Wasser gelöst. Der Elektrolyt wird im Kreis geführt. Das Kernstück des Verfahrens ist die Quecksilberzelle, in der an einer Graphit- oder Titan-Elektrode aus der Kochsalzlösung reines gasförmiges Chlor abgezogen werden kann. An der flüssigen Quecksilberkathode bildet sich eine Natrium-Quecksilberverbindung (Amalgam), aus der im Amalgamzersetzer eine sehr reine 50 %ige Natronlauge gewonnen wird. Die Hauptnachteile des Verfahrens liegen in den Quecksilberemissionen und dem hohen Verbrauch an elektrischer Energie. Der Vorteil gegenüber anderen Verfahren ist die hochreine Natronlauge. Als Rohstoffe für die Elektrolyse dienen neben Natriumchlorid in geringem Umfang auch Salzsäure und Kaliumchlorid. 1987 wurden etwa 93 % des Chlors aus NaCl hergestellt. Es stehen drei verschiedene Elektrolyseverfahren für NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. 1985 entfielen in der BRD ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (Tötsch 1990). Die Verteilung der weltweiten Produktionskapazitäten auf die verschiedenen Verfahren nach (Ullmann 1993) können für das Jahr 1990 der Tabelle 1 entnommen werden. Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (UBA 1991). Die Produktion an Chlor betrug 1987 in der BRD ca. 3,5 Mio. Tonnen. Die Weltkapazität für die Chlorherstellung ist größer als 40 Mio. Tonnen pro Jahr (Ullmann 1986). Die Kennziffern dieser Prozeßeinheit beziehen sich auf die Chlorherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent (Ullmann 1993). Prozess USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation: Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Mengen um, so enstehen pro Tonne Cl2 1,128 Tonnen NaOH (100 %ig). Bei der Elektrolyse entstehen weiterhin 28 kg Wasserstoff (H2)/t Cl2. Es wird angenommen, daß der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift (siehe: „H2-Kessel-D“) berechnet, die zu jeweils 50 % der Chlor- und Natronlaugeherstellung gutgeschrieben wird. (Vgl. Prozess Chem-Anorg\NaOH). Massenbilanz: Zur Herstellung einer Tonne Cl2 (und gleichzeitig 1,128 t NaOH) werden als Rohstoff 1710 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektrolyten für die Elektrolyse zu entfernen werden 54 kg Fällungsmittel (NaOH, Na2CO3, BaCO3) eingesetzt. Die Verunreinigungen fallen als Abfall (151 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 28 kg Wasserstoff (Energiegutschrift bei GEMIS). (Tötsch 1990). Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel dem Chlor 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung der Natronlauge. Energiebedarf: Der Energiebedarf für den Gesamtprozess der Herstellung einer Tonne Chlor und 1,128 Tonnen NaOH (die Werte wurden von der Natronlaugen- auf die Chlorherstellung umgerechnet) für die verschiedenen Elektrolyseverfahren kann nach (Ullmann 1993) der Tabelle 2 entnommen werden. Als Kennziffer für die hier betrachtete Prozeßeinheit (Amalgamverfahren) wurde gemäß der Allokationsregel 50 % der Mittelwert der Werte aus Tabelle 2 - 1692 kWh/t Cl 2 - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t Chlor und 1,128 t NaOH Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 3158-3610 2820-2933 2594-2820 Dampf(äquivalent) 0 790-1015 102-203 Summe 3158-3610 3610-3948 2696-3023 Im Vergleich dazu wird der Gesamtenergiebedarf bei (Tötsch 1990) mit 3700 kWh/t Cl2 + 1,128 t NaOH elektrischer Energie - nach Allokation: 1850 kWh/t Cl2 - angegeben. Da die Werte aus (Ullmann 1993) besser nachvollziehbar sind, werden diese für GEMIS verwendet. Emissionen: Die Quecksilber(Hg)-Emissionswerte (Luft, Wasser und Deponie) wurden auf der Grundlage von Daten aus dem Jahr 1985 berechnet [(Tötsch 1990), siehe Tabelle 3]. In der letzten Zeile der Tabelle sind die anteiligen Emissionswerte (50 % der Gesamtemissionen) für die Chlorherstellung 1985 (2,2 Mio. t Amalgamchlor) aufgelistet. Tabelle 3 Hg-Gesamtemissionen bei der Chlorherstellung in Tonnen für das Jahr 1985. Wasser Luft Produkte Deponie Summe [t] 0,20 4,20 1,10 36,30 [g Hg/t Cl2] 0,05 0,96 0,25 8,25 Die Quecksilberemissionen auf den Deponien setzen sich aus dem Filterschlamm, verbrauchten Katalysatoren, Rückständen aus der Produktreinigung und abgewrackten Anlagenteilen zusammen (Tötsch 1990). Aufgrund von gesetztlichen Auflagen und technischen Neuerungen kann derzeit vermutlich von geringeren Emissionen ausgegangen werden. Dies wird durch die neueren Daten von (BUWAL 1991), die auch für GEMIS verwendet werden, bestätigt. Dort werden für die Herstellung von 1 t Chlor (Anteil für Cl2 an den Gesamtemissionen) Hg-Emissionen von 0,47 g (Luft) und 0,028 g (Wasser) aufgeführt. Die Cl2-Emissionen werden bei BUWAL mit 0,25 g/t Cl2 beziffert. Weiterhin wird bei BUWAL für das Abwasser eine Fracht von 0,575 g an gelösten anorganischen Stoffen pro Tonne Chlor angegeben. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser (Gesamtwerte für 1 t Cl2 und gleichzeitig 1,128 t NaOH) setzt sich aus dem chemisch verbrauchten Wasser 508 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (1147 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (250 kg), dem Prozeßwasser (1650 kg) und dem Kühlwasser (100000 kg) zusammen (Tötsch 1990). Die Abwassermenge wird bei (Tötsch 1990) mit 0,3 bis 1,0 m3 pro Tonne produziertem Chlor (und 1,128 t NaOH) angegeben. Der obige Wasserbedarf wurde für GEMIS anteilig zu je 50 % unter den beiden Prozessen zur Chlor- und Natronlaugeherstellung aufgeteilt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 117% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften

Chem-Anorg\Chlor(Amalgam)-DE-2020

Chlorherstellung (Amalgamverfahren): Chlor in elementarer Form (Cl2) wird heute elektrochemisch dargestellt. In diesem Prozess wird die Herstellung von Cl2 durch Elektrolyse von Natriumchlorid (NaCl) nach dem Amalgamverfahren bilanziert. Der Prozess liefert neben Chlor stets Natronlauge und Wasserstoff. Ausgangsstoff des Verfahrens ist Natriumchlorid in Wasser gelöst. Der Elektrolyt wird im Kreis geführt. Das Kernstück des Verfahrens ist die Quecksilberzelle, in der an einer Graphit- oder Titan-Elektrode aus der Kochsalzlösung reines gasförmiges Chlor abgezogen werden kann. An der flüssigen Quecksilberkathode bildet sich eine Natrium-Quecksilberverbindung (Amalgam), aus der im Amalgamzersetzer eine sehr reine 50 %ige Natronlauge gewonnen wird. Die Hauptnachteile des Verfahrens liegen in den Quecksilberemissionen und dem hohen Verbrauch an elektrischer Energie. Der Vorteil gegenüber anderen Verfahren ist die hochreine Natronlauge. Als Rohstoffe für die Elektrolyse dienen neben Natriumchlorid in geringem Umfang auch Salzsäure und Kaliumchlorid. 1987 wurden etwa 93 % des Chlors aus NaCl hergestellt. Es stehen drei verschiedene Elektrolyseverfahren für NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. 1985 entfielen in der BRD ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (Tötsch 1990). Die Verteilung der weltweiten Produktionskapazitäten auf die verschiedenen Verfahren nach (Ullmann 1993) können für das Jahr 1990 der Tabelle 1 entnommen werden. Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (UBA 1991). Die Produktion an Chlor betrug 1987 in der BRD ca. 3,5 Mio. Tonnen. Die Weltkapazität für die Chlorherstellung ist größer als 40 Mio. Tonnen pro Jahr (Ullmann 1986). Die Kennziffern dieser Prozeßeinheit beziehen sich auf die Chlorherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent (Ullmann 1993). Prozess USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation: Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Mengen um, so enstehen pro Tonne Cl2 1,128 Tonnen NaOH (100 %ig). Bei der Elektrolyse entstehen weiterhin 28 kg Wasserstoff (H2)/t Cl2. Es wird angenommen, daß der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift (siehe: „H2-Kessel-D“) berechnet, die zu jeweils 50 % der Chlor- und Natronlaugeherstellung gutgeschrieben wird. (Vgl. Prozess Chem-Anorg\NaOH). Massenbilanz: Zur Herstellung einer Tonne Cl2 (und gleichzeitig 1,128 t NaOH) werden als Rohstoff 1710 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektrolyten für die Elektrolyse zu entfernen werden 54 kg Fällungsmittel (NaOH, Na2CO3, BaCO3) eingesetzt. Die Verunreinigungen fallen als Abfall (151 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 28 kg Wasserstoff (Energiegutschrift bei GEMIS). (Tötsch 1990). Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel dem Chlor 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung der Natronlauge. Energiebedarf: Der Energiebedarf für den Gesamtprozess der Herstellung einer Tonne Chlor und 1,128 Tonnen NaOH (die Werte wurden von der Natronlaugen- auf die Chlorherstellung umgerechnet) für die verschiedenen Elektrolyseverfahren kann nach (Ullmann 1993) der Tabelle 2 entnommen werden. Als Kennziffer für die hier betrachtete Prozeßeinheit (Amalgamverfahren) wurde gemäß der Allokationsregel 50 % der Mittelwert der Werte aus Tabelle 2 - 1692 kWh/t Cl 2 - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t Chlor und 1,128 t NaOH Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 3158-3610 2820-2933 2594-2820 Dampf(äquivalent) 0 790-1015 102-203 Summe 3158-3610 3610-3948 2696-3023 Im Vergleich dazu wird der Gesamtenergiebedarf bei (Tötsch 1990) mit 3700 kWh/t Cl2 + 1,128 t NaOH elektrischer Energie - nach Allokation: 1850 kWh/t Cl2 - angegeben. Da die Werte aus (Ullmann 1993) besser nachvollziehbar sind, werden diese für GEMIS verwendet. Emissionen: Die Quecksilber(Hg)-Emissionswerte (Luft, Wasser und Deponie) wurden auf der Grundlage von Daten aus dem Jahr 1985 berechnet [(Tötsch 1990), siehe Tabelle 3]. In der letzten Zeile der Tabelle sind die anteiligen Emissionswerte (50 % der Gesamtemissionen) für die Chlorherstellung 1985 (2,2 Mio. t Amalgamchlor) aufgelistet. Tabelle 3 Hg-Gesamtemissionen bei der Chlorherstellung in Tonnen für das Jahr 1985. Wasser Luft Produkte Deponie Summe [t] 0,20 4,20 1,10 36,30 [g Hg/t Cl2] 0,05 0,96 0,25 8,25 Die Quecksilberemissionen auf den Deponien setzen sich aus dem Filterschlamm, verbrauchten Katalysatoren, Rückständen aus der Produktreinigung und abgewrackten Anlagenteilen zusammen (Tötsch 1990). Aufgrund von gesetztlichen Auflagen und technischen Neuerungen kann derzeit vermutlich von geringeren Emissionen ausgegangen werden. Dies wird durch die neueren Daten von (BUWAL 1991), die auch für GEMIS verwendet werden, bestätigt. Dort werden für die Herstellung von 1 t Chlor (Anteil für Cl2 an den Gesamtemissionen) Hg-Emissionen von 0,47 g (Luft) und 0,028 g (Wasser) aufgeführt. Die Cl2-Emissionen werden bei BUWAL mit 0,25 g/t Cl2 beziffert. Weiterhin wird bei BUWAL für das Abwasser eine Fracht von 0,575 g an gelösten anorganischen Stoffen pro Tonne Chlor angegeben. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser (Gesamtwerte für 1 t Cl2 und gleichzeitig 1,128 t NaOH) setzt sich aus dem chemisch verbrauchten Wasser 508 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (1147 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (250 kg), dem Prozeßwasser (1650 kg) und dem Kühlwasser (100000 kg) zusammen (Tötsch 1990). Die Abwassermenge wird bei (Tötsch 1990) mit 0,3 bis 1,0 m3 pro Tonne produziertem Chlor (und 1,128 t NaOH) angegeben. Der obige Wasserbedarf wurde für GEMIS anteilig zu je 50 % unter den beiden Prozessen zur Chlor- und Natronlaugeherstellung aufgeteilt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 117% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften

Chem-Anorg\Chlor(Amalgam)-DE-2005

Chlorherstellung (Amalgamverfahren): Chlor in elementarer Form (Cl2) wird heute elektrochemisch dargestellt. In diesem Prozess wird die Herstellung von Cl2 durch Elektrolyse von Natriumchlorid (NaCl) nach dem Amalgamverfahren bilanziert. Der Prozess liefert neben Chlor stets Natronlauge und Wasserstoff. Ausgangsstoff des Verfahrens ist Natriumchlorid in Wasser gelöst. Der Elektrolyt wird im Kreis geführt. Das Kernstück des Verfahrens ist die Quecksilberzelle, in der an einer Graphit- oder Titan-Elektrode aus der Kochsalzlösung reines gasförmiges Chlor abgezogen werden kann. An der flüssigen Quecksilberkathode bildet sich eine Natrium-Quecksilberverbindung (Amalgam), aus der im Amalgamzersetzer eine sehr reine 50 %ige Natronlauge gewonnen wird. Die Hauptnachteile des Verfahrens liegen in den Quecksilberemissionen und dem hohen Verbrauch an elektrischer Energie. Der Vorteil gegenüber anderen Verfahren ist die hochreine Natronlauge. Als Rohstoffe für die Elektrolyse dienen neben Natriumchlorid in geringem Umfang auch Salzsäure und Kaliumchlorid. 1987 wurden etwa 93 % des Chlors aus NaCl hergestellt. Es stehen drei verschiedene Elektrolyseverfahren für NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. 1985 entfielen in der BRD ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (Tötsch 1990). Die Verteilung der weltweiten Produktionskapazitäten auf die verschiedenen Verfahren nach (Ullmann 1993) können für das Jahr 1990 der Tabelle 1 entnommen werden. Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (UBA 1991). Die Produktion an Chlor betrug 1987 in der BRD ca. 3,5 Mio. Tonnen. Die Weltkapazität für die Chlorherstellung ist größer als 40 Mio. Tonnen pro Jahr (Ullmann 1986). Die Kennziffern dieser Prozeßeinheit beziehen sich auf die Chlorherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent (Ullmann 1993). Prozess USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation: Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Mengen um, so enstehen pro Tonne Cl2 1,128 Tonnen NaOH (100 %ig). Bei der Elektrolyse entstehen weiterhin 28 kg Wasserstoff (H2)/t Cl2. Es wird angenommen, daß der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift (siehe: „H2-Kessel-D“) berechnet, die zu jeweils 50 % der Chlor- und Natronlaugeherstellung gutgeschrieben wird. (Vgl. Prozess Chem-Anorg\NaOH). Massenbilanz: Zur Herstellung einer Tonne Cl2 (und gleichzeitig 1,128 t NaOH) werden als Rohstoff 1710 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektrolyten für die Elektrolyse zu entfernen werden 54 kg Fällungsmittel (NaOH, Na2CO3, BaCO3) eingesetzt. Die Verunreinigungen fallen als Abfall (151 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 28 kg Wasserstoff (Energiegutschrift bei GEMIS). (Tötsch 1990). Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel dem Chlor 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung der Natronlauge. Energiebedarf: Der Energiebedarf für den Gesamtprozess der Herstellung einer Tonne Chlor und 1,128 Tonnen NaOH (die Werte wurden von der Natronlaugen- auf die Chlorherstellung umgerechnet) für die verschiedenen Elektrolyseverfahren kann nach (Ullmann 1993) der Tabelle 2 entnommen werden. Als Kennziffer für die hier betrachtete Prozeßeinheit (Amalgamverfahren) wurde gemäß der Allokationsregel 50 % der Mittelwert der Werte aus Tabelle 2 - 1692 kWh/t Cl 2 - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t Chlor und 1,128 t NaOH Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 3158-3610 2820-2933 2594-2820 Dampf(äquivalent) 0 790-1015 102-203 Summe 3158-3610 3610-3948 2696-3023 Im Vergleich dazu wird der Gesamtenergiebedarf bei (Tötsch 1990) mit 3700 kWh/t Cl2 + 1,128 t NaOH elektrischer Energie - nach Allokation: 1850 kWh/t Cl2 - angegeben. Da die Werte aus (Ullmann 1993) besser nachvollziehbar sind, werden diese für GEMIS verwendet. Emissionen: Die Quecksilber(Hg)-Emissionswerte (Luft, Wasser und Deponie) wurden auf der Grundlage von Daten aus dem Jahr 1985 berechnet [(Tötsch 1990), siehe Tabelle 3]. In der letzten Zeile der Tabelle sind die anteiligen Emissionswerte (50 % der Gesamtemissionen) für die Chlorherstellung 1985 (2,2 Mio. t Amalgamchlor) aufgelistet. Tabelle 3 Hg-Gesamtemissionen bei der Chlorherstellung in Tonnen für das Jahr 1985. Wasser Luft Produkte Deponie Summe [t] 0,20 4,20 1,10 36,30 [g Hg/t Cl2] 0,05 0,96 0,25 8,25 Die Quecksilberemissionen auf den Deponien setzen sich aus dem Filterschlamm, verbrauchten Katalysatoren, Rückständen aus der Produktreinigung und abgewrackten Anlagenteilen zusammen (Tötsch 1990). Aufgrund von gesetztlichen Auflagen und technischen Neuerungen kann derzeit vermutlich von geringeren Emissionen ausgegangen werden. Dies wird durch die neueren Daten von (BUWAL 1991), die auch für GEMIS verwendet werden, bestätigt. Dort werden für die Herstellung von 1 t Chlor (Anteil für Cl2 an den Gesamtemissionen) Hg-Emissionen von 0,47 g (Luft) und 0,028 g (Wasser) aufgeführt. Die Cl2-Emissionen werden bei BUWAL mit 0,25 g/t Cl2 beziffert. Weiterhin wird bei BUWAL für das Abwasser eine Fracht von 0,575 g an gelösten anorganischen Stoffen pro Tonne Chlor angegeben. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser (Gesamtwerte für 1 t Cl2 und gleichzeitig 1,128 t NaOH) setzt sich aus dem chemisch verbrauchten Wasser 508 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (1147 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (250 kg), dem Prozeßwasser (1650 kg) und dem Kühlwasser (100000 kg) zusammen (Tötsch 1990). Die Abwassermenge wird bei (Tötsch 1990) mit 0,3 bis 1,0 m3 pro Tonne produziertem Chlor (und 1,128 t NaOH) angegeben. Der obige Wasserbedarf wurde für GEMIS anteilig zu je 50 % unter den beiden Prozessen zur Chlor- und Natronlaugeherstellung aufgeteilt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 117% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften

Chem-Anorg\Chlor(Amalgam)-DE-2015

Chlorherstellung (Amalgamverfahren): Chlor in elementarer Form (Cl2) wird heute elektrochemisch dargestellt. In diesem Prozess wird die Herstellung von Cl2 durch Elektrolyse von Natriumchlorid (NaCl) nach dem Amalgamverfahren bilanziert. Der Prozess liefert neben Chlor stets Natronlauge und Wasserstoff. Ausgangsstoff des Verfahrens ist Natriumchlorid in Wasser gelöst. Der Elektrolyt wird im Kreis geführt. Das Kernstück des Verfahrens ist die Quecksilberzelle, in der an einer Graphit- oder Titan-Elektrode aus der Kochsalzlösung reines gasförmiges Chlor abgezogen werden kann. An der flüssigen Quecksilberkathode bildet sich eine Natrium-Quecksilberverbindung (Amalgam), aus der im Amalgamzersetzer eine sehr reine 50 %ige Natronlauge gewonnen wird. Die Hauptnachteile des Verfahrens liegen in den Quecksilberemissionen und dem hohen Verbrauch an elektrischer Energie. Der Vorteil gegenüber anderen Verfahren ist die hochreine Natronlauge. Als Rohstoffe für die Elektrolyse dienen neben Natriumchlorid in geringem Umfang auch Salzsäure und Kaliumchlorid. 1987 wurden etwa 93 % des Chlors aus NaCl hergestellt. Es stehen drei verschiedene Elektrolyseverfahren für NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. 1985 entfielen in der BRD ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (Tötsch 1990). Die Verteilung der weltweiten Produktionskapazitäten auf die verschiedenen Verfahren nach (Ullmann 1993) können für das Jahr 1990 der Tabelle 1 entnommen werden. Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (UBA 1991). Die Produktion an Chlor betrug 1987 in der BRD ca. 3,5 Mio. Tonnen. Die Weltkapazität für die Chlorherstellung ist größer als 40 Mio. Tonnen pro Jahr (Ullmann 1986). Die Kennziffern dieser Prozeßeinheit beziehen sich auf die Chlorherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent (Ullmann 1993). Prozess USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation: Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Mengen um, so enstehen pro Tonne Cl2 1,128 Tonnen NaOH (100 %ig). Bei der Elektrolyse entstehen weiterhin 28 kg Wasserstoff (H2)/t Cl2. Es wird angenommen, daß der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift (siehe: „H2-Kessel-D“) berechnet, die zu jeweils 50 % der Chlor- und Natronlaugeherstellung gutgeschrieben wird. (Vgl. Prozess Chem-Anorg\NaOH). Massenbilanz: Zur Herstellung einer Tonne Cl2 (und gleichzeitig 1,128 t NaOH) werden als Rohstoff 1710 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektrolyten für die Elektrolyse zu entfernen werden 54 kg Fällungsmittel (NaOH, Na2CO3, BaCO3) eingesetzt. Die Verunreinigungen fallen als Abfall (151 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 28 kg Wasserstoff (Energiegutschrift bei GEMIS). (Tötsch 1990). Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel dem Chlor 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung der Natronlauge. Energiebedarf: Der Energiebedarf für den Gesamtprozess der Herstellung einer Tonne Chlor und 1,128 Tonnen NaOH (die Werte wurden von der Natronlaugen- auf die Chlorherstellung umgerechnet) für die verschiedenen Elektrolyseverfahren kann nach (Ullmann 1993) der Tabelle 2 entnommen werden. Als Kennziffer für die hier betrachtete Prozeßeinheit (Amalgamverfahren) wurde gemäß der Allokationsregel 50 % der Mittelwert der Werte aus Tabelle 2 - 1692 kWh/t Cl 2 - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t Chlor und 1,128 t NaOH Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 3158-3610 2820-2933 2594-2820 Dampf(äquivalent) 0 790-1015 102-203 Summe 3158-3610 3610-3948 2696-3023 Im Vergleich dazu wird der Gesamtenergiebedarf bei (Tötsch 1990) mit 3700 kWh/t Cl2 + 1,128 t NaOH elektrischer Energie - nach Allokation: 1850 kWh/t Cl2 - angegeben. Da die Werte aus (Ullmann 1993) besser nachvollziehbar sind, werden diese für GEMIS verwendet. Emissionen: Die Quecksilber(Hg)-Emissionswerte (Luft, Wasser und Deponie) wurden auf der Grundlage von Daten aus dem Jahr 1985 berechnet [(Tötsch 1990), siehe Tabelle 3]. In der letzten Zeile der Tabelle sind die anteiligen Emissionswerte (50 % der Gesamtemissionen) für die Chlorherstellung 1985 (2,2 Mio. t Amalgamchlor) aufgelistet. Tabelle 3 Hg-Gesamtemissionen bei der Chlorherstellung in Tonnen für das Jahr 1985. Wasser Luft Produkte Deponie Summe [t] 0,20 4,20 1,10 36,30 [g Hg/t Cl2] 0,05 0,96 0,25 8,25 Die Quecksilberemissionen auf den Deponien setzen sich aus dem Filterschlamm, verbrauchten Katalysatoren, Rückständen aus der Produktreinigung und abgewrackten Anlagenteilen zusammen (Tötsch 1990). Aufgrund von gesetztlichen Auflagen und technischen Neuerungen kann derzeit vermutlich von geringeren Emissionen ausgegangen werden. Dies wird durch die neueren Daten von (BUWAL 1991), die auch für GEMIS verwendet werden, bestätigt. Dort werden für die Herstellung von 1 t Chlor (Anteil für Cl2 an den Gesamtemissionen) Hg-Emissionen von 0,47 g (Luft) und 0,028 g (Wasser) aufgeführt. Die Cl2-Emissionen werden bei BUWAL mit 0,25 g/t Cl2 beziffert. Weiterhin wird bei BUWAL für das Abwasser eine Fracht von 0,575 g an gelösten anorganischen Stoffen pro Tonne Chlor angegeben. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser (Gesamtwerte für 1 t Cl2 und gleichzeitig 1,128 t NaOH) setzt sich aus dem chemisch verbrauchten Wasser 508 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (1147 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (250 kg), dem Prozeßwasser (1650 kg) und dem Kühlwasser (100000 kg) zusammen (Tötsch 1990). Die Abwassermenge wird bei (Tötsch 1990) mit 0,3 bis 1,0 m3 pro Tonne produziertem Chlor (und 1,128 t NaOH) angegeben. Der obige Wasserbedarf wurde für GEMIS anteilig zu je 50 % unter den beiden Prozessen zur Chlor- und Natronlaugeherstellung aufgeteilt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2015 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 117% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften

Chem-Anorg\Chlor(Amalgam)-DE-2010

Chlorherstellung (Amalgamverfahren): Chlor in elementarer Form (Cl2) wird heute elektrochemisch dargestellt. In diesem Prozess wird die Herstellung von Cl2 durch Elektrolyse von Natriumchlorid (NaCl) nach dem Amalgamverfahren bilanziert. Der Prozess liefert neben Chlor stets Natronlauge und Wasserstoff. Ausgangsstoff des Verfahrens ist Natriumchlorid in Wasser gelöst. Der Elektrolyt wird im Kreis geführt. Das Kernstück des Verfahrens ist die Quecksilberzelle, in der an einer Graphit- oder Titan-Elektrode aus der Kochsalzlösung reines gasförmiges Chlor abgezogen werden kann. An der flüssigen Quecksilberkathode bildet sich eine Natrium-Quecksilberverbindung (Amalgam), aus der im Amalgamzersetzer eine sehr reine 50 %ige Natronlauge gewonnen wird. Die Hauptnachteile des Verfahrens liegen in den Quecksilberemissionen und dem hohen Verbrauch an elektrischer Energie. Der Vorteil gegenüber anderen Verfahren ist die hochreine Natronlauge. Als Rohstoffe für die Elektrolyse dienen neben Natriumchlorid in geringem Umfang auch Salzsäure und Kaliumchlorid. 1987 wurden etwa 93 % des Chlors aus NaCl hergestellt. Es stehen drei verschiedene Elektrolyseverfahren für NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. 1985 entfielen in der BRD ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (Tötsch 1990). Die Verteilung der weltweiten Produktionskapazitäten auf die verschiedenen Verfahren nach (Ullmann 1993) können für das Jahr 1990 der Tabelle 1 entnommen werden. Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (UBA 1991). Die Produktion an Chlor betrug 1987 in der BRD ca. 3,5 Mio. Tonnen. Die Weltkapazität für die Chlorherstellung ist größer als 40 Mio. Tonnen pro Jahr (Ullmann 1986). Die Kennziffern dieser Prozeßeinheit beziehen sich auf die Chlorherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent (Ullmann 1993). Prozess USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation: Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Mengen um, so enstehen pro Tonne Cl2 1,128 Tonnen NaOH (100 %ig). Bei der Elektrolyse entstehen weiterhin 28 kg Wasserstoff (H2)/t Cl2. Es wird angenommen, daß der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift (siehe: „H2-Kessel-D“) berechnet, die zu jeweils 50 % der Chlor- und Natronlaugeherstellung gutgeschrieben wird. (Vgl. Prozess Chem-Anorg\NaOH). Massenbilanz: Zur Herstellung einer Tonne Cl2 (und gleichzeitig 1,128 t NaOH) werden als Rohstoff 1710 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektrolyten für die Elektrolyse zu entfernen werden 54 kg Fällungsmittel (NaOH, Na2CO3, BaCO3) eingesetzt. Die Verunreinigungen fallen als Abfall (151 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 28 kg Wasserstoff (Energiegutschrift bei GEMIS). (Tötsch 1990). Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel dem Chlor 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung der Natronlauge. Energiebedarf: Der Energiebedarf für den Gesamtprozess der Herstellung einer Tonne Chlor und 1,128 Tonnen NaOH (die Werte wurden von der Natronlaugen- auf die Chlorherstellung umgerechnet) für die verschiedenen Elektrolyseverfahren kann nach (Ullmann 1993) der Tabelle 2 entnommen werden. Als Kennziffer für die hier betrachtete Prozeßeinheit (Amalgamverfahren) wurde gemäß der Allokationsregel 50 % der Mittelwert der Werte aus Tabelle 2 - 1692 kWh/t Cl 2 - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t Chlor und 1,128 t NaOH Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 3158-3610 2820-2933 2594-2820 Dampf(äquivalent) 0 790-1015 102-203 Summe 3158-3610 3610-3948 2696-3023 Im Vergleich dazu wird der Gesamtenergiebedarf bei (Tötsch 1990) mit 3700 kWh/t Cl2 + 1,128 t NaOH elektrischer Energie - nach Allokation: 1850 kWh/t Cl2 - angegeben. Da die Werte aus (Ullmann 1993) besser nachvollziehbar sind, werden diese für GEMIS verwendet. Emissionen: Die Quecksilber(Hg)-Emissionswerte (Luft, Wasser und Deponie) wurden auf der Grundlage von Daten aus dem Jahr 1985 berechnet [(Tötsch 1990), siehe Tabelle 3]. In der letzten Zeile der Tabelle sind die anteiligen Emissionswerte (50 % der Gesamtemissionen) für die Chlorherstellung 1985 (2,2 Mio. t Amalgamchlor) aufgelistet. Tabelle 3 Hg-Gesamtemissionen bei der Chlorherstellung in Tonnen für das Jahr 1985. Wasser Luft Produkte Deponie Summe [t] 0,20 4,20 1,10 36,30 [g Hg/t Cl2] 0,05 0,96 0,25 8,25 Die Quecksilberemissionen auf den Deponien setzen sich aus dem Filterschlamm, verbrauchten Katalysatoren, Rückständen aus der Produktreinigung und abgewrackten Anlagenteilen zusammen (Tötsch 1990). Aufgrund von gesetztlichen Auflagen und technischen Neuerungen kann derzeit vermutlich von geringeren Emissionen ausgegangen werden. Dies wird durch die neueren Daten von (BUWAL 1991), die auch für GEMIS verwendet werden, bestätigt. Dort werden für die Herstellung von 1 t Chlor (Anteil für Cl2 an den Gesamtemissionen) Hg-Emissionen von 0,47 g (Luft) und 0,028 g (Wasser) aufgeführt. Die Cl2-Emissionen werden bei BUWAL mit 0,25 g/t Cl2 beziffert. Weiterhin wird bei BUWAL für das Abwasser eine Fracht von 0,575 g an gelösten anorganischen Stoffen pro Tonne Chlor angegeben. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser (Gesamtwerte für 1 t Cl2 und gleichzeitig 1,128 t NaOH) setzt sich aus dem chemisch verbrauchten Wasser 508 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (1147 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (250 kg), dem Prozeßwasser (1650 kg) und dem Kühlwasser (100000 kg) zusammen (Tötsch 1990). Die Abwassermenge wird bei (Tötsch 1990) mit 0,3 bis 1,0 m3 pro Tonne produziertem Chlor (und 1,128 t NaOH) angegeben. Der obige Wasserbedarf wurde für GEMIS anteilig zu je 50 % unter den beiden Prozessen zur Chlor- und Natronlaugeherstellung aufgeteilt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 117% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften

Chem-Anorg\Chlor(Amalgam)-DE-2030

Chlorherstellung (Amalgamverfahren): Chlor in elementarer Form (Cl2) wird heute elektrochemisch dargestellt. In dieser Prozeßeinheit wird die Herstellung von Cl2 durch Elektrolyse von Natriumchlorid (NaCl) nach dem Amalgamverfahren bilanziert. Der Prozeß liefert neben Chlor stets Natronlauge und Wasserstoff. Ausgangsstoff des Verfahrens ist Natriumchlorid in Wasser gelöst. Der Elektrolyt wird im Kreis geführt. Das Kernstück des Verfahrens ist die Quecksilberzelle, in der an einer Graphit- oder Titan-Elektrode aus der Kochsalzlösung reines gasförmiges Chlor abgezogen werden kann. An der flüssigen Quecksilberkathode bildet sich eine Natrium-Quecksilberverbindung (Amalgam), aus der im Amalgamzersetzer eine sehr reine 50 %ige Natronlauge gewonnen wird. Die Hauptnachteile des Verfahrens liegen in den Quecksilberemissionen und dem hohen Verbrauch an elektrischer Energie. Der Vorteil gegenüber anderen Verfahren ist die hochreine Natronlauge. Als Rohstoffe für die Elektrolyse dienen neben Natriumchlorid in geringem Umfang auch Salzsäure und Kaliumchlorid. 1987 wurden etwa 93 % des Chlors aus NaCl hergestellt. Es stehen drei verschiedene Elektrolyseverfahren für NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. 1985 entfielen in der BRD ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (Tötsch 1990). Die Verteilung der weltweiten Produktionskapazitäten auf die verschiedenen Verfahren nach (Ullmann 1993) können für das Jahr 1990 der Tabelle 1 entnommen werden. Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (UBA 1991). Die Produktion an Chlor betrug 1987 in der BRD ca. 3,5 Mio. Tonnen. Die Weltkapazität für die Chlorherstellung ist größer als 40 Mio. Tonnen pro Jahr (Ullmann 1986). Die Kennziffern dieser Prozeßeinheit beziehen sich auf die Chlorherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent (Ullmann 1993). Prozeß USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation: Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Mengen um, so enstehen pro Tonne Cl2 1,128 Tonnen NaOH (100 %ig). Bei der Elektrolyse entstehen weiterhin 28 kg Wasserstoff (H2)/t Cl2. Es wird angenommen, daß der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift (siehe: „H2-Kessel-D“) berechnet, die zu jeweils 50 % der Chlor- und Natronlaugeherstellung gutgeschrieben wird. (Vgl. Prozeßeinheit: Chem-Anorg\NaOH). Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Cl2 (und gleichzeitig 1,128 t NaOH) werden als Rohstoff 1710 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektrolyten für die Elektrolyse zu entfernen werden 54 kg Fällungsmittel (NaOH, Na2CO3, BaCO3) eingesetzt. Die Verunreinigungen fallen als Abfall (151 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 28 kg Wasserstoff (Energiegutschrift bei GEMIS). (Tötsch 1990). Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel dem Chlor 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung der Natronlauge. Energiebedarf: Der Energiebedarf für den Gesamtprozeß der Herstellung einer Tonne Chlor und 1,128 Tonnen NaOH (die Werte wurden von der Natronlaugen- auf die Chlorherstellung umgerechnet) für die verschiedenen Elektrolyseverfahren kann nach (Ullmann 1993) der Tabelle 2 entnommen werden. Als Kennziffer für die hier betrachtete Prozeßeinheit (Amalgamverfahren) wurde gemäß der Allokationsregel 50 % der Mittelwert der Werte aus Tabelle 2 - 1692 kWh/t Cl 2 - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t Chlor und 1,128 t NaOH Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 3158-3610 2820-2933 2594-2820 Dampf(äquivalent) 0 790-1015 102-203 Summe 3158-3610 3610-3948 2696-3023 Im Vergleich dazu wird der Gesamtenergiebedarf bei (Tötsch 1990) mit 3700 kWh/t Cl2 + 1,128 t NaOH elektrischer Energie - nach Allokation: 1850 kWh/t Cl2 - angegeben. Da die Werte aus (Ullmann 1993) besser nachvollziehbar sind, werden diese für GEMIS verwendet. Emissionen: Die Quecksilber(Hg)-Emissionswerte (Luft, Wasser und Deponie) wurden auf der Grundlage von Daten aus dem Jahr 1985 berechnet [(Tötsch 1990), siehe Tabelle 3]. In der letzten Zeile der Tabelle sind die anteiligen Emissionswerte (50 % der Gesamtemissionen) für die Chlorherstellung 1985 (2,2 Mio. t Amalgamchlor) aufgelistet. Tabelle 3 Hg-Gesamtemissionen bei der Chlorherstellung in Tonnen für das Jahr 1985. Wasser Luft Produkte Deponie Summe [t] 0,20 4,20 1,10 36,30 [g Hg/t Cl2] 0,05 0,96 0,25 8,25 Die Quecksilberemissionen auf den Deponien setzen sich aus dem Filterschlamm, verbrauchten Katalysatoren, Rückständen aus der Produktreinigung und abgewrackten Anlagenteilen zusammen (Tötsch 1990). Aufgrund von gesetztlichen Auflagen und technischen Neuerungen kann derzeit vermutlich von geringeren Emissionen ausgegangen werden. Dies wird durch die neueren Daten von (BUWAL 1991), die auch für GEMIS verwendet werden, bestätigt. Dort werden für die Herstellung von 1 t Chlor (Anteil für Cl2 an den Gesamtemissionen) Hg-Emissionen von 0,47 g (Luft) und 0,028 g (Wasser) aufgeführt. Die Cl2-Emissionen werden bei BUWAL mit 0,25 g/t Cl2 beziffert. Weiterhin wird bei BUWAL für das Abwasser eine Fracht von 0,575 g an gelösten anorganischen Stoffen pro Tonne Chlor angegeben. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser (Gesamtwerte für 1 t Cl2 und gleichzeitig 1,128 t NaOH) setzt sich aus dem chemisch verbrauchten Wasser 508 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (1147 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (250 kg), dem Prozeßwasser (1650 kg) und dem Kühlwasser (100000 kg) zusammen (Tötsch 1990). Die Abwassermenge wird bei (Tötsch 1990) mit 0,3 bis 1,0 m3 pro Tonne produziertem Chlor (und 1,128 t NaOH) angegeben. Der obige Wasserbedarf wurde für GEMIS anteilig zu je 50 % unter den beiden Prozeßeinheiten der Chlor- und Natronlaugeherstellung aufgeteilt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 117% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften

1 2 3 4 513 14 15