API src

Found 1748 results.

Related terms

METOP GOME-2 - Formaldehyde (HCHO) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational HCHO total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

METOP GOME-2 - Water Vapour (H2O) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational H2O total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV/VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The total H2O column is retrieved from GOME solar backscattered measurements in the red wavelength region (614-683.2 nm), using the Differential Optical Absorption Spectroscopy (DOAS) method. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

METOP GOME-2 - Bromine Monoxide (BrO) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational BrO (Bromine monoxide) total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. For more details please refer to https://atmos.eoc.dlr.de/app/missions/gome2

METOP GOME-2 - Cloud Optical Thickness (COT) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks) are used for retrieving the following geophysical cloud properties from GOME and GOME-2 data: cloud fraction (cloud cover), cloud-top pressure (cloud-top height), and cloud optical thickness (cloud-top albedo). OCRA is an optical sensor cloud detection algorithm that uses the PMD devices on GOME / GOME-2 to deliver cloud fractions for GOME / GOME-2 scenes. ROCINN takes the OCRA cloud fraction as input and uses a neural network training scheme to invert GOME / GOME-2 reflectivities in and around the O2-A band. VLIDORT [Spurr (2006)] templates of reflectances based on full polarization scattering of light are used to train the neural network. ROCINN retrieves cloud-top pressure and cloud-top albedo. The cloud optical thickness is computed using libRadtran [Mayer and Kylling (2005)] radiative transfer simulations taking as input the cloud-top albedo retrieved with ROCINN. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

KIBI, Teilvorhaben: CISS Technische DV-Informationssysteme - GmbH

Pollution Transport to Switzerland inferred from Satellite Observations (POLTRASAT)

POLTROSAT is a 3-year PhD project that started in May 2003 and gets support from both the Swiss Agency of Environment, Forests and Landscape (BUWAL) and the Swiss Federal Laboratories for Materials Science and Technology (Empa). It aims in evaluating the usability of space-borne data for air pollution surveillance purposes based on measurements from GOME and SCIAMACHY

METOP GOME-2 - Nitrogen Dioxide (NO2) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational NO2 total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The total NO2 column is retrieved from GOME solar back-scattered measurements in the visible wavelength region (425-450 nm), using the Differential Optical Absorption Spectroscopy (DOAS) method. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

METOP GOME-2 - Ozone (O3) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational ozone total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The new improved DOAS-style (Differential Optical Absorption Spectroscopy) algorithm called GDOAS, was selected as the basis for GDP version 4.0 in the framework of an ESA ITT. GDP 4.x performs a DOAS fit for ozone slant column and effective temperature followed by an iterative AMF / VCD computation using a single wavelength. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

Aerosole und Nebel im südlichen Afrika: Prozesse und Auswirkungen auf die Biogeochemie (AEROFOG)

Das südliche Afrika ist einer der Hotspots des Klimawandels. In Namibia treten einige der extremsten Klimaregime der Welt auf, vom kalten Benguela-Strom zur hyperariden Küstenwüste Namib. Nebel und niedrige Wolken sind typische Erscheinungen der Region. Sie beeinflussen die Küstenregion und liefern weiter landeinwärts einen höheren Beitrag zum Wasservolumen als Niederschlag. Nebel und niedrige Wolken spielen damit eine zentrale Rolle in der Bereitstellung kritischer limitierender natürlicher Ressourcen in empfindliche Ökosysteme: Wasser, Nährstoffe und Licht. Das wissenschaftliche Verständnis der mikrophysikalischen und chemischen Mechanismen der Bildung, Zusammensetzung und letztlich der Aufnahme und Verteilung von Aerosol-Nährstoffen ist jedoch noch unvollständig. Um die bestehenden Verständnislücken zu schließen wird hier mit dem AEROFOG-Projekt ein interdisziplinärer Ansatz vorgeschlagen, der Atmosphärenwissenschaften, Fernerkundung und Ökologie umfasst. Eine solch umfassende Betrachtung der Materie ist unverzichtbar. AEROFOG zielt auf ein verbessertes Verständnis des Einflusses von Aerosolen auf Nebelentwicklung, dessen chemische Zusammensetzung und seinen Einfluss auf die lokale Biogeochemie. Dabei werden detaillierte Messungen von Aerosol, Deposition und Nebelchemie sowie mikrophysikalischer Größen bei zwei intensiven Feldmesskampagnen im Süd-Winter und Süd-Sommer an Küsten- und Wüstenstationen durchgeführt, um eine große Anzahl von verschiedenartigen Nebelereignissen erfassen zu können. Zusätzlich werden Studien zur Wirkung von Nebel auf die lokale Biogeochemie und insbesondere endemische Pflanzenarten durchgeführt. Diese Messungen stellen die Grundlage für Multiphasen-Prozess-Modellierung der Aerosol-Nebel-Interaktionen dar, womit ein neues Verständnis von Nebel-Mikrophysik und -Chemie erzielt wird. Aus zeitlich hochaufgelösten Satellitendaten werden räumliche und zeitliche Muster der Nebelverteilung ermittelt und mit den Modell- sowie experimentellen Erkenntnissen verschnitten. Zusammengenommen wird mit diesem interdisziplinären und kooperativen Projekt eine Reihe von Erkenntnislücken geschlossen und werden erstmalig Einsichten in die Verteilung und Eintragung nebelgetragener Nährstoffe in ariden Ökosystemen wie der Namib gewonnen und damit eine wichtige Grundlage für Klimaprojektionen und Ökosystemgesundheit gelegt.

Kombination der Niederschlagsschätzung von opportunistischen Sensoren und geostationären Satelliten

Der Umsetzungsplan der COP27 enthält eine sehr klare Aussage. "Ein Drittel der Welt, darunter 60% von Afrika, hat keinen Zugang zu Frühwarn- und Klimainformationsdiensten". Dies gilt vor allem für niederschlagsbezogene Warnungen. Der Grund dafür ist das fast vollständige Fehlen von Wetterradaren auf in Afrika und die mangelnde Dichte von Niederschlagsmessstationen. Im Gegensatz dazu sind geostationäre Satelliten (GEOsat) und potentiell auch kommerzielle Richtfunkstrecken (CML) und Satelliten-Mikrowellenverbindungen (SML) nahezu in Echtzeit verfügbar und können zur Niederschlagsschätzung verwendet werden. Die quantitative Niederschlagsschätzung (QPE) aus GEOsat-Daten ist jedoch aufgrund der indirekten Beziehung zwischen der Niederschlagsmenge und den tatsächlichen Messungen, die im sichtbaren und infraroten Spektrum durchgeführt werden, eine Herausforderung. Für die QPE aus SML- und CML-Daten, insbesondere auf der Grundlage groß angelegter CML-Studien in Europa, wurde gezeigt, dass sie mit der QPE aus Radar- und Regenmessern gleichwertig sein kann. In Ermangelung von Referenzdaten, wie es in Entwicklungsländern häufig der Fall ist, sind die bestehenden maßgeschneiderten semi-empirischen Prozessierungsmethoden jedoch oft nicht direkt anwendbar. GEOsat-Daten haben das Potenzial, die CML/SML-Prozessierung in diesen Regionen zu unterstützen, und umgekehrt könnte die CML/SML-QPE zur Anpassung der GEOsat-QPE verwendet werden. Das übergeordnete Ziel des Projekts MERGOSAT ist daher die Entwicklung neuartiger Methoden zur Erstellung verbesserter Echtzeit-Niederschlagskarten für datenarme Regionen durch eine Kombination von GEOsat-Daten und CML/SML-QPE. Um dieses Ziel zu erreichen, werden wir uns auf drei Aspekte konzentrieren: 1) Schaffung einer Grundlage für allgemeinere CML/SML-QPE-Modelle durch Verbesserung des Verständnisses der Prozesse die die EM-Ausbreitung von CML und SML beeinflussen. 2) Entwicklung geeigneter CML/SML-QPE-Modelle, die in datenarmen Regionen anwendbar sind, aufbauend auf den neuen Erkenntnissen über WAA und DSD und unter innovativer Nutzung von GEOsat-Daten. 3) Verbesserung der GEOsat-QPE mit DeepLearning-Methoden und Entwicklung eines neuen Verfahrens, das die Zusammenführung mit CML/SML-Daten mit sub-stündlicher Auflösung ermöglicht. Wir werden unsere Forschung auf unser umfangreiches Archiv von CML-Daten, auch aus Afrika, und die zunehmende Verfügbarkeit von SML-Daten stützen. Zusätzliche Daten aus Feldexperimenten werden mit modernsten Simulationen der EM-Ausbreitung kombiniert. Darüber hinaus werden wir neueste Techniken des DeepLearnings und unsere Hochleistungs-Recheninfrastruktur nutzen. In Kombination mit den erweiterten Fähigkeiten des kürzlich gestarteten MTG GEOsat wird uns dies ermöglichen, unsere Ziele erfolgreich anzugehen und die methodische Grundlage zu schaffen, die erforderlich ist, um datenarme Regionen mit verbesserten und zuverlässigen Niederschlagsinformationen nahezu in Echtzeit zu versorgen.

1 2 3 4 5173 174 175