Aerosol optical depth (AOD) as derived from TROPOMI observations. AOD describes the attenuation of the transmitted radiant power by the absence of aerosols. Attenuation can be caused by absorption and/or scattering. AOD is the primary parameter to evaluate the impact of aerosols on weather and climate. Daily AOD observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
Aerosol single-scattering albedo (ASSA) as derived from TROPOMI observations. ASSA is a measure of how much light is scattered by aerosols compared to how much is absorbed. It is important for understanding the impact of aerosols on climate and radiative forcing. ASSA is unitless; a value of unity implies that extinction is completely due to scattering; conversely, a single-scattering albedo of zero implies that extinction is completely due to absorption. Daily ASSA observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
High-quality near-real time Quantitative Precipitation Estimation (QPE) and its prediction for the next hours (Quantitative Precipitation Nowcasting, QPN) is of high importance for many applications in meteorology, hydrology, agriculture, construction, water and sewer system management. Especially for the prediction of floods in small to meso-scale catchments and of intense precipitation over cities timely, the value of high-resolution, and high-quality QPE/QPN cannot be overrated. Polarimetric weather radars provide the undisputed core information for QPE/QPN due to their area-covering and high-resolution observations, which allow estimating precipitation intensity, hydrometeor types, and wind. Despite extensive investments in such weather radars, QPE is still based primarily on rain gauge measurements since more than 100 years and no operational flood forecasting system actually dares to employ radar observations for QPE. RealPEP will advance QPE/QPN to a stage, that it verifiably outperforms rain gauge observations when employed for flood predictions in small to medium-sized catchments. To this goal state-of-the?art radar polarimetry will be sided with attenuation estimates from commercial microwave link networks for QPE improvement, and information on convection initiation and evolution from satellites and lightning counts from surface networks will be exploited to improve QPN. With increasing forecast horizons the predictive power of observation-based nowcasting quickly deteriorates and is outperformed by Numerical Weather Prediction (NWP) based on data assimilation, which fails, however, for the first hours due to the lead time required for model integration and spin-up. Thus, RealPEP will merge observation-based QPN with NWP towards seamless prediction in order to provide optimal forecasts from the time of observation to days ahead. Despite recent advances in simulating surface and sub-surface hydrology with distributed, physicsbased models, hydrologic components for operational flood prediction are still conceptual, need calibration, and are unable to objectively digest observational information on the state of the catchments. RealPEP will prove that in combination with advanced QPE/QPN physics-based hydrological models sided with assimilation of catchment state observations will outperform traditional flood forecasting in small to meso-scale catchments.
The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational SO2 total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. GDP 4.x performs a DOAS fit for SO2 slant column followed by an AMF / VCD computation using a single wavelength. Corrections are applied to the slant column for equatorial offset, interference of SO2 and SO2 absorption, and SZA dependence. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/
The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational NO2 total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The total NO2 column is retrieved from GOME solar back-scattered measurements in the visible wavelength region (425-450 nm), using the Differential Optical Absorption Spectroscopy (DOAS) method. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/
In den vergangenen Jahrzehnten wurden die meisten Grünlandökosysteme in Mitteleuropa durch höhere Düngergaben und durch häufigeres Mähen oder Beweiden verändert. Diese Landnutzungs-Intensivierung hat zwar die Bereitstellung der Ökosystemleistung 'Futterproduktion' verbessert, jedoch die Biodiversität und die Bereitstellung anderer Ökosystemleistungen negativ beeinflusst. Vor allem aufgrund räumlicher Diskrepanzen zwischen ökologischen Prozessen und Managementeinheiten in gekoppelten sozial-ökologischen Systemen fehlt bisher ein mechanistisches Verständnis zu Effekten der Landnutzungs-Intensivierung auf die Beziehung der Biodiversität zu Ökosystemfunktionen und -leistungen. In unserem Projekt SEBAS wollen wir dieses mechanistische Verständnis verbessern, indem wir plotbasierte ökologische Forschung zur Landnutzungsintensität und zu sechs grundlegenden Biodiversitätsvariablen (engl. EBVs) mit einer satellitenbasierten Fernerkundung dieser Proxies verbinden. Wir werden Beziehungen zwischen funktionaler und struktureller Diversität und der Ökosystemleistung 'Futterproduktion' (oberirdische Biomasse bzw. Primärnettoproduktion) für managementrelevante Flächen analysieren. Dies sind Wiesen- bzw. Weideflächen, landwirtschaftliche Betriebe und Landschaften. Wir stellen die Hypothesen auf, dass (i) die sechs EBVs auf mehreren räumlichen Skalen unter Verwendung multimodaler Satellitenbild-Zeitreihendaten abgeleitet werden können, die mit vorhandenen und neu erhobenen Daten zur Landnutzungsintensität und zu EBVs kalibriert und validiert wurden; und dass (ii) Auswirkungen der Landnutzung auf die Beziehung der Biodiversität zu Ökosystemfunktionen und -leistungen über räumliche Skalen hinweg variieren. Hierbei dürfte die funktionale und strukturelle Diversität eine Schlüsselrolle für die Höhe und zeitliche Stabilität der Futterproduktion spielen. Das Projekt wird räumlich explizite EBV-Produkte auf Satelliten- und UAV-Basis liefern sowie neue Methoden entwickeln, die auf multiskalierten und multimodalen Fernerkundungs-Datensätzen (PlanetScope, RapidEye, Sentinel 1 & 2, Landsat, MODIS) sowie auf maschinellen Lern- und Hybridmodellen basieren. Durch Raum-für-Zeit-Substitutionen für Klimawandel und Landnutzungswandel werden wir zudem interaktive Auswirkungen dieser beiden wichtigsten Treiber des Globalen Wandels auf die Beziehung der Biodiversität zu Ökosystemfunktionen und -leistungen analysieren. Hierfür werden wir direkte und indirekte (biodiversitätsvermittelte) Auswirkungen der beiden Treiber auf die Futterproduktion mittels eines sozial-ökologischen Systemansatzes formalisieren und über Strukturgleichungsmodellen quantifizieren. Auf diese Weise werden wir ein tieferes Verständnis der Ökosystemfunktionen und -leistungen in mitteleuropäischen Grünländern erlangen.
Niedrige Wolken sind Schlüsselbestandteile vieler Klimazonen, aber in numerischen Modellen oft nicht gut dargestellt und schwer zu beobachten. Kürzlich wurde gezeigt, dass sich während der Haupttrockensaison im Juni und September im westlichen Zentralafrika eine ausgedehnte niedrige Wolkenbedeckung (engl. „low cloud cover“, LCC) entwickelt. Eine derart wolkige Haupttrockenzeit ist in den feuchten Tropen einzigartig und erklärt wahrscheinlich die dichtesten immergrünen Wälder in der Region. Da paläoklimatische Studien auf eine Instabilität hinweisen, kann jede Verringerung des LCC aufgrund des Klimawandels einen Kipppunkt für die Waldbedeckung darstellen. Daher besteht ein dringender Bedarf, das Auftreten, die Variabilität und die bioklimatischen Auswirkungen des LCC in westlichen Zentralafrika besser zu verstehen.Um diese Ziele zu erreichen, wurde ein Konsortium aus französischen, deutschen und gabunischen Partnern aufgebaut, zu dem Meteorologen, Klimatologen und Experten für Fernerkundung und Waldökologie gehören. Die meteorologischen Prozesse, welche die Bildung und Auflösung der LCC im Tagesgang steuern, werden anhand von zwei Ozean-Land-Transekten auf der Grundlage einer synergistischen Analyse von historischen In-situ Beobachtungen, von Daten einer Feldkampagne und anhand von atmosphärischen Modellsimulationen untersucht. Die Ergebnisse werden mit einem kürzlich entwickelten konzeptionellen Modell für LCC im südlichen Westafrika verglichen.Die intrasaisonale bis interannuale Variabilität des LCC wird durch die Analyse von In-Situ-Langzeitdaten und Satellitenschätzungen quantifiziert. Unterschiede im Jahresgang des LCC (d.h. jahreszeitlicher Beginn und Rückzug, wolkenarme Tage) und die Ausdehnung ins Inland werden dokumentiert. Ansätze, die auf Wettertypen und äquatorialen Wellen basieren, werden verwendet, um intrasaisonale Variationen des LCC zu verstehen. Die Auswirkungen lokaler und regionaler Meeresoberflächentemperaturen auf die LCC-Entwicklung und ihre Jahr-zu-Jahr Variabilität werden bewertet, wobei statistische Analysen und spezielle Sensitivitätsversuche mit einem regionalen Klimamodell verknüpft werden.Schließlich wird der Einfluss von LCC auf die Licht- und Wasserverfügbarkeit bzw. die Waldfunktion anhand von In-Situ-Messungen untersucht. Die Ergebnisse werden mit Messungen aus der nördlichen Republik Kongo, wo die Trockenzeit sonnig ist, sowie mit einem einfachen Wasserhaushaltsmodells, das an die Region angepasst ist, verglichen. Die Wasserhaushaltsanalysen sollen die Kompensations- oder Verstärkungseffekte von Regen im Vergleich zur potenziellen Evapotranspiration, beide moduliert durch die LCC, auf das Wasserdefizit aufzeigen.Die Ergebnisse von DYVALOCCA werden zum ersten konzeptionellen Modell für Wolkenbildung und -auflösung im westlichen Zentralafrika führen und eine Hilfestellung für die Bewertung von Klimawandel-Simulationen mit Blick auf potentielle Kipppunkte für die immergrünen Regenwälder in der Region geben.
Eine der Standardmethoden zur Temperaturbestimmung in der Mesopausen-Region basiert auf spektroskopischen Messungen der Rotationstemperaturen von Hydroxyl-Molekülen. Eine wichtige Frage bei der Interpretation der gemessenen Rotationstemperaturen ist die Frage nach der Thermalisierung der Rotationszustände. Bisher gibt es jedoch nur wenige Untersuchungen zu diesem Thema.Das Ziel dieses Projektes ist, Hydroxyl-Moleküle in verschiedenen Rotations-Schwingungs-Zuständen in der oberen Mesosphäre und unteren Thermosphäre zu untersuchen. Zu diesem Zweck soll ein kinetisches Modell der Schwingungs- und Rotations-Anregungen von OH entwickelt werden. Das Modell soll verwendet werden, um die Konzentrationen von angeregten Hydroxyl-Molekülen und Emissionsraten in verschiedenen Höhen und für verschiedene atmosphärische Bedingungen zu simulieren. Insbesondere sollen die Besetzungen der Rotationszustände analysiert werden, um Abweichung vom lokalen thermodynamischen Gleichgewicht bewerten zu können. Die Modellergebnisse sollen mit bodengestüzten Messungen und Satelliten-Messungen verglichen werden.
The Northern Eurasia Earth Science Partnership Initiative, or NEESPI, is a currently active, yet strategically evolving program of internationally-supported Earth systems science research, which has as its foci issues in northern Eurasia that are relevant to regional and Global scientific and decision-making communities (see NEESPI Mission Statement). This part of the globe is undergoing significant changes - particularly those changes associated with a rapidly warming climate in this region and with important changes in governmental structures since the early 1990s and their associated influences on land use and the environment across this broad expanse. How this carbon-rich, cold region component of the Earth system functions as a regional entity and interacts with and feeds back to the greater Global system is to a large extent unknown. Thus, the capability to predict future changes that may be expected to occur within this region and the consequences of those changes with any acceptable accuracy is currently uncertain. One of the reasons for this lack of regional Earth system understanding is the relative paucity of well-coordinated, multidisciplinary and integrating studies of the critical physical and biological systems. By establishing a large-scale, multidisciplinary program of funded research, NEESPI is aimed at developing an enhanced understanding of the interactions between the ecosystem, atmosphere, and human dynamics in northern Eurasia. Specifically, the NEESPI strives to understand how the land ecosystems and continental water dynamics in northern Eurasia interact with and alter the climatic system, biosphere, atmosphere, and hydrosphere of the Earth. The contemporaneous changes in climate and land use are impacting the biological, chemical, and physical functions of the northern Eurasia, but little data and fewer models are available that can be used to understand the current status of this expansive regional system, much less the influence of the northern Eurasia region on the Global climate. NEESPI seeks to secure the necessary financial and related institutional support from an international cadre of sponsors for developing a viable understanding of the functioning of northern Eurasia and the impacts of extant changes on the regional and Earth systems. Many types of ground and integrative (e.g., satellite; GIS) data will be needed and many models must be applied, adapted or developed for properly understanding the functioning of this cold and diverse regional system. Mechanisms for obtaining the requisite data sets and models and sharing them among the participating scientists are essential and require international and active governmental participation. (abridged text)
| Origin | Count |
|---|---|
| Bund | 1303 |
| Global | 3 |
| Kommune | 2 |
| Land | 115 |
| Wirtschaft | 4 |
| Wissenschaft | 440 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 264 |
| Ereignis | 27 |
| Förderprogramm | 1169 |
| Hochwertiger Datensatz | 1 |
| Repositorium | 3 |
| Text | 51 |
| Umweltprüfung | 7 |
| unbekannt | 230 |
| License | Count |
|---|---|
| geschlossen | 55 |
| offen | 1632 |
| unbekannt | 65 |
| Language | Count |
|---|---|
| Deutsch | 970 |
| Englisch | 880 |
| Resource type | Count |
|---|---|
| Archiv | 21 |
| Bild | 3 |
| Datei | 282 |
| Dokument | 34 |
| Keine | 1030 |
| Webdienst | 27 |
| Webseite | 429 |
| Topic | Count |
|---|---|
| Boden | 1034 |
| Lebewesen und Lebensräume | 1403 |
| Luft | 1752 |
| Mensch und Umwelt | 1752 |
| Wasser | 853 |
| Weitere | 1669 |