API src

Found 1754 results.

Related terms

Sentinel-5P TROPOMI – Aerosol Index (AI), Level 3 – Global

Aerosol Index (AI) as derived from TROPOMI observations. AI is an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

METOP GOME-2 - Cloud Optical Thickness (COT) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks) are used for retrieving the following geophysical cloud properties from GOME and GOME-2 data: cloud fraction (cloud cover), cloud-top pressure (cloud-top height), and cloud optical thickness (cloud-top albedo). OCRA is an optical sensor cloud detection algorithm that uses the PMD devices on GOME / GOME-2 to deliver cloud fractions for GOME / GOME-2 scenes. ROCINN takes the OCRA cloud fraction as input and uses a neural network training scheme to invert GOME / GOME-2 reflectivities in and around the O2-A band. VLIDORT [Spurr (2006)] templates of reflectances based on full polarization scattering of light are used to train the neural network. ROCINN retrieves cloud-top pressure and cloud-top albedo. The cloud optical thickness is computed using libRadtran [Mayer and Kylling (2005)] radiative transfer simulations taking as input the cloud-top albedo retrieved with ROCINN. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

Süßwasserflüsse über dem Ozean I - Verdunstungsflüsse (FreshOcean)

Die Veränderung des globalen Wasserkreislaufs durch den Klimawandel ist eine der größten Herausforderungen für die Gesellschaft, da trockene Regionen trockener und feuchte Regionen feuchter werden. Das Problem besteht darin, dass 85 % der Verdunstung und 77 % der Niederschläge über den Ozeanen stattfinden und der globale Wasserkreislauf aufgrund der schwierigen Beobachtungsbedingungen über den Ozeanen nur unzureichend verstanden wird. Der Austausch von Süßwasser zwischen dem Ozean und der Atmosphäre findet jedoch in einer obersten dünnen Schicht der Meeresoberfläche statt, den so genannten Oberflächenfilm. Die Verdunstung von Wasserdampf aus den Oberflächenfilmen erhöht deren Salzgehalt, während der Niederschlag den Salzgehalt in den Oberflächenfilmen verringert. Das Hauptziel dieses Forschungsprojekts ist ein umfassendes Verständnis der Dynamik und der Veränderungen des Salzgehalts und der damit zusammenhängenden thermischen Felder in den ozeanischen Oberflächenfilmen und der oberflächennahen Schicht (NSL) sowie deren Zusammenhang mit den verdunstenden Süßwasserflüssen zu erzielen. Einer der Hauptpunkte dieser Arbeit ist, dass Süsswasserflüsse (Verdunstung minus Niederschlag) direkt auf die Meeresoberfläche einwirkt und daher vorwiegend den Salzgehalt der Oberflächenfilme quasi-instant beeinflusst, während die derzeitigen Methoden, die den Salzgehalt der gemischten Schicht verwenden, sich auf dekadischen Skalen beziehen. Eine umfassende Reihe von Experimenten wird in einer großmaßstäblichen Mesokosmenanlage an der Universität Oldenburg durchgeführt, in der die treibenden Kräfte für die Verdunstung kontrolliert werden können (Wassertemperatur, Windgeschwindigkeit, turbulente Vermischung, Lufttemperatur und -feuchtigkeit). Im Mittelpunkt steht eine Expedition in den Mittelatlantik mit seinem hohen Oberflächensalzgehalt, d. h. Verdunstungsraten übersteigen die Niederschlagsraten. Während der Expedition kommt ein funkgesteuertes Katamaran zum Einsatz, der in der Lage ist, Oberflächenfilme zu sammeln. Die Beobachtungen werden durch Messungen von Bojen, schiffsbasierten Messungen und Satelliten unterstützt. Die Arbeiten ergänzen die laufenden Aktivitäten zur Untersuchung des Zusammenhangs zwischen dem Salzgehalt der Oberflächenfilme und den Niederschlägen. Diese Arbeit ist ein erster Schritt, um zu verstehen, wie der Salzgehalt der Oberflächenfilme und der oberflächennahe Salzgehalt verwendet werden können, um dynamische Süsswasserflüsse zu integrieren und Parametrisierungen zur Extrapolation von Süsswasserflüssen unter Verwendung von satellitengestützten Salzgehaltsdaten zu entwickeln.

Schwerpunktprogramm (SPP) 1788: Study of Earth system dynamics with a constellation of potential field missions, Effekte durch Schwerewellen in der Thermosphäre/Ionosphäre infolge von Aufwärtskopplung

Das Thermosphären/Ionosphären (T/I) System wird sowohl von oben (solar, geomagnetisch), als auch von unten stark beeinflusst. Einer der wichtigsten Einflüsse von unten sind Wellen (z.B. planetare Wellen, Gezeiten, oder Schwerewellen), die größtenteils in der Troposphäre bzw. an der Tropopause angeregt werden. Die vertikale Ausbreitung der Wellen bewirkt hierbei eine vertikale Kopplung der T/I mit der unteren und mittleren Atmosphäre. Vor allem der Einfluss von Schwerewellen (GW) ist hierbei weitestgehend unverstanden. Einer der Gründe hierfür ist, dass GW sehr kleinskalig sind (einige zehn bis zu wenigen tausend km) - eine Herausforderung, sowohl für Beobachtungen, als auch für Modelle. Wir werden GW Verteilungen in der T/I aus verschiedenen in situ Satelliten-Datensätzen ableiten (z.B., sowohl in Neutral-, als auch in Elektronendichten). Hierfür werden Datensätze der Satelliten(-konstellationen) SWARM, CHAMP, GOCE und GRACE verwendet werden. Es sollen charakteristische globale Verteilungen bestimmt, und die wichtigsten zeitlichen Variationen (z.B. Jahresgang, Halbjahresgang und solarer Zyklus) untersucht werden. Diese GW Verteilungen werden dann mit von den Satelliteninstrumenten HIRDLS und SABER gemessenen Datensätzen (GW Varianzen, GW Impulsflüssen und Windbeschleunigungen durch GW) in der Stratosphäre und Mesosphäre verglichen. Einige Datensätze (CHAMP, GRACE, SABER) sind mehr als 10 Jahre lang. Räumliche und zeitliche Korrelationen zwischen den GW Verteilungen in der T/I (250-500km Höhe) und den GW Verteilungen in der mittleren Atmosphäre (Stratosphäre und Mesosphäre) für den gesamten Höhenbereich 20-100km werden untersucht werden. Diese Korrelationen sollen Aufschluss darüber geben, welche Höhenbereiche und Regionen in der mittleren Atmosphäre den stärksten Einfluss auf die GW Verteilung in der T/I haben. Insbesondere Windbeschleunigungen durch GW, beobachtet von HIRDLS und SABER, können zusätzliche Hinweise darauf geben, ob Sekundär-GW, die mutmaßlich in Gebieten starker GW Dissipation angeregt werden, in entscheidendem Maße zur globalen GW Verteilung in der T/I beitragen. Zusätzlich wird der Versuch unternommen, sowohl GW Impulsfluss, als auch Windbeschleunigungen durch GW aus den Messungen in der T/I abzuleiten. Solche Datensätze sind von besonderem Interesse für einen direkten Vergleich mit von globalen Zirkulationsmodellen simulierten GW Verteilungen in der T/I. Diese werden für eine konsistente Simulation der T/I in Zirkulationsmodellen (GCM) benötigt, stellen dort aber auch eine Hauptunsicherheit dar, da eine Validierung der modellierten GW durch Messungen fehlt.

Methoden der Radarfernerkundung zur Analyse anthropozoogener Muster der Landnutzung in periodisch überfluteten Gebieten des westafrikanischen Sahel

Radarfernerkundung auf Basis der SAR-Satellitendaten der ERS-Plattformen ermöglicht die Aufzeichnung von Boden- und Vegetationsparametern, die vor allem mit den Faktoren Rauhigkeit, Wassergehalt und Salinität korreliert sind. Landnutzung in semi-ariden Regionen Westafrikas wird durch Übernutzung der Böden, Versalzung von bewässertem Land und Dezimierung von Baum- und Strauchschichten der Vegetation geprägt. Geeignete Methoden der Analyse von multitemporalen SAR-Daten der satellitengestützten Radarfernerkundung sollen helfen, vor allem regressive Veränderungen der Landnutzung zu erkennen und zu untersuchen. Informationen zu Bodenbedeckung, horizontaler Struktur der Vegetation und Bodenqualität sollen nachhaltige Entwicklungskonzepte unterstützen.

Human influences on forests in southern Ethiopia: the case of Shashemane-Munessa-forest

Especially during the last decades, the natural forests of Ethiopia have been heavily disturbed by human activities. Some forests have been totally cleared and converted into fields for agricultural use, other suffered from different influences, such as heavy grazing and selective logging. The ongoing research in the Shashemane-Munessa-study area (Gu 406/8-1,2) showed clearly that, in spite of interdiction and control, forests continue to be cleared and degraded. However, it is not yet sufficiently known, how and why these processes are still going on. Growing population pressure and economic constraints for the people living in and around the forests contribute to the actual situation but allow no final answers to the complex situation. Concerning a sustainable management of the forests there is to no solid basis for recommendations from the socioeconomic and socio-cultural view. Therefore, a comprehensive analysis of the traditional needs and forms of forest use, including all forest products, is necessary. The objective of this project is, to achieve this basis by carrying out intensive field observations, the consultation of aerial photographs, satellite imagery and above all semi-structured interviews with the population in the study area in order to contribute to the recommendations for a sustainable use of the Munessa Shasemane forests.

Großräumige Analyse von Verbuschungsflächen mit NOAA-AVHRR-Daten in Namibia

Seit 1979 erfassen Satelliten der NOAA-Serie die Erde und liefern damit eine der längsten kontinuierlichen Bild-Datenreihen von Satelliten überhaupt. Durch ihre großflächige Abdeckung, ihre hohe zeitliche Auflösung und ihren kostengünstigen Empfang eignen sich diese Daten hervorragend zum Monitoring. Bislang werden diese langen Zeitreihen noch kaum herangezogen, um langfristige Veränderungen von Oberflächenphänomenen zu beschreiben, denn der Großteil der Fernerkundungsarbeiten beschäftigt sich mit neueren Sensoren und deren Anwendungen. Gerade vor dem Hintergrund der Landdegradierung durch unangepaßte Landnutzung in den Trockenräumen der Erde sollten die vorhandenen archivierten Datenreihen zur Langzeitanalyse aber genutzt werden und die Ergebnisse in Konzepte des Landmanagements einfließen. In Namibia vollzieht sich in den Nationalparks und dem Weideland die Landdegradierung durch eine massive Verbuschung, v.a. mit Acacia mellifera. Die Verbuschungsdynamik der letzten 20 Jahre soll in Etosha mit NOA-AVHRR-Daten erfasst werden. Die Ergebnisse aus dem Etosha-Nationalpark können dann zum Monitoring der Verbuschung in Namibia von örtlichen Institutionen eingesetzt werden. So ist die Inwertsetzung der Daten gewährleistet und durch die Weiterentwicklung der NOAA-Serie durch das MODIS-System auch für die Zukunft gewährleistet.

Untersuchung des Anregungsmechanismus der Natrium-D Nightglow-Emission

Die Natrium D-Linien stellen eine der wichtigsten Emissionen des terrestrischen Nightglow-Spektrums dar. Die Na-Emission wurde 1929 durch Vesto Slipher erstmals beschrieben. Sydney Chapman schlug im Jahre 1939 einen Anregungsmechanismus für die Na-D Emission vor, der durch die Reaktion von Na und Ozon initiiert wird. Obwohl die Na-D Nightglow-Emission seit über 80 Jahren Gegenstand wissenschaftlicher Untersuchungen ist, ist das Verständnis ihres Anregungsmechanismus noch immer unvollständig. Neuere Studien identifizierten zeitliche Variationen des D2/D1-Linienverhältnisses, das nicht mit dem ursprünglichen Chapman-Mechanismus vereinbar ist. Ein modifizierter Chapman-Mechanismus wurde 2005 durch Slanger et al. vorgeschlagen, der explizit zwischen den verschiedenen elektronischen Anregungszuständen des beteiligen NaO-Moleküls differenziert. Dieser Mechanismus wurde mit Boden-gestützten Messungen des D2/D1-Linienverhältnisses getestet, aber die vertikale Variation des Linienverhältnisses - ein kritischer Test des modifizierten Chapman-Mechanismus - wurde bisher nicht durchgeführt.Das Hauptziel der hier vorgeschlagenen Untersuchungen besteht darin, das wissenschaftliche Verständnis des Na-D Nightglow-Anregungsmechanismus mit Hilfe Satelliten-gestützter Messungen zu testen und eine Methode zur Ableitung von Na Profilen in der Mesopausenregion aus Messungen der Na-D Nightglow-Emission zu konsolidieren. Hierzu sollen Messungen der Instrumente OSIRIS auf dem Odin Satelliten, sowie SCIAMACHY auf Envisat verwendet werden. Die Synergie der beiden Datensätze ermöglicht auf einzigartige Weise die Untersuchung des Na-D Nightglow-Anregungsmechanismus. Konkret sollen die Satellitenmessungen für folgende Zwecke verwendet werden: 1) Die OSIRIS Messungen, die ein sehr hohes Signal-zu-Rausch-Verhältnis besitzen, sollen verwendet werden um das Verzweigungsverhältnis f für die Produktion von Na(2P) über die Reaktion von NaO und O - entsprechend dem ursprünglichen oder effektiven Chapman-Mechanismus - empirisch zu bestimmen. Hierzu werden unabhängige Na-Profilmessungen mit Boden-gestützten LIDARs und anderen verfügbaren Na Datensätzen eingesetzt. 2) Die SCIAMACHY Nightglow Limb-Messungen erlauben die spektrale Trennung der beiden Na D-Linien und sollen eingesetzt werden, um die vertikale Variation des D2/D1-Verhältnisses in der realen Atmosphäre abzuleiten. Die SCIAMACHY Messungen sind hierfür auf einzigartige Weise geeignet. Die hier vorgeschlagenen Ansätze ermöglichen wichtige und neue Beiträge, um das wissenschaftliche Verständnis des Na-D Nightglow-Anregungsmechanismus zu verbessern. Darüber hinaus tragen die erwarteten Ergebnisse dazu bei, die Methode zur Ableitung von Na-Profilen in der Mesopausenregion aus Messungen der Na-D Nightglow-Emission zu konsolidieren. Letzteres wird erreicht durch die Bereitstellung eines optimalen Verzweigungsverhältnisses f (sowie dessen Unsicherheit) des ursprünglichen Chapman-Anregungsmechanismus.

Wechselwirkung von Schwerewellen und Madden Julian Oszillation

Die Madden-Julian Oszillation (MJO) (Madden & Julian 1971, 1972) ist der dominante Teil der intrasessionalen Variabilität der tropischen Atmosphäre. Sie äußert sich vor allem in ostwärts wandernden Gebieten tiefer Konvektion und erhöhten Niederschlages. Weiterhin beeinflusst die MJO durch dynamische Kopplung das lokale Wetter des Indischen Ozeans und der Pazifischen Inseln. Außerdem spielt die durch vertikale Kopplung vermittelte Interaktion mit anderen wiederkehrenden dynamischen Phänomenen, wie zum Beispiel der Quasizweijahresschwingung der inneren Tropen (Quasi-biennial Oscillation, QBO), eine wichtige Rolle für das Verständnis tropischer Winde. Obwohl die Datenbasis über die MJO, der tiefen tropischen Konvektion und des Niederschlag in den Tropen im Verlauf der letzten Jahrzehnte eine deutliche Verbesserung erfuhr, verbleibt die Modellierung und Simulation der MJO als ein ernstes Problem heutiger atmosphärischer Modelle. Aus diesem Grunde beschäftigt sich das hier vorgeschlagene Projekt mit wichtigen Fragestellungen bezüglich dieser Modellierungsprobleme. Dabei wird auf Methoden, welche während der Anfertigung meiner Doktorarbeit zur Modellierung konvektiver Schwerewellen entstanden, zurückgegriffen. Das Projekt gliedert sich hierbei folgendermaßen in zwei wesentliche wissenschaftliche Fragestellungen:Wie beeinflusst die MJO die Ausbreitung und Dissipation konvektiv angeregter Schwerewellen?Wie wirken diese konvektiven Schwerewellen zurück auf die MJO und deren Konvektion?Das zur Beantwortung dieser Fragen notwendige Werkzeug ist ein gekoppeltes Modell konvektiv angeregter Schwerewellen und ihrer Ausbreitung, welches ich bereits sehr erfolgreich für Studien meiner Dissertation nutzte. Zusätzlich wird die Anwendung des WRF (Weather Research and Forecasting) Modells die numerische Modellierung auf der Mesoskala unterstützen. Einen weiteren Fokus setzt das Projekt auf Impulsflussspektren der Schwerewellen und ihrer durch die MJO induzierten Variabilität. Es wird außerdem untersucht, ob diese MJO induzierte Variabilität von Satelliteninstrumenten aus beobachtet werden kann. Dies wird Einsichten in den durch flache und tiefe Konvektion emittierten Schwerewellenimpulsfluss eröffnen. Im Falle der Feedbackmechanismen wird der Schwerpunkt auf den Einfluss des Schwerewellendrag auf die sekundäre Zirkulation der MJO gelegt.

Fernerkundung atmosphaerischer Parameter und deren Nutzung fuer die Untersuchung klimarelevanter Prozesse sowie von Spurenstofftransporten und -umsetzungen

Untersuchung klimarelevanter Prozesse im mesoskaligen Bereich durch die Erfassung meteorologischer Groessen und Spurenstoffe mit Hilfe von bodengebundenen, flugzeug-, ballon- oder satellitengetragenen Instrumenten. Dazu gehoeren die Entwicklung und Erprobung neuer Verfahren und Messgeraete zur Fernerkundung atmosphaerischer Parameter. Mit Ballonmessungen werden die photochemischen Umsetzungen und der Tagesgang von Spurenstoffen in der Atmosphaere verfolgt. Beitraege zu umweltrelevanten Problemen (z.B. Ozonloch) ergeben sich aus den bodengebundenen Spurengasmengen. Teilziele sind: Einsatz von Michelson-Interferometern, Erprobung bodengebundener Fernmessverfahren fuer Messungen in der Troposphaere (SODAR, RADAR, RASS), Verfahren zur Gewinnung von Landoberflaechenparametern, meteorologischen Vertikalprofilen und Spurengasverteilungen aus Satellitendaten, Untersuchung von Transportvorgaengen und zeitlichem Verlauf von Konzentrationsaenderungen und photo-chemischen Umsetzungen.

1 2 3 4 5174 175 176