API src

Found 1750 results.

Related terms

Sentinel-5P TROPOMI - Aerosol Optical Depth (AOD), Level 3 - Global

Aerosol optical depth (AOD) as derived from TROPOMI observations. AOD describes the attenuation of the transmitted radiant power by the absence of aerosols. Attenuation can be caused by absorption and/or scattering. AOD is the primary parameter to evaluate the impact of aerosols on weather and climate. Daily AOD observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Sentinel-5P TROPOMI – Ultraviolet Index (UVI), Level 3 – Global

UV Index (UVI) as derived from TROPOMI observations. The UVI describes the intensity of the solar ultraviolet radiation. Values around zero indicate low, values greater than 10 indicate very high UV exposure on the ground. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Umwelt- und Naturschutz auf den Malediven im Indischen Ozean

Ziel: Untersuchung von Ursachen und landschaftsoekologischen Folgen unterschiedlicher Nutzungsformen der Inseln des Archipels zur Erarbeitung und Umsetzung einer 'Sustainable Development Strategy'. Methoden: Geooekologische Kartierungen, Landnutzungsaufnahmen, sedimentologische Beprobung, ozeanographisch-sedimentologische Aufnahmen, Verwendung historischer Karten und Einsatz analoger und digitaler SPOT-Satellitenbilddaten, Einsatz eines GIS.

Mikrowellen-Signaturforschung an Schnee, Meereis und landwirtschaftlichem Boden

Mit Mikrowellen-Radiometern und Scatterometern wird das Emissions- und Rueckstreuverhalten von Schnee, Meeres-Eis und landwirtschaftlichem Boden in allen Phasen der natuerlichen Entwicklung beobachtet und in theortischen Arbeiten fuer die Modellbeschreibung dieser Oberflaechenarten ausgewertet. Das zum Teil schon realisierte Ziel ist die quantitative Interpretation von Daten aus Flugzeug- und Satelliten getragenen Fernerkundungs-Experimenten mit Mikrowellenradiometern und Radar fuer grossraeumige, rasche (Tageszeit- und Wetterunabhaengige) Bestimmung der Schneedecke (Tiefe, Feuchtigkeit, Schmelzzustand), der Eisdecke auf dem Meer (Bedeckungsgrad, ein- oder mehrjaehriges Eis) sowie der Bodenfeuchtigkeit und Vegetationsmasse und -art sowie Entwicklungsstand.

Europäisches Erdbeobachtungsprogramm Copernicus

<p>Das europäische Erdbeobachtungsprogramm Copernicus stellt zentrale Informationen für das Umwelt- und Naturschutzmonitoring, die Atmosphären- und Klimaüberwachung und das Krisenmanagement bei Naturkatastrophen bereit. Das UBA beteiligt sich an der nationalen Fachkoordination und unterstützt die Weiterentwicklung und Nutzung von Copernicus.</p><p>Ziel des Copernicus-Programms ist der Aufbau und Betrieb einer modernen und leistungsfähigen Infrastruktur für die Erdbeobachtung. Das Programm wird seit 2014 unter der Leitung der europäischen Kommission in enger Zusammenarbeit mit den Mitgliedstaaten umgesetzt. Grundlage ist die <a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:32021R0696">EU-Verordnung 2021/696</a> zur Einrichtung des Weltraumprogramms der Union. Für die nationale Umsetzung hat das Bundeskabinett 2017 die "Nationale Strategie für das europäische Copernicus-Programm" beschlossen. Die Strategie wurde 2024 mit der „<a href="https://www.bmv.de/SharedDocs/DE/Artikel/DG/anwendungsstrategie-satellitendaten.html">Nationalen Anwendungsstrategie zu den Satellitenprogrammen Copernicus, Galileo und den meteorologischen Programmen von EUMETSAT</a>“ fortgeschrieben.</p><p>Beobachtungssysteme ergänzen sich</p><p>Copernicus gliedert sich in eine Weltraum-, eine In-situ- und eine Dienste-Komponente. Die Weltraumkomponente wird im Wesentlichen durch die Sentinel-Missionen getragen. Zu ihnen gehören eigenständige Satelliten wie Sentinel-1, -2, -3, -5P und -6 sowie Satellitensensoren, die auf meteorologischen Satelliten mitfliegen, wie Sentinel-4 und -5. Ergänzt wird das System durch die <a href="https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Copernicus_Sentinel_Expansion_missions">Sentinel Erweiterungs-Missionen</a> (expansion missions) CO2M, LSTM, CRISTAL, CHIME, CIMR und ROSE L, die ab den späten 2020er-Jahren schrittweise starten sollen. In Planung sind zudem Sentinel Nachfolge-Missionen (next generation missions). Diese sollen bestehende Kapazitäten ersetzen und erweitern. Ergänzend zu den Sentinel-Missionen stellen <a href="https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Copernicus_Contributing_Missions">beitragende Missionen</a> (contributing missions) der Europäischen Weltraumorganisation (<a href="https://www.esa.int/">ESA</a>), ihrer Mitgliedstaaten, der Europäischen Organisation für die Nutzung meteorologischer Satelliten (<a href="https://www.eumetsat.int/">EUMETSAT</a>) sowie von kommerziellen Betreiberfirmen zusätzliche Daten für das Copernicus-Programm bereit.</p><p>In-situ-Daten</p><p>„In-situ“ bezeichnet vor Ort erhobene Messdaten. Sie sind von zentraler Bedeutung für die Validierung von Satellitendaten und bilden die Grundlage für die Erstellung hochwertiger Datenprodukte, die in den Copernicus-Diensten verwendet werden. Die <a href="https://insitu.copernicus.eu/">In-situ-Komponente von Copernicus</a> stützt sich auf ein breites Spektrum an In-situ-Daten, die an Land, auf See und in der Luft erhoben werden. Diese Beobachtungen erfassen meteorologische, ozeanografische, atmosphärische und terrestrische Variablen und werden über Infrastrukturen wie Wetterstationen, Bojen und Forschungsnetzwerke bereitgestellt.</p><p>Dienste</p><p>Die sechs <a href="https://www.copernicus.eu/de/copernicus-dienste">Copernicus-Dienste</a> stellen zu den Themenbereichen Landmonitoring, Meeresumwelt, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠, Katastrophen- und Krisenmanagement sowie Sicherheit eine Vielzahl an Datenprodukten bereit. Diese werden aus den satellitengestützten Beobachtungen (Copernicus und beitragende Missionen), in Kombination mit In-situ-Daten und teilweise mittels Modellierungsansätzen abgeleitet. Erst das Zusammenspiel dieser Informationen ermöglicht eine umfassende Datenerhebung. In der Regel werden alle Datenprodukte offen und frei zur Verfügung gestellt.</p><p>Nationale Zuständigkeiten</p><p>Die Federführung für die Raumfahrt in Deutschland liegt beim Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR), fachlich unterstützt durch das Deutsche Zentrum für Luft und Raumfahrt (<a href="https://www.dlr.de/de">DLR</a>). Für die Copernicus-Dienste hat die Bundesregierung Fachkoordinator*Innen aus verschiedenen Bundesbehörden benannt. Sie unterstützen die Bundesregierung bei der Weiterentwicklung des Programms und beraten Nutzende in Deutschland zu Copernicus und möglichen Einsatzbereichen.</p><p>Wie beteiligt sich das UBA</p><p>Das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ ist zusammen mit dem Bundesamt für Kartographie und Geodäsie (<a href="https://www.bkg.bund.de/DE/Home/home.html">BKG</a>) für die Fachkoordination des Copernicus-Landdienstes zuständig und begleitet hier die Themenbereiche Umwelt- und Naturschutz. Das UBA verantwortet zudem die Erstellung des nationalen Datensatzes von <a href="https://www.umweltbundesamt.de/themen/boden-flaeche/flaechensparen-boeden-landschaften-erhalten/corine-land-cover-clc">CORINE Land Cover</a>, einem europaweiten Projekt, das einheitliche und damit vergleichbare Daten zur Landbedeckung und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=Landnutzung#alphabar">Landnutzung</a>⁠ bereitstellt.<br><br>Als Teil des sogenannten „Space Networks“ tritt das UBA als „Copernicus-Botschafter“ auf und unterstützt im Rahmen des <a href="https://land.copernicus.eu/en/clms-national-collaboration-programme">National Collaboration Programme (NCP)</a> der Europäischen Umweltagentur dabei, Informationen über den Copernicus Landdienst national zu verbreiten und seine Datennutzung weiter zu fördern. Darüber hinaus ist das UBA in der deutschen Arbeitsgruppe der internationalen „Group on Earth Observation“ (GEO) aktiv. GEO setzt sich für die freie Zugänglichkeit global erhobener Erdbeobachtungsdaten ein und vernetzt Initiativen und Organisationen aus diesem Bereich. Zudem werden am UBA Anwendungspotentiale von Copernicus für das Umweltressort in Forschungsvorhaben untersucht.</p>

Sentinel-2 Sachsen-Anhalt

Bei dem Datensatz handelt es sich um Fernerkundungsdaten aus dem Copernicus-Programm der Europäischen Kommission und der Europäischen Weltraumorganisation, die für das Gebiet von Sachsen-Anhalt aufbereitet wurden. Die Sentinel-2 Satelliten des Copernicus-Programm liefern multispektrale Aufnahmen im Wellenlängenbereich des sichtbaren Licht (VIS) und nahen Infrarotbereich (NIR) aus denen nahezu wolkenfreie Mosaikbilder erstellt werden. Diese Daten finden insbesondere in der Forst-, Wasser-, und Agrarwirtschaft Anwendung um z.B. zeitliche Veränderungen zu beobachten.

Projekte der Erkundungstechnik Bildverarbeitung METEOSAT

Aufbau und Betrieb eines Farbdisplaysystems mit Videospeicher zur Darstellung und interaktiven Manipulation von Bildsequenzen und Einzelbildern. Meteorologische Satellitendaten (METEOSAT, GOES, TIROS-N) werden fuer die Untersuchung dynamischer Prozesse in der Atmosphaere quantitativ ausgewertet. Dafuer steht ein Programmsystem im Grossrechner Amdahl 470 V/6 zur Verfuegung, das interaktiv von der Bedienkonsole am Arbeitsplatz kommandiert wird und ueber einen Prozessrechner das gesamte Videosystem steuert. Dieses interaktive System fuer meteorologische Bilddatenverarbeitung (IMB) bietet das folgende Spektrum an Verarbeitungsmoeglichkeiten: a) Bilddaten-Eingabe von Digitalband, Aufgabe auf Digitalband, Videokassette oder Hardcopy, Bildschirm-Display. b) Schwarz/Weiss- und Farb-(Pseudo-/Falschfarben-)Display. c) Grafik-Ueberlagerung der Bilddaten. d) Navigation der Bilddaten fuer geostationaere Satelliten (METEOSAT, GOES). Zuordnung von geographischen Koordinaten zu Satelliten- und Bildschirm-Koordinaten. e) Windvektorberechnung und Wolkenhoehenbestimmung.

Gemeinsame nationale Initiative zur Validierung von EarthCARE, Teilvorhaben LMU München

Gemeinsame nationale Initiative zur Validierung von EarthCARE, Teilvorhaben DWD

Schwerpunktprogramm (SPP) 1788: Study of Earth system dynamics with a constellation of potential field missions, Effekte durch Schwerewellen in der Thermosphäre/Ionosphäre infolge von Aufwärtskopplung

Das Thermosphären/Ionosphären (T/I) System wird sowohl von oben (solar, geomagnetisch), als auch von unten stark beeinflusst. Einer der wichtigsten Einflüsse von unten sind Wellen (z.B. planetare Wellen, Gezeiten, oder Schwerewellen), die größtenteils in der Troposphäre bzw. an der Tropopause angeregt werden. Die vertikale Ausbreitung der Wellen bewirkt hierbei eine vertikale Kopplung der T/I mit der unteren und mittleren Atmosphäre. Vor allem der Einfluss von Schwerewellen (GW) ist hierbei weitestgehend unverstanden. Einer der Gründe hierfür ist, dass GW sehr kleinskalig sind (einige zehn bis zu wenigen tausend km) - eine Herausforderung, sowohl für Beobachtungen, als auch für Modelle. Wir werden GW Verteilungen in der T/I aus verschiedenen in situ Satelliten-Datensätzen ableiten (z.B., sowohl in Neutral-, als auch in Elektronendichten). Hierfür werden Datensätze der Satelliten(-konstellationen) SWARM, CHAMP, GOCE und GRACE verwendet werden. Es sollen charakteristische globale Verteilungen bestimmt, und die wichtigsten zeitlichen Variationen (z.B. Jahresgang, Halbjahresgang und solarer Zyklus) untersucht werden. Diese GW Verteilungen werden dann mit von den Satelliteninstrumenten HIRDLS und SABER gemessenen Datensätzen (GW Varianzen, GW Impulsflüssen und Windbeschleunigungen durch GW) in der Stratosphäre und Mesosphäre verglichen. Einige Datensätze (CHAMP, GRACE, SABER) sind mehr als 10 Jahre lang. Räumliche und zeitliche Korrelationen zwischen den GW Verteilungen in der T/I (250-500km Höhe) und den GW Verteilungen in der mittleren Atmosphäre (Stratosphäre und Mesosphäre) für den gesamten Höhenbereich 20-100km werden untersucht werden. Diese Korrelationen sollen Aufschluss darüber geben, welche Höhenbereiche und Regionen in der mittleren Atmosphäre den stärksten Einfluss auf die GW Verteilung in der T/I haben. Insbesondere Windbeschleunigungen durch GW, beobachtet von HIRDLS und SABER, können zusätzliche Hinweise darauf geben, ob Sekundär-GW, die mutmaßlich in Gebieten starker GW Dissipation angeregt werden, in entscheidendem Maße zur globalen GW Verteilung in der T/I beitragen. Zusätzlich wird der Versuch unternommen, sowohl GW Impulsfluss, als auch Windbeschleunigungen durch GW aus den Messungen in der T/I abzuleiten. Solche Datensätze sind von besonderem Interesse für einen direkten Vergleich mit von globalen Zirkulationsmodellen simulierten GW Verteilungen in der T/I. Diese werden für eine konsistente Simulation der T/I in Zirkulationsmodellen (GCM) benötigt, stellen dort aber auch eine Hauptunsicherheit dar, da eine Validierung der modellierten GW durch Messungen fehlt.

1 2 3 4 5173 174 175