The Northern Eurasia Earth Science Partnership Initiative, or NEESPI, is a currently active, yet strategically evolving program of internationally-supported Earth systems science research, which has as its foci issues in northern Eurasia that are relevant to regional and Global scientific and decision-making communities (see NEESPI Mission Statement). This part of the globe is undergoing significant changes - particularly those changes associated with a rapidly warming climate in this region and with important changes in governmental structures since the early 1990s and their associated influences on land use and the environment across this broad expanse. How this carbon-rich, cold region component of the Earth system functions as a regional entity and interacts with and feeds back to the greater Global system is to a large extent unknown. Thus, the capability to predict future changes that may be expected to occur within this region and the consequences of those changes with any acceptable accuracy is currently uncertain. One of the reasons for this lack of regional Earth system understanding is the relative paucity of well-coordinated, multidisciplinary and integrating studies of the critical physical and biological systems. By establishing a large-scale, multidisciplinary program of funded research, NEESPI is aimed at developing an enhanced understanding of the interactions between the ecosystem, atmosphere, and human dynamics in northern Eurasia. Specifically, the NEESPI strives to understand how the land ecosystems and continental water dynamics in northern Eurasia interact with and alter the climatic system, biosphere, atmosphere, and hydrosphere of the Earth. The contemporaneous changes in climate and land use are impacting the biological, chemical, and physical functions of the northern Eurasia, but little data and fewer models are available that can be used to understand the current status of this expansive regional system, much less the influence of the northern Eurasia region on the Global climate. NEESPI seeks to secure the necessary financial and related institutional support from an international cadre of sponsors for developing a viable understanding of the functioning of northern Eurasia and the impacts of extant changes on the regional and Earth systems. Many types of ground and integrative (e.g., satellite; GIS) data will be needed and many models must be applied, adapted or developed for properly understanding the functioning of this cold and diverse regional system. Mechanisms for obtaining the requisite data sets and models and sharing them among the participating scientists are essential and require international and active governmental participation. (abridged text)
Forests play a relevant role in mitigation of climate change. A major issue, however, is the scientifically well founded, transparent and verifyable monitoring of achievements in forest carbon sequestration through reduction of deforestation and forest degradation, and through fostering sustainable forest management. Monitoring is particularly difficult in diverse and inaccessible humid tropical forest areas. The proposed research will contribute to the improvement of forest carbon monitoring under the challenging conditions of humid tropical forests. Sample based field observations and model based biomass predictions will be linked to area-wide satellite remote sensing imagery (RapidEye) and to strip samples of LiDAR imagery. Techniques of linking these data sources will be further developed and analysed with respect to (1) precision of carbon estimation and (2) accuracy of carbon regionalization. The proposed project implies research on methodological improvements of both sample based forest inventories (resampling techniques for biomass, imputation of non-response) and remote sensing application to forest monitoring (regionalization, sample based application of LiDAR data). At the core of this research is the analysis of the error variance components that each data source brings into the system. Such error analysis will allow identifying optimal resource allocation for the efficient improvement of forest carbon monitoring systems.
The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational SO2 total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. GDP 4.x performs a DOAS fit for SO2 slant column followed by an AMF / VCD computation using a single wavelength. Corrections are applied to the slant column for equatorial offset, interference of SO2 and SO2 absorption, and SZA dependence. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/
The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational NO2 total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The operational NO2 tropospheric column products are generated using the algorithm GDP (GOME Data Processor) version 4.x for NO2 [Valks et al. (2011)] integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The total NO2 column is retrieved from GOME solar back-scattered measurements in the visible wavelength region using the DOAS method. An additional algorithm is applied to derive the tropospheric NO2 column: after subtracting the estimated stratospheric component from the total column, the tropospheric NO2 column is determined using an air mass factor based on monthly climatological NO2 profiles from the MOZART-2 model. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/
The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks) are used for retrieving the following geophysical cloud properties from GOME and GOME-2 data: cloud fraction (cloud cover), cloud-top pressure (cloud-top height), and cloud optical thickness (cloud-top albedo). OCRA is an optical sensor cloud detection algorithm that uses the PMD devices on GOME / GOME-2 to deliver cloud fractions for GOME / GOME-2 scenes. ROCINN takes the OCRA cloud fraction as input and uses a neural network training scheme to invert GOME / GOME-2 reflectivities in and around the O2-A band. VLIDORT [Spurr (2006)] templates of reflectances based on full polarization scattering of light are used to train the neural network. ROCINN retrieves cloud-top pressure and cloud-top albedo. The cloud-top pressure for GOME scenes is derived from the cloud-top height provided by ROCINN and an appropriate pressure profile. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/
The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks) are used for retrieving the following geophysical cloud properties from GOME and GOME-2 data: cloud fraction (cloud cover), cloud-top pressure (cloud-top height), and cloud optical thickness (cloud-top albedo). OCRA is an optical sensor cloud detection algorithm that uses the PMD devices on GOME / GOME-2 to deliver cloud fractions for GOME / GOME-2 scenes. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/
This dataset contains 6-year averages of global filtered tropospheric NO2 slant column densities (tSCDs) retrieved from the Sentinel-5 Precursor (S5P) satellite sensor TROPOMI (Tropospheric Monitoring Instrument) for the period from 1 May 2018 to 30 April 2024. All data are available on a 0.03° x 0.03° grid. The NO2 tSCDs are derived from the total slant columns by subtracting the across-track NO2 slant column stripe offset and spatially averaged stratospheric vertical column densities (VCDs) multiplied with the stratospheric air mass factor (AMF), provided in the TROPOMI NO2 product. The filtered NO2 tSCDs are developed to detect global shipping signals in the NO2 TROPOMI data. Therefore, only pixels over water are available in this dataset. The filtering methods include a high-pass filter with different box sizes (1°, 0.5°, 0.25°) and a Fourier filter. In addition, different flagging criteria are applied to the data with the standard box size of 1° for the high-pass filtering: no flagging, quality (qa) flagging, cloud fraction (CF) flagging, cloud height (CH) flagging, wind speed (wind) flagging, and sun glint (sg) flagging.
Die Wechselwirkung von Wolken und Aerosol und ihre Rolle im Strahlungshaushalt der Erde ist ein Feld offener Fragen. Der IPCC (2014) nennt große Unsicherheiten und den Bedarf an zusätzlichen wissenschaftlichen Bemühungen, um die Vielzahl der Prozesse und deren Rolle für ein sich wandelndes Klima besser zu verstehen. Dieser Antrag hat die Entwicklung neuartiger Fernerkundungskonzepte zur Beobachtung einiger dieser Prozesse zum Ziel. Aerosol hat direkten Einfluss auf den Strahlungshaushalt und löst eine Serie von indirekten Effekten aus, indem es die Wolken-Mikrophysik, die Wolken-Dynamik, -Lebensdauer, den Wasserkreislauf und sogar die großskalige Zirkulation beeinflusst. Eigenschaften und räumliche Verteilung des Aerosols selbst ändern sich durch die Prozesse während der Wolkenpartikelbildung und ihrer Auflösung. Die Konzentration aktivierter Wolkenkondensationskeime (CCNC) spielt dabei eine entscheidende Rolle. CCNC kann in-situ nur mit sehr begrenzter räumlicher Abdeckung vermessen werden. Gleichzeitig kann sie nicht quantitativ mit herkömmlichen Fernerkundungsmethoden bestimmt werden, da die typische CCN Größe mehr als eine Größenordnung unterhalb der Wellenlänge sichtbarer Strahlung liegt. Daher wurde ein alternativer Ansatz vorgeschlagen: Messungen der von Wolkenseiten reflektierten Solarstrahlung ermöglichen die Ableitung von Vertikalprofilen der Partikelphase sowie ihrer Größe. Es wurde hypothetisiert, dass der Einfluss des Aerosols auf die Entwicklung der Mikrophysik so beobachtbar wird ebenso wie die Ableitung der CCNC. Alternativ kann CCNC auch aus Messungen optischer Eigenschaften der Aerosole abgeleitet werden. Der Zusammenhang zwischen optischer Dicke des Aerosols und CCNC wurde identifiziert, allerdings verbunden mit Unsicherheiten. Der Vorschlag, diese beiden Ansätze zu verbinden und die damit verbundenen Hypothesen zu testen, ist Kern dieses Antrags. Hyper-spektrale Beobachtungen mittels eines schnellen Scanners sind entscheidend, da Wolken sich sehr schnell verändern. Dazu soll ein abbildendes Spektrometer mit Polarisationsfiltern erweitert werden. Mit demselben Messgerät können dann die Mikrophysik der Wolken und die Eigenschaften des Aerosols im umgebenden wolkenlosen Bereich abgeleitet werden. Das Projekt ist im Wesentlichen in zwei Doktorarbeiten aufgeteilt. Highlights: 1) Test zweier Hypothesen, die Kern kommender Flugzeug-Kampagnen und geplanter Satellitenmissionen sind: CCNC kann aus Fernerkundung der Aerosoleigenschaften und aus Profilen der Wolkenmikrophysik abgeleitet werden. 2) Schnelle hyper-spektrale Scanner-Messungen ermöglichen Mikrophysik-Messungen veränderlicher Wolken. Erlauben diese Daten Ableitungen der Veränderung der Mikrophysik abhängig von der Entfernung zur Wolkenseite? 3) Ableitung von Aerosol-Eigenschaften aus polarisierten spektralen Messungen auch in bewölkten Situationen.
Niedrige Wolken sind Schlüsselbestandteile vieler Klimazonen, aber in numerischen Modellen oft nicht gut dargestellt und schwer zu beobachten. Kürzlich wurde gezeigt, dass sich während der Haupttrockensaison im Juni und September im westlichen Zentralafrika eine ausgedehnte niedrige Wolkenbedeckung (engl. „low cloud cover“, LCC) entwickelt. Eine derart wolkige Haupttrockenzeit ist in den feuchten Tropen einzigartig und erklärt wahrscheinlich die dichtesten immergrünen Wälder in der Region. Da paläoklimatische Studien auf eine Instabilität hinweisen, kann jede Verringerung des LCC aufgrund des Klimawandels einen Kipppunkt für die Waldbedeckung darstellen. Daher besteht ein dringender Bedarf, das Auftreten, die Variabilität und die bioklimatischen Auswirkungen des LCC in westlichen Zentralafrika besser zu verstehen.Um diese Ziele zu erreichen, wurde ein Konsortium aus französischen, deutschen und gabunischen Partnern aufgebaut, zu dem Meteorologen, Klimatologen und Experten für Fernerkundung und Waldökologie gehören. Die meteorologischen Prozesse, welche die Bildung und Auflösung der LCC im Tagesgang steuern, werden anhand von zwei Ozean-Land-Transekten auf der Grundlage einer synergistischen Analyse von historischen In-situ Beobachtungen, von Daten einer Feldkampagne und anhand von atmosphärischen Modellsimulationen untersucht. Die Ergebnisse werden mit einem kürzlich entwickelten konzeptionellen Modell für LCC im südlichen Westafrika verglichen.Die intrasaisonale bis interannuale Variabilität des LCC wird durch die Analyse von In-Situ-Langzeitdaten und Satellitenschätzungen quantifiziert. Unterschiede im Jahresgang des LCC (d.h. jahreszeitlicher Beginn und Rückzug, wolkenarme Tage) und die Ausdehnung ins Inland werden dokumentiert. Ansätze, die auf Wettertypen und äquatorialen Wellen basieren, werden verwendet, um intrasaisonale Variationen des LCC zu verstehen. Die Auswirkungen lokaler und regionaler Meeresoberflächentemperaturen auf die LCC-Entwicklung und ihre Jahr-zu-Jahr Variabilität werden bewertet, wobei statistische Analysen und spezielle Sensitivitätsversuche mit einem regionalen Klimamodell verknüpft werden.Schließlich wird der Einfluss von LCC auf die Licht- und Wasserverfügbarkeit bzw. die Waldfunktion anhand von In-Situ-Messungen untersucht. Die Ergebnisse werden mit Messungen aus der nördlichen Republik Kongo, wo die Trockenzeit sonnig ist, sowie mit einem einfachen Wasserhaushaltsmodells, das an die Region angepasst ist, verglichen. Die Wasserhaushaltsanalysen sollen die Kompensations- oder Verstärkungseffekte von Regen im Vergleich zur potenziellen Evapotranspiration, beide moduliert durch die LCC, auf das Wasserdefizit aufzeigen.Die Ergebnisse von DYVALOCCA werden zum ersten konzeptionellen Modell für Wolkenbildung und -auflösung im westlichen Zentralafrika führen und eine Hilfestellung für die Bewertung von Klimawandel-Simulationen mit Blick auf potentielle Kipppunkte für die immergrünen Regenwälder in der Region geben.
Especially during the last decades, the natural forests of Ethiopia have been heavily disturbed by human activities. Some forests have been totally cleared and converted into fields for agricultural use, other suffered from different influences, such as heavy grazing and selective logging. The ongoing research in the Shashemane-Munessa-study area (Gu 406/8-1,2) showed clearly that, in spite of interdiction and control, forests continue to be cleared and degraded. However, it is not yet sufficiently known, how and why these processes are still going on. Growing population pressure and economic constraints for the people living in and around the forests contribute to the actual situation but allow no final answers to the complex situation. Concerning a sustainable management of the forests there is to no solid basis for recommendations from the socioeconomic and socio-cultural view. Therefore, a comprehensive analysis of the traditional needs and forms of forest use, including all forest products, is necessary. The objective of this project is, to achieve this basis by carrying out intensive field observations, the consultation of aerial photographs, satellite imagery and above all semi-structured interviews with the population in the study area in order to contribute to the recommendations for a sustainable use of the Munessa Shasemane forests.
| Origin | Count |
|---|---|
| Bund | 1299 |
| Global | 3 |
| Kommune | 2 |
| Land | 114 |
| Wirtschaft | 4 |
| Wissenschaft | 440 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 264 |
| Ereignis | 27 |
| Förderprogramm | 1166 |
| Hochwertiger Datensatz | 1 |
| Repositorium | 3 |
| Text | 50 |
| Umweltprüfung | 7 |
| unbekannt | 230 |
| License | Count |
|---|---|
| geschlossen | 54 |
| offen | 1629 |
| unbekannt | 65 |
| Language | Count |
|---|---|
| Deutsch | 966 |
| Englisch | 880 |
| Resource type | Count |
|---|---|
| Archiv | 21 |
| Bild | 3 |
| Datei | 282 |
| Dokument | 33 |
| Keine | 1027 |
| Webdienst | 26 |
| Webseite | 428 |
| Topic | Count |
|---|---|
| Boden | 1031 |
| Lebewesen und Lebensräume | 1401 |
| Luft | 1748 |
| Mensch und Umwelt | 1748 |
| Wasser | 849 |
| Weitere | 1660 |