API src

Found 1710 results.

Related terms

METOP GOME-2 - Ozone (O3) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational ozone total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The new improved DOAS-style (Differential Optical Absorption Spectroscopy) algorithm called GDOAS, was selected as the basis for GDP version 4.0 in the framework of an ESA ITT. GDP 4.x performs a DOAS fit for ozone slant column and effective temperature followed by an iterative AMF / VCD computation using a single wavelength. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

Fernerkundung atmosphaerischer Parameter und deren Nutzung fuer die Untersuchung klimarelevanter Prozesse sowie von Spurenstofftransporten und -umsetzungen

Untersuchung klimarelevanter Prozesse im mesoskaligen Bereich durch die Erfassung meteorologischer Groessen und Spurenstoffe mit Hilfe von bodengebundenen, flugzeug-, ballon- oder satellitengetragenen Instrumenten. Dazu gehoeren die Entwicklung und Erprobung neuer Verfahren und Messgeraete zur Fernerkundung atmosphaerischer Parameter. Mit Ballonmessungen werden die photochemischen Umsetzungen und der Tagesgang von Spurenstoffen in der Atmosphaere verfolgt. Beitraege zu umweltrelevanten Problemen (z.B. Ozonloch) ergeben sich aus den bodengebundenen Spurengasmengen. Teilziele sind: Einsatz von Michelson-Interferometern, Erprobung bodengebundener Fernmessverfahren fuer Messungen in der Troposphaere (SODAR, RADAR, RASS), Verfahren zur Gewinnung von Landoberflaechenparametern, meteorologischen Vertikalprofilen und Spurengasverteilungen aus Satellitendaten, Untersuchung von Transportvorgaengen und zeitlichem Verlauf von Konzentrationsaenderungen und photo-chemischen Umsetzungen.

Forschungsgruppe (FOR) 2589: Zeitnahe Niederschlagsschätzung und -vorhersage; Near-Realtime Quantitative Precipitation Estimation and Prediction (RealPEP), sub project: Coordination Funds

High-quality near-real time Quantitative Precipitation Estimation (QPE) and its prediction for the next hours (Quantitative Precipitation Nowcasting, QPN) is of high importance for many applications in meteorology, hydrology, agriculture, construction, water and sewer system management. Especially for the prediction of floods in small to meso-scale catchments and of intense precipitation over cities timely, the value of high-resolution, and high-quality QPE/QPN cannot be overrated. Polarimetric weather radars provide the undisputed core information for QPE/QPN due to their area-covering and high-resolution observations, which allow estimating precipitation intensity, hydrometeor types, and wind. Despite extensive investments in such weather radars, QPE is still based primarily on rain gauge measurements since more than 100 years and no operational flood forecasting system actually dares to employ radar observations for QPE. RealPEP will advance QPE/QPN to a stage, that it verifiably outperforms rain gauge observations when employed for flood predictions in small to medium-sized catchments. To this goal state-of-the?art radar polarimetry will be sided with attenuation estimates from commercial microwave link networks for QPE improvement, and information on convection initiation and evolution from satellites and lightning counts from surface networks will be exploited to improve QPN. With increasing forecast horizons the predictive power of observation-based nowcasting quickly deteriorates and is outperformed by Numerical Weather Prediction (NWP) based on data assimilation, which fails, however, for the first hours due to the lead time required for model integration and spin-up. Thus, RealPEP will merge observation-based QPN with NWP towards seamless prediction in order to provide optimal forecasts from the time of observation to days ahead. Despite recent advances in simulating surface and sub-surface hydrology with distributed, physicsbased models, hydrologic components for operational flood prediction are still conceptual, need calibration, and are unable to objectively digest observational information on the state of the catchments. RealPEP will prove that in combination with advanced QPE/QPN physics-based hydrological models sided with assimilation of catchment state observations will outperform traditional flood forecasting in small to meso-scale catchments.

METOP GOME-2 - Cloud Top Pressure (CTP) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks) are used for retrieving the following geophysical cloud properties from GOME and GOME-2 data: cloud fraction (cloud cover), cloud-top pressure (cloud-top height), and cloud optical thickness (cloud-top albedo). OCRA is an optical sensor cloud detection algorithm that uses the PMD devices on GOME / GOME-2 to deliver cloud fractions for GOME / GOME-2 scenes. ROCINN takes the OCRA cloud fraction as input and uses a neural network training scheme to invert GOME / GOME-2 reflectivities in and around the O2-A band. VLIDORT [Spurr (2006)] templates of reflectances based on full polarization scattering of light are used to train the neural network. ROCINN retrieves cloud-top pressure and cloud-top albedo. The cloud-top pressure for GOME scenes is derived from the cloud-top height provided by ROCINN and an appropriate pressure profile. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

METOP GOME-2 - Cloud Fraction (CF) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks) are used for retrieving the following geophysical cloud properties from GOME and GOME-2 data: cloud fraction (cloud cover), cloud-top pressure (cloud-top height), and cloud optical thickness (cloud-top albedo). OCRA is an optical sensor cloud detection algorithm that uses the PMD devices on GOME / GOME-2 to deliver cloud fractions for GOME / GOME-2 scenes. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

METOP GOME-2 - Water Vapour (H2O) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational H2O total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV/VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The total H2O column is retrieved from GOME solar backscattered measurements in the red wavelength region (614-683.2 nm), using the Differential Optical Absorption Spectroscopy (DOAS) method. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

METOP GOME-2 - Nitrogen Dioxide (NO2) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational NO2 total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The total NO2 column is retrieved from GOME solar back-scattered measurements in the visible wavelength region (425-450 nm), using the Differential Optical Absorption Spectroscopy (DOAS) method. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

Langzeitvariation der stratospherischen Aerosolextinktion und der Aerosolteilchengrößen bei mittleren und hohen nördlichen Breiten

Stratosphärisches Sulphataerosol ist von großer Bedeutung für das Klimasystem, weil es solare Strahlung streut und damit die planetare Albedo der Erde erhöht. Es ist außerdem wichtig für die Chemie der Stratosphäre, weil die Aerosolpartikel an der Chloraktivierung - sogar außerhalb der Polarwirbel - sowie bekanntermaßen an der Bildung polarer stratosphärischer Wolken beteiligt sind. Darüber hinaus ist stratosphärisches Aerosol laut dem 5. Sachstandsbericht des Intergovernmental Panel on Climate Change mitverantwortlich für die gegenwärtige Erwärmungspause. Boden-gestützte Lidar-Beobachtungen stellen eine der genauesten Methoden zur Fernerkundung stratosphärischer Aerosole dar. Im Rahmen des hier vorgeschlagenen Forschungsprojekts sollen Lidar-Messungen an 3 unterschiedlichen Orten - die bisher noch nicht zur Untersuchung stratosphärischer Aerosole verwendet wurden - genutzt werden. Die Lidar Systeme werden vom Leibniz-Institut für Atmosphärenphysik (IAP) e.V. an der Universität Rostock in Kühlungsborn betrieben und befinden sich im ALOMAR Observatorium in Andenes (Norwegen), auf der Davis Forschungsstation (Antarktis), sowie in Kühlungsborn. Zwei der Lidar-Messreihen decken gegenwärtig einen Zeitraum von 20 Jahren ab und die Lidar-Messungen in Alomar werden bei mehreren Wellenlängen durchgeführt, was die Ableitung von Teilchengrößen der stratosphärischen Aerosolpartikel erlaubt. Ein Alleinstellungsmerkmal der Lidar-systeme ist ihre Tageslichtfähigkeit, d.h., die Messungen können nicht nur nachts durchgeführt werden, was erstmals die Messung stratosphärischer Aerosole im polaren Sommer erlaubt. Die Lidar-Rohdaten werden in der ersten Phase des Projekts in vertikale Profile des Rückstreukoeffizienten und/oder der Aerosolextinktion konvertiert. Darüber hinaus werden aus den Mehrfarbenmessungen in ALOMAR Aerosolteilchengrößen bestimmt. In der zweiten Projektphase werden die abgeleiteten Aerosolzeitreihen verwendet, um deren zeitliche Variabilität sowie Langzeittrends über einen Zeitraum von mehr als 20 Jahren zu untersuchen und zu quantifizieren. Hierbei spielen saisonale Variationen, Einflüsse der QBO (Quasi-Biennial-Oscillation) und von Vulkanausbrüchen eine entscheidende Rolle. Die abgeleiteten Aerosolteilchengrößen liefern außerdem dringend benötigte Randbedingungen für die Ableitung der stratosphärischen Aerosolextinktion aus Satellitenmessungen des Horizont-gestreuten Sonnenlichts. Diese Messmethode wurde in der Vergangenheit zur Auswertung verschiedener Satellitendatensätze (z.B. OSIRIS/Odin, SCIAMACHY/Envisat, OMPS-LP/Suomi) verwendet und basiert auf a priori Wissen der Größenverteilung stratosphärischer Aerosole. Die zu erwartenden Ergebnisse liefern wichtige neue Kenntnisse über die Variabilität und Langzeittrends stratosphärischer Aerosolparameter (Extinktion, optische Dichte und Teilchengröße) sowie des Strahlungsantriebs des stratosphärischen Aerosols in mittleren und hohen nördlichen Breiten und über dekadische Zeitskalen.

METOP GOME-2 - Bromine Monoxide (BrO) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational BrO (Bromine monoxide) total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. For more details please refer to https://atmos.eoc.dlr.de/app/missions/gome2

METOP GOME-2 - Tropospheric Nitrogen Dioxide (NO2) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational NO2 total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The operational NO2 tropospheric column products are generated using the algorithm GDP (GOME Data Processor) version 4.x for NO2 [Valks et al. (2011)] integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The total NO2 column is retrieved from GOME solar back-scattered measurements in the visible wavelength region using the DOAS method. An additional algorithm is applied to derive the tropospheric NO2 column: after subtracting the estimated stratospheric component from the total column, the tropospheric NO2 column is determined using an air mass factor based on monthly climatological NO2 profiles from the MOZART-2 model. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

1 2 3 4 5169 170 171