Low-lying coral reef islands harbour a distinct, yet highly threatened biological and cultural diversity that is increasingly exposed to climate change impacts. The combination of low elevation, small size, sensitivity to changes in boundary conditions (sea level, waves and currents, locally generated sediment supply) and at some locations high population densities, is why low-lying reef islands (LRIs) are considered among the most vulnerable environments on Earth to climate change. To date, their global distribution and influence of climatic, oceanographic, and geologic setting are only poorly documented or restricted to smaller scales. Here, I present the first detailed global analysis of LRIs utilising freely available global datasets to produce a global reef island database (GRID) and associated intrinsic and extrinsic characteristics that can be used within a coastal vulnerability index (CVI). All datasets used to create the GRID were released between 30 November 2015 and 3 August 2023, while the current version of the GRID database was completed in November 2024. When developing the GRID, LRIs are defined as landmasses <30 km² located on or within 1 km of coral reef and with an elevation of <16 m. Development of the GRID required: 1) the creation of a global shoreline vector file containing the geographic distribution of LRIs and 2) the development of a comprehensive global database of LRIs including eight intrinsic and ten extrinsic variables extracted from global datasets. Intrinsic variables include: 1) human populations, 2) island area, 3) island perimeter, 4) mean elevation, 5) island circularity/shape, 6) underlying reef type, 7) geographic isolation and 8) distance to the nearest neighbouring reef island. Extrinsic variables include: 1) mean water depth, 2) standard deviation of mean water depth, 3) mean annual significant wave height, 4) mean annual wave period, 5) mean spring tidal range, 6) relative tidal range, 7) wave-tide regime, 8) relative wave exposure, 9) relative tropical storm exposure and 10) year-2100 projected median sea level rise rate. The GRID was initially derived from version 2.1 of the UNEP-WCMC Global Island Database, a global shoreline vector file based on geometry data from Open Street Map® (OSM) and released in November 2015. The initial vector file was projected using the Mollweide projection, an equal-area pseudo cylindrical map projection chosen for its accurate derivation of area, especially in regions close to the equator, where most LRIs are located. The final GRID contains 34,404 individual LRIs distributed throughout tropical regions of the world's oceans, amassing a total land area of nearly 11,000 km² with approximately 60,740 km of shoreline and housing around 2.6 million people. While intrinsic variables are typically spatially homogenous, LRIs are generally highly spatially clustered throughout the GRID with respect to extrinsic variables. The spatial distribution of LRIs within the GRID was validated using: 1) published data and 2) quantitative accuracy assessments using satellite imagery. Spatial distributions of LRIs captured in the GRID are extremely consistent with those published in the literature (r² = 0.96) and those derived from independent analysis of satellite imagery (r² = 0.94). Finally, the GRID was used to develop an island vulnerability index (IVI) for each LRI on a scale of 0-1 with 0 representing no vulnerability and 1 representing maximum vulnerability. The GRID database is provided as a tab-delimited text file as well as ESRI shapefiles (points and polygons in WGS84 and Mollweide projection) and a comma-separated value file.
Aerosols are an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. Daily observations are binned onto a regular latitude-longitude grid. The Aerosol layer height is provided in kilometres. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational NO2 total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The operational NO2 tropospheric column products are generated using the algorithm GDP (GOME Data Processor) version 4.x for NO2 [Valks et al. (2011)] integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The total NO2 column is retrieved from GOME solar back-scattered measurements in the visible wavelength region using the DOAS method. An additional algorithm is applied to derive the tropospheric NO2 column: after subtracting the estimated stratospheric component from the total column, the tropospheric NO2 column is determined using an air mass factor based on monthly climatological NO2 profiles from the MOZART-2 model. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/
The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational HCHO total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/
The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational ozone total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The new improved DOAS-style (Differential Optical Absorption Spectroscopy) algorithm called GDOAS, was selected as the basis for GDP version 4.0 in the framework of an ESA ITT. GDP 4.x performs a DOAS fit for ozone slant column and effective temperature followed by an iterative AMF / VCD computation using a single wavelength. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/
Umweltministerium stellt Erweiterung des 7-Punkte-Plans vor – HydroZwilling bedeutet einen Quantensprung „Rheinland-Pfalz ist besonders stark von der Erderhitzung betroffen. Das bedeutet, dass damit auch die Wahrscheinlichkeit von Extremwetterereignissen steigt. Wir müssen also vorsorgen. Das ist unsere dauerhafte Verpflichtung aus der verheerenden Ahrtal-Katastrophe. Das ist aber auch notwendig um die Bürgerinnen und Bürger in allen Teilen unseres Bundeslandes möglichst gut zu schützen. Dies ist eine Gemeinschaftsaufgabe auf allen politischen und gesellschaftlichen Ebenen – im Wissen, dass es einen bestmöglichen, aber keinen absoluten Schutz geben kann. Um dies zu gewährleisten, habe ich vor zwei Jahren einen Sieben-Punkte-Plan zur Verbesserung der Hochwasservorsorge in Rheinland-Pfalz vorgestellt. An diesem wurde seither kontinuierlich weitergearbeitet. Denn Hochwasserschutz und -vorsorge sind eine Daueraufgabe“, erklärte Umwelt- und Klimaschutzministerin Katrin Eder, die in Mainz einen Überblick über die Weiterentwicklung des 7-Punkte-Plans gab. Hier die wesentlichen Punkte: Der HydroZwilling ist ein 3D-Simulations- und Visualisierungsmodell für Wassergefahren auf der gesamten Landesfläche. In der Endausbaustufe kann jede Person in Rheinland-Pfalz mit modelltechnisch bestmöglicher Genauigkeit in einem 3-D-Modell sehen, wie sich ein Starkregen- oder Hochwasserereignis auf ihren Ort, ihre Straße, ihr Haus auswirken könnte. Dieses landesweite, IT-gestützten Modellsystem („HydroZwilling RLP“) befindet sich aktuell im fortgeschrittenen Aufbau. Es soll für ganz Rheinland-Pfalz dazu dienen, neben der durch Überflutung betroffenen Fläche auch die Wirkung möglicher Schutzmaßnahmen simulieren und beurteilen zu können. Diese Informationen können die Kommunen zum Beispiel auch für die Aufstellung der Alarm- und Einsatzpläne des Katastrophenschutzes nutzen. Das System soll allen rheinland-pfälzischen Kommunen für eigene Detail-Berechnungen zur Verfügung gestellt werden. Voraussichtlicher Zeitplan: Im 4. Quartal dieses Jahres sollen die Kommunen Zugang zu dem System erhalten (zunächst nur für die Simulation von Starkregenereignissen). Voraussichtlich im Frühjahr 2026 erfolgt die 3D-Visualisierung der Sturzflutgefahren für die Öffentlichkeit. 2026 steht die Erweiterung des kommunalen und öffentlichen Modells für Hochwassergefahren an. Dazu Umweltministerin Katrin Eder: „Der HydroZwilling ist ein Quantensprung zu allen bisherigen Systemen und eine ganz praktische Hilfe für die Bürgerinnen und Bürger. Wir beschreiten hier bundesweites Neuland. Die Erarbeitung möglichst präziser Karten und Simulationen wird sich über Jahre weiterentwickeln.“ Die Berücksichtigung historischer Hochwasser in den Pegelstatistiken: Hierzu werden historische Wasserstandsmarken aufwändig in Abflüsse umgerechnet, die letztlich für die Pegelstatistiken genutzt werden können. Dieser Prozess läuft noch. Konkret: Arbeiten laufen an der Kyll, Vorbereitungen an der Wied. Auch hier wird Neuland betreten. Um historische Hochwasserabflüsse zu ermitteln und in die Hochwasser-Statistiken einarbeiten zu können sind gründliche Recherchen (z.B. zur damaligen Geländetopographie, Landnutzung und Bebauung im Umfeld der Markierung) notwendig. Dieser Prozess wird sich über die kommenden Jahre weiter fortsetzen. Überarbeitung der Hochwassergefahren- und Hochwasserrisikokarten: Alle Hochwassergefahrenkarten für alle Risikogewässer des Landes werden derzeit mit dem HydroZwilling neuberechnet. Darüberhinausgehend erfolgt die Berechnung für alle weiteren Gewässer – unter Berücksichtigung zusätzlicher Szenarien (HQ 5, 10, 15 etc.) und Informationsangaben (u.a. Fließgeschwindigkeiten) in den Karten. Das umfangreiche Datenmaterial soll zur Unterstützung betroffener Personen und Einsatzkräfte dienen. Aus diesem Grund werden alle Risikogewässer des Landes, auch in den kommenden Jahren noch, umfangreich vermessen. Die Hochwassergefahrenkarten liegen voraussichtlich bis Ende 2025 vor. Gesetzliche ÜSG-Ausweisung: Wir schaffen derzeit eine gesetzliche Grundlage, die HQ100-Linie bzw. das Überschwemmungsgebiet (ÜSG) zukünftig unmittelbar aus den regelmäßig zu überprüfenden und dann ggf. zu aktualisierenden Hochwassergefahrenkarten und damit aktualisierten ÜSG abzuleiten, ohne dass es eines Festsetzungsverfahrens bedarf. Dies geschieht im Rahmen der angestrebten Novelle des Landeswassergesetzes. Die Erarbeitung des Gesetzes ist in Arbeit. Angestrebt wird, das Gesetz möglichst noch 2025 zu verabschieden. Durch die Novellierung des Landeswassergesetzes würden die Abläufe der Verwaltung erheblich vereinfacht und die Einheitlichkeit zwischen den informativen Hochwassergefahrenkarten und den rechtlich verbindlichen Überschwemmungsgebieten hergestellt. Überprüfung aller RLP Pegel auf HQextrem: Derzeit werden alle Pegel in RLP überprüft, ob eine bauliche Anpassung gegen ein Extremhochwasser erforderlich ist oder ob zusätzliche Maßnahmen, wie der Bau eines zweiten, zusätzlichen Pegels für diesen Extremfall, nötig ist. Satellitenkommunikation für Pegel: Das Ziel ist eine redundante, hochwasserunabhängige Satellitenkommunikation für die Datenübertragung. Diese wird an Pilotstandorten getestet. Die Teststationen sind inzwischen bestückt. Sie liefern zuverlässig auch über Satellit Wasserstandsdaten. In einem zweiten Schritt wird geprüft, für welche weiteren Pegel im Land die Erweiterung um eine redundante Satellitenkommunikation sinnvoll ist. HKC – Hochwasser-Risikocheck online: Mit dem Hochwasser-Risikocheck soll die Eigenvorsorge von Betroffenen aktiviert werden. Durch das HKC e.V. (HochwasserKompetenzCentrum Köln e.V.) wird für Rheinland-Pfalz ein Online-Tool erstellt (Erarbeitung läuft), das auf Basis der verfügbaren Grundlagendaten adressgenaue Bewertungen der Gefährdung durch Hochwasser und Sturzfluten aufzeigt und konkrete Maßnahmen zur Schadensminimierung bereitstellt. Das Tool richtet sich insbesondere an Hausbesitzende oder Mieterinnen und Mieter, die im Bestand wohnen oder neu bauen wollen, adressiert aber auch gewerblich genutzte Immobilien, beispielsweise aus der Industrie. Ziel ist, die Eigenvorsorge bei Hochwasser und Starkregen zu stärken. Die Fertigstellung des Hochwasser-Risikochecks für RLP erfolgt bis Mitte 2026. Zusammenarbeit mit DWD: Das Landesamt für Umwelt (LfU) hat mit dem Deutschen Wetterdienst (DWD) im Dezember 2022 eine Vereinbarung zur „Nutzerorientierten Verbesserung der Kommunikation von Wetter- und Hochwasserinformationen“ abgeschlossen. Die Erhebung der Nutzererfahrungen fand durch eine bundesweite Umfrage statt. Daraus resultiert: Derzeit werden Konzepte für e-learning tools entwickelt. Sie geben Einblick über die Erstellung von Wetter- und Hochwasservorhersagen. Alle Vorhersagen sollen gut und einfach verständlich werden. Fachberatung Wasserwehr: Die Fachberatung ist weitgehend umgesetzt; nahezu alle Stellen (5 von 6) bei SGD Nord und SGD Süd sind besetzt. Die Ausbildung der Kolleginnen und Kollegen läuft. EDV-Werkzeuge zur Unterstützung der Beratung sind im Aufbau. Sie werden die Einsatzkräfte der Wasserwehren und der Gefahrenabwehr beraten – während einer Hochwasserlage, aber insbesondere im Vorfeld bei der Erstellung von Alarm- und Einsatzplänen, um so ein maximales Schutzniveau herstellen zu können. „Hochwasservorsorge und Hochwasserschutz sind für uns eine Verpflichtung. Als Lehre aus der Ahrtal-Katastrophe geht Rheinland-Pfalz an vielen Stellen innovative Wege. Bei diesem Engagement werden wir nicht nachlassen, weil der fortschreitende Klimawandel die Risiken erhöht“, so Klimaschutzministerin Katrin Eder.
Die Trockengebiete der Erde waren und sind besonders anfällig für klimatische Änderungen. Gleichzeitig sind sie der Lebensraum für mehr als 2 Milliarden Menschen. Aufgrund der Größe der Räume, der in weiten Teilen schlechten infrastrukturellen Ausstattung und den häufig widrigen Umweltbedingungen weist der Forschungsstand zu den Raten der Landschaftsveränderungen noch große Lücken auf. Schon seit mehreren Jahrzehnten werden Fernerkundungsdaten intensiv zum Monitoring von Trockenräumen eingesetzt. Aber gerade in Bezug auf geomorphologischen Prozesse und Prozessraten stoßen optische Fernerkundungsmethoden häufig an ihre Grenzen. Im Rahmen dieses Projektes wird daher die Eignung von Radardaten zur Charakterisierung von Oberflächen untersucht. Mit den beiden Satelliten der Sentinel-1 Reihe der ESA (European Space Agency) steht ein modernes SAR (Synthetic Aperture Radar) mit einer räumlichen Auflösung von unter 15 m pro Bildpunkt kostenfrei zu Verfügung. Trockenräume sind aufgrund der geringen Vegetationsbedeckung für den Einsatz von Radarfernerkundung besonders geeignet, da Vegetation zu Volumenstreuung des Signals führt und dieses somit verfälscht. Im Rahmen der Untersuchungen sollen sowohl die SAR-Intensitäten als auch interferometrischen Kohärenzen zur raumzeitlichen Charakterisierung von Landoberflächen getestet werden. Als Testgebiet wurde das Orog-Nuur-Becken im Süden der Mongolei ausgewählt. Die Region zeichnet sich durch eine Vielzahl von unterschiedlichen Landoberflächen und geomorphologischen Prozessen aus. Hierzu gehören u.a. ehemalige Seesedimente, welche durch aktuelle periglaziale Prozesse modifiziert werden, Dünen, große Strandwälle aus Kiesen und insbesondere eine Vielzahl unterschiedlicher Schwemmfächeroberflächen. Die verschiedenen Oberflächen werden vor Ort detailliert geomorphologisch erfasst und beschrieben. Ein Schwerpunkt der Arbeiten ist die Erstellung von hochgenauen Orthophotos und digitalen Geländemodellen aus Drohnenaufnahmen. Da die Oberflächenrauigkeit das Rückstreusignal des SAR Systems stark beeinflusst, können mit Hilfe der Geländemodelle detaillierte Rauigkeitsanalysen für unterschiedliche räumliche Skalen durchgeführt werden. Abschließend werden die Geländebefunde und die morphometrischen Analysen mit den Radardaten verglichen um eine genaue Charakterisierung der unterschiedlichen Oberflächen aus Fernerkundungsdaten zu erreichen. Stellt sich die Eignung der Radardaten für eine detaillierte Charakterisierung der Oberflächen in Trockenräumen heraus, bietet sich hier eine neue Methode für ein detailliertes Monitoring dieser sensiblen Landschaftsräume. Gerade in Gebieten mit einer hohen Variabilität, ist eine detaillierte und zeitlich dichte Beobachtungsreihe, wie sie das Sentinel-System bietet, von großer Bedeutung.
Die Wechselwirkung von Wolken und Aerosol und ihre Rolle im Strahlungshaushalt der Erde ist ein Feld offener Fragen. Der IPCC (2014) nennt große Unsicherheiten und den Bedarf an zusätzlichen wissenschaftlichen Bemühungen, um die Vielzahl der Prozesse und deren Rolle für ein sich wandelndes Klima besser zu verstehen. Dieser Antrag hat die Entwicklung neuartiger Fernerkundungskonzepte zur Beobachtung einiger dieser Prozesse zum Ziel. Aerosol hat direkten Einfluss auf den Strahlungshaushalt und löst eine Serie von indirekten Effekten aus, indem es die Wolken-Mikrophysik, die Wolken-Dynamik, -Lebensdauer, den Wasserkreislauf und sogar die großskalige Zirkulation beeinflusst. Eigenschaften und räumliche Verteilung des Aerosols selbst ändern sich durch die Prozesse während der Wolkenpartikelbildung und ihrer Auflösung. Die Konzentration aktivierter Wolkenkondensationskeime (CCNC) spielt dabei eine entscheidende Rolle. CCNC kann in-situ nur mit sehr begrenzter räumlicher Abdeckung vermessen werden. Gleichzeitig kann sie nicht quantitativ mit herkömmlichen Fernerkundungsmethoden bestimmt werden, da die typische CCN Größe mehr als eine Größenordnung unterhalb der Wellenlänge sichtbarer Strahlung liegt. Daher wurde ein alternativer Ansatz vorgeschlagen: Messungen der von Wolkenseiten reflektierten Solarstrahlung ermöglichen die Ableitung von Vertikalprofilen der Partikelphase sowie ihrer Größe. Es wurde hypothetisiert, dass der Einfluss des Aerosols auf die Entwicklung der Mikrophysik so beobachtbar wird ebenso wie die Ableitung der CCNC. Alternativ kann CCNC auch aus Messungen optischer Eigenschaften der Aerosole abgeleitet werden. Der Zusammenhang zwischen optischer Dicke des Aerosols und CCNC wurde identifiziert, allerdings verbunden mit Unsicherheiten. Der Vorschlag, diese beiden Ansätze zu verbinden und die damit verbundenen Hypothesen zu testen, ist Kern dieses Antrags. Hyper-spektrale Beobachtungen mittels eines schnellen Scanners sind entscheidend, da Wolken sich sehr schnell verändern. Dazu soll ein abbildendes Spektrometer mit Polarisationsfiltern erweitert werden. Mit demselben Messgerät können dann die Mikrophysik der Wolken und die Eigenschaften des Aerosols im umgebenden wolkenlosen Bereich abgeleitet werden. Das Projekt ist im Wesentlichen in zwei Doktorarbeiten aufgeteilt. Highlights: 1) Test zweier Hypothesen, die Kern kommender Flugzeug-Kampagnen und geplanter Satellitenmissionen sind: CCNC kann aus Fernerkundung der Aerosoleigenschaften und aus Profilen der Wolkenmikrophysik abgeleitet werden. 2) Schnelle hyper-spektrale Scanner-Messungen ermöglichen Mikrophysik-Messungen veränderlicher Wolken. Erlauben diese Daten Ableitungen der Veränderung der Mikrophysik abhängig von der Entfernung zur Wolkenseite? 3) Ableitung von Aerosol-Eigenschaften aus polarisierten spektralen Messungen auch in bewölkten Situationen.
Niedrige Wolken sind Schlüsselbestandteile vieler Klimazonen, aber in numerischen Modellen oft nicht gut dargestellt und schwer zu beobachten. Kürzlich wurde gezeigt, dass sich während der Haupttrockensaison im Juni und September im westlichen Zentralafrika eine ausgedehnte niedrige Wolkenbedeckung (engl. „low cloud cover“, LCC) entwickelt. Eine derart wolkige Haupttrockenzeit ist in den feuchten Tropen einzigartig und erklärt wahrscheinlich die dichtesten immergrünen Wälder in der Region. Da paläoklimatische Studien auf eine Instabilität hinweisen, kann jede Verringerung des LCC aufgrund des Klimawandels einen Kipppunkt für die Waldbedeckung darstellen. Daher besteht ein dringender Bedarf, das Auftreten, die Variabilität und die bioklimatischen Auswirkungen des LCC in westlichen Zentralafrika besser zu verstehen.Um diese Ziele zu erreichen, wurde ein Konsortium aus französischen, deutschen und gabunischen Partnern aufgebaut, zu dem Meteorologen, Klimatologen und Experten für Fernerkundung und Waldökologie gehören. Die meteorologischen Prozesse, welche die Bildung und Auflösung der LCC im Tagesgang steuern, werden anhand von zwei Ozean-Land-Transekten auf der Grundlage einer synergistischen Analyse von historischen In-situ Beobachtungen, von Daten einer Feldkampagne und anhand von atmosphärischen Modellsimulationen untersucht. Die Ergebnisse werden mit einem kürzlich entwickelten konzeptionellen Modell für LCC im südlichen Westafrika verglichen.Die intrasaisonale bis interannuale Variabilität des LCC wird durch die Analyse von In-Situ-Langzeitdaten und Satellitenschätzungen quantifiziert. Unterschiede im Jahresgang des LCC (d.h. jahreszeitlicher Beginn und Rückzug, wolkenarme Tage) und die Ausdehnung ins Inland werden dokumentiert. Ansätze, die auf Wettertypen und äquatorialen Wellen basieren, werden verwendet, um intrasaisonale Variationen des LCC zu verstehen. Die Auswirkungen lokaler und regionaler Meeresoberflächentemperaturen auf die LCC-Entwicklung und ihre Jahr-zu-Jahr Variabilität werden bewertet, wobei statistische Analysen und spezielle Sensitivitätsversuche mit einem regionalen Klimamodell verknüpft werden.Schließlich wird der Einfluss von LCC auf die Licht- und Wasserverfügbarkeit bzw. die Waldfunktion anhand von In-Situ-Messungen untersucht. Die Ergebnisse werden mit Messungen aus der nördlichen Republik Kongo, wo die Trockenzeit sonnig ist, sowie mit einem einfachen Wasserhaushaltsmodells, das an die Region angepasst ist, verglichen. Die Wasserhaushaltsanalysen sollen die Kompensations- oder Verstärkungseffekte von Regen im Vergleich zur potenziellen Evapotranspiration, beide moduliert durch die LCC, auf das Wasserdefizit aufzeigen.Die Ergebnisse von DYVALOCCA werden zum ersten konzeptionellen Modell für Wolkenbildung und -auflösung im westlichen Zentralafrika führen und eine Hilfestellung für die Bewertung von Klimawandel-Simulationen mit Blick auf potentielle Kipppunkte für die immergrünen Regenwälder in der Region geben.
| Origin | Count |
|---|---|
| Bund | 1302 |
| Global | 3 |
| Kommune | 2 |
| Land | 114 |
| Wirtschaft | 4 |
| Wissenschaft | 439 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 263 |
| Ereignis | 27 |
| Förderprogramm | 1169 |
| Repositorium | 3 |
| Text | 50 |
| Umweltprüfung | 6 |
| unbekannt | 231 |
| License | Count |
|---|---|
| geschlossen | 53 |
| offen | 1631 |
| unbekannt | 65 |
| Language | Count |
|---|---|
| Deutsch | 969 |
| Englisch | 879 |
| Resource type | Count |
|---|---|
| Archiv | 21 |
| Bild | 3 |
| Datei | 281 |
| Dokument | 30 |
| Keine | 1030 |
| Webdienst | 27 |
| Webseite | 428 |
| Topic | Count |
|---|---|
| Boden | 1020 |
| Lebewesen und Lebensräume | 1182 |
| Luft | 1749 |
| Mensch und Umwelt | 1749 |
| Wasser | 831 |
| Weitere | 1706 |