Neben Maßnahmen, die die Produktivität von Agrarflächen erhöhen, werden neue objektive Methoden zur kontinuierlichen Überwachung globaler landwirtschaftlicher Ressourcen dringend benötigt. Eine besondere Rolle nimmt dabei die Photosyntheseleistung (gemessen als Bruttoprimärproduktion) der Kulturpflanzen ein, da sie die maximal mögliche Menge an Nahrung und Treibstoff darstellt, die durch landwirtschaftliche Systeme bereit gestellt werden kann. Desweiteren ist sie ein guter Indikator für Ernteerträge und Stress. In den vergangenen Jahrzehnten wurden auf Reflektivitätsdaten beruhende optische Fernerkundungsmethoden benutzt um landwirtschaftliche Ressourcen abzuschätzen. Spektral aufgelöste Reflektivitätsdaten lassen auf biochemische und strukturelle Eigenschaften der Vegetation schließen, die wiederum auf die potentielle Photosyntheseleistung hindeuten, und sie sind die Grundlage zur Bewertung des Zustands der Pflanzen und ihrer phenologischen Entwicklungsstufe in hoher räumlicher Auflösung. Basierend auf diesem Messprinzip sollen die Sentinel-2 Satelliten (2015 gestartet) die Zugpferde der operationellen Agrarüberwachung in den kommenden Jahrzehnten werden. Es ist jedoch bekannt, dass Vegetationsparameter aus der Fernerkundung, die auf spektralen Reflektanzen beruhen, nicht die komplexen und hoch variablen physiologischen Abläufe der Photosynthese erfassen können. Ergänzend zu Reflektivitätsmessungen sind seit Kurzem globale weltraumgestützte Messungen von sonneninduzierter Chlorophyllfluoreszenz (Englisch sun-induced chlorophyll fluorescence, SIF) möglich. Wie gezeigt werden konnte, besitzt SIF eine höhere Sensitivität gegenüber der Photosyntheseaktivität auf Agrarflächen als andere Parameter oder Modelle. Das Instrument TROPOMI (Tropospheric Monitoring Instrument), das ab Mitte 2017 auf dem EU Copernicus Sentinel 5-Vorläufersatelliten fliegen wird, wird die Messung von SIF in einer sehr viel höheren räumlichen und zeitlichen Auflösung als alle bisherigen Instrumente/Missionen ermöglichen. Somit stellt TROPOMI einen Meilenstein für die Einschätzung von Photosynthese im Allgemeinen, und der Produktivität von Nutzpflanzen im Besonderen, dar. Die Kombination von TROPOMI und Sentinel-2 Daten wird eine auf Beobachtungen basierende, globale Beobachtung der Photosyntheseaktivität auf Agrar-, Gras- und Weideflächen mit einer bisher nie dagewesenen räumlichen und zeitlichen Auflösung und Genauigkeit erlauben. Das Projekt CropSIF wird Nutzen aus den besonderen Möglichkeiten ziehen, die diese Konstellation von Instrumenten in naher Zukunft bieten wird, um die Produktivität von Agrarpflanzen und klimatischer Einflüsse darauf abzuschätzen. Wir werden zeitlich aufgelöste Karten der Bruttoprimärproduktion der Nutzpflanzen erstellen, die dann der Analyse von Effekten extremer Klimaereignisse auf die Produktivität in verschiedenen Agrargebieten der Erde dienen werden.
The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational NO2 total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The operational NO2 tropospheric column products are generated using the algorithm GDP (GOME Data Processor) version 4.x for NO2 [Valks et al. (2011)] integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The total NO2 column is retrieved from GOME solar back-scattered measurements in the visible wavelength region using the DOAS method. An additional algorithm is applied to derive the tropospheric NO2 column: after subtracting the estimated stratospheric component from the total column, the tropospheric NO2 column is determined using an air mass factor based on monthly climatological NO2 profiles from the MOZART-2 model. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/
Grassland mowing dynamics (i.e. the timing and frequency of mowing events) have a strong impact on grassland functions and yields. As grasslands in Germany are managed on small-scale units and grass grows back quickly, satellite information with high spatial and temporal resolution is necessary to capture grassland mowing dynamics. Based on Sentinel-2 data time series, mowing events are detected throughout Germany and annual maps of the grassland mowing frequency generated. The grassland mowing detection approach operates per pixel, including preprocessing of the Enhanced Vegetation Index (EVI) time series and a calibrated rule-based grassland mowing detection which is specified in more detail in Reinermann et al. 2022, 2023.
Das übergeordnete Ziel des geplanten Projektes besteht darin, vom Menschen verursachte Luftverschmutzung in Ballungsräumen besser zu verstehen. Die Untersuchung von Stickstoffdioxid (NO2) und Aerosolen wird sich dabei auf spektrale Messungen mit zwei MAX-DOAS (Multi-Axiale Differentielle Optische Absorptionsspektroskopie) Instrumenten an zwei verschiedenen Standorten in Wien stützen. Die MAX-DOAS Methode wird zur Messung von Streulicht in verschiedenen Blickrichtungen verwendet, aus denen die horizontale und vertikale Verteilung von Spurengasen und Aerosolen in der Troposphäre abgeleitet werden kann. Die Datenauswertung wird sich auf eine schnelle geometrische Annäherung sowie die exaktere Methode der Optimal Estimation stützen und troposphärische Säulen und Vertikalprofile von NO2 und Aerosolen ergeben. Die Vertikalprofile liefern eine wichtige Datengrundlage, die für den Vergleich mit bestehenden in-situ Messungen verwendet werden kann. Die aus den MAX-DOAS Messungen abgeleiteten troposphärischen Vertikalsäulen ermöglichen zusammen mit meteorologischen Messungen (z.B. Windgeschwindigkeit, Windrichtung) die Überwachung von Luftschadstoffen über städtischem Hintergrund, stark befahrenen Straßen, und industriellen Punktquellen auf horizontaler Ebene. Die geplanten Langzeitmessungen (über zwei Jahre) liefern einen wertvollen Datensatz für die Analyse der zeitlichen Variabilität von Luftschadstoffen (NO2 und Aerosole) über Wien. Ein Vergleich der in Wien erhobenen Daten mit vergleichbaren MAX-DOAS Messungen in Athen, Griechenland, oder Bremen, Deutschland, wird Ähnlichkeiten und Unterschiede zwischen den verschmutzten Standorten mit andersartigen meteorologischen und photochemischen Bedingungen aufzeigen. Die troposphärischen NO2-Säulen ermöglichen die Validierung von Satellitenmessungen der OMI, GOME-2, und TROPOMI Instrumente sowie den Vergleich mit Modellsimulationen (z.B. aus dem COPERNICUS Atmosphärenbeobachtungsdienst). Da sich bei den beiden Messgeräten Blickfelder einzelner azimutaler Richtungen teilweise überschneiden und die ergänzenden Messungen von in-situ Instrumenten eine Vielzahl an Information zur räumlichen Ausbreitung von NO2 bieten, soll versucht werden, ein räumlich aufgelöstes Bild der Luftverschmutzung über Wien mit Hilfe der tomographischen Darstellung zu entwickeln. Die Ergebnisse des Projektes werden wichtige Erkenntnisse zur horizontalen und vertikalen Ausbreitung von NO2 und Aerosolen liefern. Neben der Verbesserung der troposphärischen NO2 Auswertung werden die Ergebnisse wichtige Daten für Atmosphärenmodelle bereitstellen, da die Vertikalprofile von NO2 und Aerosolen eine nützliche Ergänzung zu den Punktmessungen von in-situ Messgeräten darstellen.
Es sollen Paläo- und rezente Böden in den Becken- und Schwemmfächerbereichen des Gaxun Nur-Systems (Abb. 1) untersucht werden. Die Ziele dieser Untersuchungen sind: 1. Das Paläoklima zu rekonstruieren, 2. die Entwicklung und 3. die Ökofunktionen der Böden zu erfassen. Zur Rekonstruktion des Paläoklimas werden relikte sowie fossile Böden untersucht, die datierbar sind bzw. bekanntes Alter haben. Dabei werden vor allem Paläoböden von Wadi- und Strandterrassen bevorzugt untersucht. Die Verwitterungsart und Verwitterungsintensität dieser Böden sollen durch Geländearbeit, mineralogische und geochemische Untersuchungen sowie über Stoffbilanzen erfaßt werden. Ziel dieser Untersuchungen ist die Ableitung pedogener Klimaindikatoren.An rezenten Böden sollen 1. der Einfluß der hohen Kontinentalität auf bodenbildende Prozesse (Bioturbation, kryoklastische und chemische Verwitterung) und 2. Wichtige Ökofunktionen (z.B. Verdunstung, Grundwasserneubildung, Kapillarer Aufstieg, Versalzung) bestimmt werden. Mit Hilfe von Satellitenaufnahmen und geophysikalischen Methoden soll eine Regionalisierung der Daten erfolgen, so daß es möglich wird, für bestimmte Teilgebiete Boden. und Landeignungskarten sowie Karten über den Wasserhaushalt (z.B. Grundwasserneubildung, Kapillarer Aufstieg) und die Versalzungs- sowie Erosionsgefährdung zu erstellen.
Untersuchung klimarelevanter Prozesse im mesoskaligen Bereich durch die Erfassung meteorologischer Groessen und Spurenstoffe mit Hilfe von bodengebundenen, flugzeug-, ballon- oder satellitengetragenen Instrumenten. Dazu gehoeren die Entwicklung und Erprobung neuer Verfahren und Messgeraete zur Fernerkundung atmosphaerischer Parameter. Mit Ballonmessungen werden die photochemischen Umsetzungen und der Tagesgang von Spurenstoffen in der Atmosphaere verfolgt. Beitraege zu umweltrelevanten Problemen (z.B. Ozonloch) ergeben sich aus den bodengebundenen Spurengasmengen. Teilziele sind: Einsatz von Michelson-Interferometern, Erprobung bodengebundener Fernmessverfahren fuer Messungen in der Troposphaere (SODAR, RADAR, RASS), Verfahren zur Gewinnung von Landoberflaechenparametern, meteorologischen Vertikalprofilen und Spurengasverteilungen aus Satellitendaten, Untersuchung von Transportvorgaengen und zeitlichem Verlauf von Konzentrationsaenderungen und photo-chemischen Umsetzungen.
Das ionosphärische/thermosphärische (I/T) System unterliegt zum einen solaren und magnetosphärischen Einflüssen und wird ebenfalls von zwar kleinskaligen, aber persistenten und darum bedeutenden Prozessen aus der mittleren Atmosphäre angetrieben. Gerade der zuletzt genannte Einfluss wird seit Jahren vermutet, es konnte jedoch bis jetzt kein klarer Beleg für die Kopplung gefunden werden. Alle Anregungen aus der mittleren Atmosphäre müssen sich durch die Mesosphäre und untere Thermosphäre (MLT) ausbreiten. Dabei wechselwirken die Wellen untereinander und koppeln an die I/T. Diese Kopplung kann (a) durch die direkte Ausbreitung von primären (oder sekundären) Wellen, und /oder (b) indirekt durch den E-Region-Dynamo erfolgen. Deshalb ist die MLT generell von Bedeutung für die dynamische Anregung der I/T, in mittleren und hohen Breiten tritt sie aber besonders hervor: (1) auf diesen Breiten wurden bislang wenige Untersuchungen des I/T Systems (z.B. der Gezeiten) durchgeführt, was auf die unzureichende Auflösung der meisten Satelliten zurückzuführen ist, und (2) aktuelle Studien mit globalen gekoppelten Atmosphären/Ionosphären Simulationen zeigen, dass gerade bei diesen Breiten die solaren und lunaren Gezeiten, die für viele elektrodynamische Effekte in niedrigen Breiten verantwortlich sind, besonders große Amplituden während stratosphärischer Erwärmungen (SSW) erreichen. Wir beantragen, die einzigartigen Radars und Lidars des IAP in mittleren und hohen Breiten zu nutzen, um den Grundstrom, die Wellen und deren Wechselwirkungen in der MLT zu charakterisieren. Die lokalen Radarwindbeobachtungen erfolgen kontinuierlich in einem Höhenbereich von 70 -100 km und können durch Lidarmessungen zu niedrigeren Höhen erweitert werden. Dies ermöglicht die Untersuchung der vertikalen Ausbreitung von Wellen im Wind und der Temperatur. Diese Studien werden zusätzlich durch Satellitendaten und Re-Analyse komplementiert, um sowohl regional als auch global den Antrieb durch die mittlere Atmosphäre zu erfassen. Die direkte Kopplung wird durch Vergleiche der saisonalen und jährlichen Gezeiten über den Radaren mit den thermosphärischen Daten der Satelliten aus den Überflügen mit polaren Orbits untersucht. Der Einfluss des E-Region-Dynamos wird mit Hilfe von Simulationen gekoppelter Atmosphären/Ionosphären-Modellen analysiert und beinhaltet die Anregung der lunaren Gezeit in Zeiträumen mit und ohne SSW. Die Modelle werden mit bodengebunden Beobachtungen und satellitengestützten ionosphärischen Daten verglichen und validiert. Neben vielen offenen Fragen zur Kopplung der MLT mit dem I/T-System, erwarten wir insbesondere Ergebnisse zu folgenden Fragen: (a) Wie wirkt sich die beobachtete Kurzzeitvariabilität der MLT auf Wellen und dem Grundstrom in Bezug zum I/T Wetter aus?, (b) Was sind die Charakteristiken der solaren und lunaren Gezeiten für verschiedene Strukturen des polaren Wirbels während SSW und welche Auswirkungen entsprechen diesen im I/T-System?
Massenbedingte Veränderungen des Meeresspiegels (MVM) sind eine wichtige Komponente des Meeresspiegelbudgets. Ist die MVM bekannt, ist es möglich aus der Kombination mit Daten der Satellitenaltimetrie Informationen zum Wärmehaushalt des Ozeans und damit zum globalen Energiehaushalt zu gewinnen. Neuere MVM Schätzungen basieren maßgeblich auf der Schwerefeld-Satellitenmission GRACE. Diese findet zunehmend auch Anwendung für regionale Studien. Allerdings bestehen zwischen publizierten MVM-Schätzungen aus praktisch identischen GRACE-Daten Diskrepanzen selbst auf der globalen Skale. Jüngere Studien veröffentlichen MVM-Trends zwischen 1,2 und 2,0 mm/a mit unrealistischen Fehlern und beanspruchen die Schließung des Meeresspiegelbudgets im Bereich 0,1-0,2 mm/a. Diese ungeklärten Diskrepanzen beeinträchtigen die Ermittlung gegenwärtiger Änderungen des Ozeanwärmegehalts aus Altimetrie, und in der Folge z. B. die Lokalisierung von Wärmesenken und Wärmetransport. Das Problem ist ebenfalls für das Verständnis und die Prädiktion regionaler Meeresspiegeländerungen in Südost-Asien besonders kritisch. Die zentrale Hypothese dieses Projekts, wie auch bei der ersten Phase des SPP, besteht darin, dass diese Diskrepanzen vor allem aus zwei Ursachen entstehen: (1) methodische Probleme in der Analyse der GRACE-Daten und (2) das ungelöste Problem, glazial-isostatische Ausgleichsbewegungen (GIA) aus den GRACE-Daten zu korrigieren. In der ersten Phase (OMCG-1) wurden zentrale methodische Unterschiede zwischen direkten und inversen MVM Schätzern untersucht. Darüber hinaus hat OMCG-1 das Verständnis über die wichtigsten Schritte zur Trennung des regionalen GIA-Effekts aus der Kombination satellitengeodätischer Verfahren verbessert. OMCG-1 wird den globalen Inversionsansatz weiterentwickeln und beginnen, die Ergebnisse der regionalen GIA-Separation in den globalen Rahmen einzubinden. Die zweite Phase (OMCG-2) soll a) verbesserte Methoden zur Definition von räumlichen Mustern aus Modellensembles untersuchen, b) die unabhängige Schätzung flacher sowie tiefer sterischer Komponenten untersuchen, c) den möglichen Zugewinn durch Einbindung von In-situ-Argo-Daten untersuchen, d) einen zeitreihenbasierten Parameterschätzungsansatz für die regionale Trennung von GIA und Eismassenänderungen implementieren, f) mögliche Biase in regionalen GIA-Schätzungen erklären sowie beheben unter Verwendung zusätzlicher GNSS-Beobachtungen und g) schließlich die Altimetrie über Eisschilden in die globale Inversion einbinden, um die Bestimmung von GIA zu verbessern. OMCG-2 wird physikalische Prozesse direkt quantifizieren, die zur Meeresspiegeländerung auf globaler und regionaler Skale beitragen. Außerdem werden Datensätze für die Modellierung für Projekte innerhalb und außerhalb des SPP bereitgestellt. Insbesondere unsere regionalisierten Daten für Nordeuropa und Südost-Asien werden helfen, Vorhersagen zu verbessern.
In diesem Arbeitsschwerpunkt sollen globale und regionale Auswirkungen geodynamischer Prozesse, die mit geodaetischen Methoden erfassbar sind, dargestellt und analysiert werden. Dies beinhaltet die Variationen der Erdrotation, gezeitenbedingte Deformationen, globale Plattenbewegungen und regionale Krustendeformationen. Aus geodaetischer Sicht gehoert dazu vor allem die Ableitung zeitabhaengiger Punktkoordinaten aus Laser-Entfernungsmessungen zum Satelliten LAGEOS sowie aus Radiofrequenzmessungen im Global Positioning System (GPS).
Spektro-Radiometer im Millimeterwellenbereich erlauben wichtige Spurengase wie Ozon, Kohlenmonoxyd, Wasserdampf, Chlormonoxyd sowie Atmosphaerenparameter wie Temperatur und Druck ueber grosse Abstaende als Funktion der Hoehe in Strato- und Mesosphaere (ca. 10 bis 80 km) zu messen. Es werden Langzeitbeobachtungen vom Boden aus gemacht sowie mit Flugzeuggetragenen Instrumenten ueber grosse Abstaende (Meridian) geflogen, um sowohl zeitliche Entwicklung wie geographische Verteilung zu studieren. Ein Space-Shuttle-getragenes Experiment fuer globale Beobachtung ist in Vorbereitung. Das Ziel ist die Verbesserung des Verstaendnisses der Atmosphaeren-Chemie sowie die Verfolgung langzeitiger Veraenderungen durch natuerliche und anthropogene Einfluesse.
| Origin | Count |
|---|---|
| Bund | 1303 |
| Global | 3 |
| Kommune | 3 |
| Land | 115 |
| Wirtschaft | 4 |
| Wissenschaft | 439 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 263 |
| Ereignis | 27 |
| Förderprogramm | 1169 |
| Repositorium | 3 |
| Text | 50 |
| Umweltprüfung | 6 |
| unbekannt | 232 |
| License | Count |
|---|---|
| geschlossen | 53 |
| offen | 1632 |
| unbekannt | 65 |
| Language | Count |
|---|---|
| Deutsch | 970 |
| Englisch | 879 |
| Resource type | Count |
|---|---|
| Archiv | 21 |
| Bild | 3 |
| Datei | 281 |
| Dokument | 30 |
| Keine | 1030 |
| Webdienst | 28 |
| Webseite | 429 |
| Topic | Count |
|---|---|
| Boden | 1021 |
| Lebewesen und Lebensräume | 1182 |
| Luft | 1750 |
| Mensch und Umwelt | 1750 |
| Wasser | 831 |
| Weitere | 1707 |