GRACE monthly gravity field solutions starting from April 2002 to June 2017 up to degree and order 90 computed with the Celestial Mechanics Approach at AIUB. The time series is an updated of AIUB-RL02 GRACE monthly gravity field time series using Level-1B GRACE data and updated background models. The dataset is created within the framework of the G3P - Global Gravity-based Groundwater Product project (https://www.g3p.eu/), this project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870353.
Operational GRACE Follow-On monthly gravity field solutions starting from June 2018 up to degree and order 96 computed with the Celestial Mechanics Approach at AIUB (release 02). The time series is a loose continuation of AIUB-RL02 GRACE monthly gravity field time series and is an update of the operational GRACE Follow-On monthly gravity field time series (https://doi.org/10.5880/ICGEM.2020.001) using Level-1B GRACE Follow-On data and operational accelerometer transplant data from TUG (Institute of Geodesy, TU Graz, Working Group Theoretical Geodesy and Satellite Geodesy) and updated modelling strategies concerning data screening and weighting. The time series is reprocessed starting with June 2018. The dataset is created within the framework of the G3P project (https://www.g3p.eu/), this project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870353. The operational solution of release 02 provides a complete time series of GRACE Follow-on data derived monthly gravity field solutions, is regularly updated with new monthly solutions and features a consistent processing with an advanced noise modelling of GRACE Follow-On data. It is recommened for usage. It is strongly recommended to use release 02 and discontinue using release 01.
Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT, Zitat), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO, Zitat) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks or longer in the case of reprocessing campaigns, are the most delayed. The absolute positional accuracy increases from NRT to PSO. This dataset compiles the PSO products for various LEO missions and GNSS constellation in sp3 format. GNSS Constellation: - GPS LEO Satellites: - ENVISAT - Jason-1 - Jason-2 - Jason-3 - Sentinel-3A - Sentinel-3B - Sentinel-6A - TOPEX Each solution follows specific requirements and parametrizations which are named in the respective processing metric table.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite GRACE-A. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The GRACE RSO cover the period: - GRACE-A from 2004 200 to 2017 334 (this DOI) - GRACE-B from 2004 200 to 2017 245 The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite GRACE-A. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The GRACE RSO cover the period: - GRACE-A from 2004 200 to 2017 334 - GRACE-B from 2004 200 to 2017 245 (this DOI) The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks, are the most delayed. The absolute positional accuracy increases with the time delay. This dataset compiles the RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of this compilation. GNSS Constellation: • GNSS 24h (v01) • GNSS 30h (v02) LEO Satellites: • CHAMP • GRACE • GRACE-FO • SAC-C • TanDEM-X/ TerraSAR-X Each solution is given in the Conventional Terrestrial Reference System (CTS). • The GNSS RSOs are 30-hour long arcs starting at 21:00 the day before the actual day and ending at 03:00 the day after. The accuracy of the GPS RSO sizes at the 3-cm level in terms of RMS values of residuals after Helmert transformation onto IGS combined orbit solutions (Version 1 GNSS RSOs are 24-hour long arcs starting at 00:00 and ending at 24:00 the actual day). • The LEO RSOs are generated based on these 30-hour GNSS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename. This dataset compiles RSO products for various LEO missions and the corresponding GNSS constellation in sp3 format in a revised processing version 2. The switch from previous version 1 to 2 was performed on 18-Feb-2019. Major changes from version 1 to 2 are the change from IERS 2003 to IERS 2010 conventions and ITRF 2008 to ITRF-2014, as well as the temporal extension of the GNSS constellation from previous 24 hours (version 1) to 30 hours (version 2) arcs. This temporal expansion eliminates the chaining of two consecutive 24-hour GNSS constellation solutions previously used to process day-overlapping LEO arcs in Version 1. This 24h GNSS constellation (Version 1) will continue to operate and be stored on the ISDC ftp server, as discussed in more detail in Section 8.1. All RSO LEO arcs will no longer be continued in version 1 after the changeover date and will only be available in version 2 since then.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite SAC-C. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The SAC-C RSO cover the period from 2000 202 to 2010 247 The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite CHAMP. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The CHAMP RSO cover the period from 2000 202 to 2010 247 The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
This dataset provides Rapid Science Orbits (RSO) from GNSS satellites. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022- Dach DOI). GNSS Constellation: GPS 30h The GPS RSOs of version 2 are 30-hour long arcs starting at 21:00 the day before and ending at 03:00 the day after. The accuracy of the GPS RSO sizes at the 3-cm level in terms of RMS values of residuals after Helmert transformation onto IGS combined orbit solutions.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite GRACE-FO-2. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The GRACE-FO RSO cover the period: - from 2019 049 to up-to-date The LEO RSOs in version 2 are generated based on the 30-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. Due to the extended length of the constellation, there is no need to concatenate several constellations for day-overlapping arcs. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 2 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2010 conventions and related to the ITRF-2014 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
Origin | Count |
---|---|
Bund | 4 |
Land | 1 |
Wissenschaft | 40 |
Type | Count |
---|---|
Förderprogramm | 4 |
unbekannt | 41 |
License | Count |
---|---|
geschlossen | 1 |
offen | 44 |
Language | Count |
---|---|
Deutsch | 3 |
Englisch | 43 |
Resource type | Count |
---|---|
Keine | 45 |
Topic | Count |
---|---|
Boden | 45 |
Lebewesen & Lebensräume | 5 |
Luft | 30 |
Mensch & Umwelt | 45 |
Wasser | 20 |
Weitere | 45 |