This data set is Part 2 of the compiles whole-rock chemical data for late-Variscan low-F biotite and two-mica granites in the German Erzgebirge, in the Saxothuringian Zone of the Variscan Orogen.
The group of F-poor biotite granites is represented by the composite massifs of Kirchberg and Niederbobritzsch, the Plohn Granite Suite (PGS), the Aue Granite Suite (AGS), and the subsurface granites of Beiersdorf und Bernsbach. For the group of two-mica granites, compositional data for the multi-stage Bergen massif and the granites from Lauter and Schwarzenberg are reported (Figure 1). Crystal-melt fractionation was the dominant process controlling the evolution of bulk composition in the course of massif/pluton formation. However, metasomatic and hydrothermal processes involving late-stage residual melts and high-T late- to post-magmatic fluids became increasingly more important in highly evolved units and have variably modified the abundances of mobile elements. Interaction with the various metamorphic country rocks and infiltration of meteoric low-T fluids have further disturbed the initial chemical patterns in the endocontact zones and zones influenced by surface weathering.
The data set reports whole-rock geochemical analyses for enclaves, granites, aplites, endocontact rocks, and some facial varieties. The data are presented as Excel (xlsx) and machine-readable txt formats. The content of the excel sheet and further information on the granites and regional geology are provided in the data description file.
This data set is the 1st part of a mini-series assembling whole-rock chemical data for late-Variscan granites of the Erzgebirge-Vogtland metallogenic province in the German Erzgebirge, in the Saxothuringian Zone of the Variscan Orogen, which is dedicated to the group of P-F-rich Li-mica granites.
Listed are data from the massifs/plutons of Eibenstock in the western Erzgebirge and Annaberg, Geyer, Pobershau, and Seiffen in the central Erzgebirge (Figure 1). All these occurrences represent composite bodies made-up of texturally and geochemically distinct, but cogenetic sub-intrusions, which are associated with intra- und perigranitic aplitic dykes, pegmatitic schlieren, and frequently mineralized quartz veins and greisens (Tables 1-3). These granites exhibit moderately to strongly elevated concentrations of P, F, Li, Rb, Cs, Ta, Sn, W and U, but are low to very low in Ti, Mg, V, Sc, Co, Ni, Sr, Ba, Y, Zr, Hf, Th, and the REEs. Crystal-melt fractionation was the dominant process controlling the evolution of bulk composition in the course of massif/pluton formation. However, metasomatic processes involving late-stage residual melts and high-T late- to postmagmatic fluids became increasingly more important in highly evolved units and have variably modified the abundances of mobile elements (P, F, Li, Rb, Cs, Ba, Sr). Interaction with the various country rocks and infiltration of meteoric low-T fluids have further disturbed the initial chemical patterns.
The data set reports whole-rock geochemical analyses for granites, aplites, and endocontact rocks obtained for the massifs/plutons of Eibenstock, Pobershau, Satzung, Annaberg, and Geyer. Data are provided as separate excel and csv files. The content of the excel sheet and further information on the granites and regional geology are provided in the data description file.
This data set is the sixth part of a series reporting chemical data for accessory minerals from felsic igneous rocks. It assembles the results of electron-microprobe spot analyses of monazite-(Ce), xenotime-(Y) and zircon from the late-Variscan granites of the Fichtelgebirge/Smrčiny in the Saxothuringian Zone of the Variscan Orogen in Germany/ Czech Republic.The granites form an older, Namurian intrusive complex (OIC-p and OIC-e) and a younger, post-Westphalian intrusive complex (YIC-1 and YIC-2). Both complexes have distinct radioactive accessory-mineral assemblages and compositions. The OIC-p biotite monzogranites contain monazite-(Ce) and minor thorite, but apparently lack magmatic xenotime-(Y) and uraninite. The more evolved OIC-e two-mica granites bear monazite-(Ce) occasionally rich in Th (up to 21 wt% ThO2) and U (8 wt% UO2), xenotime-(Y) of moderate U content (< 3.3 wt% UO2), and uraninite poor in Th and the REE. The most fractionated YIC Li-mica granites (YIC-2) may contain monazite extremely high in Th (40.5 wt% ThO2) and U (8.6 wt% UO2), which classify as cheralite-(Ce), xenotime-(Y) rich in U (6.3 wt% UO2) and such with elevated Y/Ho ratios (up to 48), and also a Th–REE-poor uraninite. In these granites, zircon may contain up to 5 wt% HfO2 and display low, fractionated Zr/Hf ratios (down to 10).The data set contains the complete pile of electron-microprobe analyses for monazite-(Ce) (MONA-FICH-2020), xenotime-(Y) (XENO-FICH-2020), and zircon (ZIRC-FICH-2020). All tables are presented as Excel (xlsx) and machine-readable txt formats. The content of the tables and further information on the granites and regional geology are provided in the data description file.
Part seven of a series of data sets dealing with the composition of accessory minerals from felsic igneous rocks reports chemical data for monazite-(Ce) and zircon from eight occurrences of high-Si felsic microgranites/rhyolites in the Erzgebirge−Vogtland metallogenic province of Germany, which possibly emplaced between 305 and 295 Ma. The subvolcanic rocks are discriminated into three groups according to whole-rock geochemistry. Mineral data are acquired between about 1995 and 2005 on surface rocks and borehole samples.
The data set contains the complete pile of electron-microprobe analyses for monazite-(Ce) (MONA-VOLC-2020) and zircon (ZIRC-VOLC-2020). All tables are presented as Excel (xlsx) and machine-readable csv formats. The content of the tables and further information on the granites and regional geology are provided in the data description file. Information on xenotime-(Y), which is commonly rare and did not precipitate in all rhyolites, and rhabdophane-(Ce), which was observed only ones as alteration product of monazite-(Ce), is provided elsewhere (cf. data description file).
This data set is the part 8 of a series reporting chemical data for accessory minerals from felsic igneous rocks. Compositional data were acquired by electron-probe microanalysis (EPMA) between about 1995 and 2005 on surface rocks and borehole samples.
This data set assembles the results of EPMA of fluorapatite from felsic rocks representing three groups of granites in the Erzgebirge−Vogtland metallogenic province of Germany emplaced in the late Carboniferous: F-poor biotite granites, F-poor two-mica granites, and P-F-rich Li-mica granite. In these rocks, fluorapatite is typically omnipresent.
It has to be noted that apatite has not yet been in the focus of mineralogical studies of the granites in this province and a comprehensive survey of its compositional signature and variability in space and time is still pending. However, the data listed in this data set provide a valuable glimpse into the similarities and differences in apatite chemistry between geochemically distinct felsic rocks, and into the evolution in composition from early to late crystallizing apatite populations. The data underpin that apatite is a sensitive monitor of the compositional properties of the media (melts and fluids) from which it was deposited or with which it interacted.
Apatite from the studied rocks is basically fluorapatite with little or no Cl and OH detected respectively inferred. Elemental variations are observed at various scales, i.e., between granite groups, subsequently crystallized sub-intrusion within composite massifs, grains present in a single thin section, or between the center and the rim of a particular grain. These variations in particular refer to the following elements: Mn, Fe, Na, and the rare-earth elements (REE). For example, measured Mn concentrations range from 0.15 to 8.8 wt% MnO.
The data set contains the complete pile of electron-microprobe analyses for fluorapatite (APAT-ERZ-2020). The data are presented as Excel (xlsx) and tab-delimited text (txt) formats. The content of the tables and further information on the granites and regional geology are provided in the data description file.