API src

Found 11279 results.

Related terms

WMS MSRL: D8-Schadstoffe (sh-llur), Mittelwert 2005-2010

Der WMS umfasst Schadstoffe im Wasser und im Sediment, die an Messstationen des LLUR erfasst werden. Parameter: Quecksilber, Blei, Kupfer, Nickel, Arsen, Cadmium, Chrom, Zink.

Schutzwirkung der Deckschichten an der Oberfläche

Die Karte enthält eine Bewertung zur Schutzwirkung der Deckschichten, unterteilt in die drei Kategorien "ungünstig", "mittel" und "günstig". Ausschlaggebendes Kriterium bei der Zuweisung und räumlichen Abgrenzung einzelner Flächeneinheiten war dabei jeweils die durch Bohrungen nachgewiesene petrografische Beschaffenheit (bindig/nicht bindig) und Mächtigkeit (Abstufungen: 10m). In den Marschen und Niederungen der Westküste begünstigen spezifische Sedimenteigenschaften dort das Rückhaltevermögen von Schadstoffen. Dies wurde bei der Bewertung der Schutzwirkung zusätzlich berücksichtig.

Messstellen Chemie

Derzeit werden die allgemeinen physikalisch-chemischen Parameter (ACP) in 72 Wasserkörpern und die flussgebietsspezifischen Schadstoffe in 73 Wasserkörpern untersucht. Die flussgebietsspezifischen Schadstoffe und die ACP werden zur unterstützenden Bewertung des ökologischen Zustandes der Seen herangezogen. Im Rahmen des chemischen Monitorings für die WRRL wird je See eine repräsentative Messstelle, welche zumeist an der tiefsten Stelle liegt, beprobt. Die ACP Gesamtphosphorkonzentration und Sichttiefe werden bei den Seen anhand von sogenannten Orientierungswerten beurteilt. Sie dienen in der Regel der Plausibilisierung der Bewertung anhand der biologischen Qualitätskomponenten. Die flussgebietsspezifischen Schadstoffe beziehen sich sowohl auf die Wasserphase als auch auf das Sediment. Sie gehen nach dem one out all out Prinzip in die Bewertung des ökologischen Zustandes ein. Ist eine Umweltqualitätsnorm überschritten, kann demnach der ökologische Zustand höchstens mäßig sein.

Bilanzierung von Schadstoffen auf urbanen Flächen durch chemische und bildanalytische Methoden

In Deutschland wird in vielen Städten und Gemeinden das Regenwasser über eine Mischwasserkanalisation zusammen mit dem Abwasser der Haushalte/Kleinindustrien dem Klärwerk zugeführt. Bei Regenereignissen fallen so enorme zusätzliche Wasservolumina im Klärwerk an und müssen - um einen optimalen Betriebszustand beibehalten zu können - im Kanalnetz oder eigens dafür gebauten Rückhaltebecken zwischengespeichert werden. Ökonomischer und - unter dem Aspekt der Grundwasserneubildung - auch ökologischer wäre daher eine direkte Regenwasserversickerung in den Boden vor Ort. Infolge des zunehmenden Straßenverkehrs und anderer Immissionsquellen ist unser Regenwasser heutzutage jedoch nicht frei von Schadstoffen. Dies kann zu einer Belastung des Bodens und des Grundwassers bei der Regenwasserversickerung führen. Deshalb untersucht werden, inwieweit Dachmaterialien als Senke bzw. Quelle für Schadstoffe fungieren können. Bei der unvollständigen Verbrennung von fossilen Brennstoffen entstehen z.B. Verbindungen aus der Klasse der Polyzyklischen Aromatischen Kohlenwasserstoffe (PAK). Einige dieser Verbindungen sind krebserregend und werden frei oder an (Staub-)Partikel adsorbiert mit dem Niederschlag aus der Atmosphäre ausgewaschen. Deshalb wird innerhalb des Projektes die Konzentration der PAK im Regenwasser und den Dachabläufen unterschiedlicher Dachmaterialien (Tonziegel, Betondachsteine, Dachpappe, Titanzink, Kupfer, usw.) als Funktion der Jahreszeit und Regenintensität bestimmt. Gleichzeitig wird auch der Eintrag von Metallen in den Regenwasserabfluss der ausgewählten Dachmaterialen als eine mögliche Schadstoffquelle untersucht. Die Ergebnisse aus den Modelldachexperimenten werden mit Befunden realer Dachflächen verglichen. Eine Hochrechnung des Eintrages größerer Einzugsgebiete erfolgt durch die Ermittlung der Dachflächen und Materialien z.B. mittels Laserscanning und Hyperspektralaufnahmen.

Muttermilch-Untersuchungsprogramm des Landes Niedersachsen

Die Untersuchungen geben Informationen über die allgemeine Belastung mit Schadstoffen, insbesondere mit Organochlorverbindungen. Sie können z. B. regionale Unterschiede (Stadt-Land) im Gehalt an Fremdstoffen aufzeigen. Die Messungen geben an, ob sich Fremdstoffe in ihrer Konzentration geändert haben oder ob sogar neue Fremdstoffe nachweisbar sind. Die Ergebnisse der Fremdstoffmessungen könnten zu Änderungen der Stillempfehlungen führen.

Projekt RiA – Rohstoffrückgewinnung durch innovative Asphaltaufbereitung nach dem NaRePAK-Verfahren (Nachhaltiges Recycling von PAK-haltigem Straßenaufbruch)

Die IVH, Industriepark und Verwertungszentrum Harz GmbH mit Sitz in Hildesheim (Niedersachsen) hat über mehrere Jahre zusammen mit der Umweltdienste Kedenburg GmbH, beide Entsorgungs-/Recyclingunternehmen im Unternehmensverbund der Bettels-Gruppe, Hildesheim, und der Eisenmann Environmental Technologies GmbH, Holzgerlingen, deren NaRePAK-Verfahren zur großmaßstäblichen Umsetzung weiterentwickelt. Stoffkreisläufe zu schließen und somit die effiziente und nachhaltige Nutzung begrenzter Ressourcen zu verbessern ist die erklärte Philosophie der IVH, hier fügt sich das RiA-Verfahren nahtlos ein. In Deutschland fallen jährlich erhebliche Mengen teerhaltigen Straßenaufbruchs an. Dieser Abfallstrom besteht weit überwiegend aus mineralischen Komponenten (z.B. Gesteinskörnungen und Feinsand) und enthält neben Bitumen krebserregende polyzyklische aromatische Kohlenwasserstoffe (PAK). Letztere sind verantwortlich, dass dieser Massenstrom als gefährlicher Abfall eingestuft wird. PAK sind persistent und verbleiben ohne thermische Behandlung langfristig in der Umwelt. Die Abfallmengen sind dabei beträchtlich. Die Bundesregierung geht von einer Menge von etwa 600.000 Tonnen pro Jahr allein von Bundesautobahnen und -straßen aus, dazu kommt der Aufbruch von Landes- und Kreisstraßen, die mengenmäßig die Bundesautobahnen und -straßen weit übertreffen. Bisher wird teerhaltiger Straßenaufbruch überwiegend deponiert, wodurch die im Straßenaufbruch enthaltenen mineralischen Ressourcen dem Wertstoffkreislauf verloren gehen. Der in begrenztem Umfang alternativ mögliche Verwertungsweg: Kalteinbau in Tragschichten im Straßenbau, erfolgt ohne Entfernung der PAK und wird daher nur noch in geringem Umfang angewendet. Eine weitere Möglichkeit ist die thermische Behandlung in den Niederlanden. Dies ist nicht nur verbunden mit langen Transportwegen, auch arbeiten die niederländischen Anlagen in einem deutlich höheren Temperaturintervall – im Bereich der Kalzinierung (Kalkzersetzung) – was dazu führen kann, dass die mineralischen Bestandteile des Straßenaufbruchs nicht mehr die notwendige Festigkeit aufweisen, um für einen Einsatz als hochwertiger Baustoff für die ursprüngliche Nutzung des Primärrohstoffes in Frage zu kommen. Darüber hinaus wird beim Kalzinierungsprozess von Kalkgestein im Gestein gebundenes CO 2 freigesetzt. Mit dem Vorhaben RiA plant die IVH an ihrem Standort in Goslar / Bad Harzburg die Errichtung einer in Deutschland erstmaligen großtechnischen Anlage zur thermischen Behandlung von teerhaltigem Straßenaufbruch. Dabei soll eine möglichst vollständige Rückgewinnung der enthaltenen hochwertigen Mineralstoffe (Gesteinskörnungen)erfolgen. Gleichzeitig werden die enthaltenen organischen Bestandteile, die in Form von Teerstoffen und Bitumen vorliegen, als Energieträger genutzt. In der innovativen Anlage sollen pro Jahr bis zu 135.000 Tonnen teerhaltiger Straßenaufbruch mittels Drehrohr thermisch aufbereitet werden. Dabei werden im Teer enthaltene besonders schädliche Stoffe wie PAK bei Temperaturen zwischen 550 Grad und 630 Grad Celsius entfernt und in Kombination mit der separaten Nachverbrennung vollständig zerstört, ohne dass das Mineralstoffgemisch zu hohen thermischen Belastungen mit der Gefahr einer ungewollten Kalzinierung ausgesetzt ist. Zurück bleibt ein sauberes, naturfarbenes Gesteinsmaterial (ohne schwarze Restanhaftungen von Kohlenstoff), das für eine höherwertige Wiederverwendung in der Bauwirtschaft geeignet ist. Die mineralischen Bestandteile des Straßenaufbruchs können so nahezu vollständig hochwertig verwendet und analog Primärrohstoffen erneut bei der Asphaltherstellung oder Betonherstellung eingesetzt werden. Die organischen Anteile im Abgas werden mittels Nachverbrennung bei 850 Grad Celsius thermisch umgesetzt und vollständig zerstört. Die dabei entstehende Abwärme wird genutzt, um Thermalöl zu erhitzen, um damit Ammoniumsulfatlösungen einer benachbarten Bleibatterieaufbereitung der IVH einzudampfen, aufzukonzentrieren und so ein vermarktungsfähiges Düngemittel herzustellen. Das Thermalöl wird dazu mit 300 Grad Celsius zu der Batterierecyclinganlage geleitet. Die Wärme ersetzt dabei andere Brennstoffe wie z. B. Erdgas. Die verbleibende Abwärme aus der Nachverbrennung wird mittels drei ORC-Anlagen zur Niedertemperaturverstromung genutzt. Es werden ca. 300 Kilowatt elektrische Energie pro Stunde erzeugt. Die beim RiA-Verfahren entstehenden Abgase werden in einer mehrstufigen Rauchgasreinigung behandelt. Die Abgase der Drehrohr-Anlage werden dazu aufwendig mittels Zyklone und nachgeschaltetem Gewebefilter entstaubt. Schwefeldioxid und Chlorwasserstoff werden mittels trockener Rauchgasreinigung nach Additivzugabe abgeschieden. Die Umwandlung von Stickstoffoxiden erfolgt mittels selektiver katalytischer Reduktion mit Harnstoff als Reduktionsmittel. Die bereits genannte Nachverbrennung zerstört verbliebene organische Reste. Die wesentliche Umweltentlastung des Vorhabens besteht in der stofflichen Rückgewinnung des ursprünglichen hochwertigen Gesteins im teerhaltigen Straßenaufbruch, also durch Herstellung eines wiederverwendbaren PAK-freien Mineralstoffgemisches von gleicher Qualität wie die ursprünglichen Primärrohstoffe. Das heißt die besonders umweltschädlichen PAKs werden nachhaltig aus dem Stoffkreislauf entfernt. Mit der Anlage können von eingesetzten 135.000 Tonnen Straßenaufbruch rund 126.900 Tonnen als Mineralstoffgemisch in Form von Gesteinskörnungen und Füller zurückgewonnen und für die Wiederverwendung bereit gestellt werden. Die Gesamtmenge von 126.900 Tonnen pro Jahr reduziert den jährlichen Bedarf von Gesteinsabbauflächen bei einer Abbautiefe von 30 Meter um rund 1.460 Quadratmeter. Bezogen auf den angenommenen Lebenszyklus von 30 Jahren wird eine Fläche von ca. 4,4 Hektar Abbaugebiet allein durch diese Anlage nicht in Anspruch genommen. Zusätzlich wird in gleichem Maße wertvoller Deponieraum bei knappen Deponiekapazitäten eingespart. Bei erfolgreicher Demonstration der technischen und wirtschaftlichen Realisierbarkeit im industriellen Maßstab, lässt sich diese Technik dezentral auf verschiedene Standorte in Deutschland übertragen. Damit wird dem in der Kreislaufwirtschaft propagierten Näheprinzip entsprochen, das heißt die Transportwege und die damit verbundenen Umweltauswirkungen werden weiter reduziert. Auch der nach Region unterschiedlichen Gesteinsarten wird dabei Rechnung getragen. Branche: Wasser, Abwasser- und Abfallentsorgung, Beseitigung von Umweltverschmutzungen Umweltbereich: Ressourcen Fördernehmer: IVH, Industriepark und Verwertungszentrum Harz GmbH Bundesland: Niedersachsen Laufzeit: seit 2024 Status: Laufend

Identifizierung von Schadstoffquellen in Bundeswasserstraßen

Veranlassung Bei der ökotoxikologischen Untersuchung von Wasser- und Sedimentproben kann oftmals nur ein Anteil der beobachteten Effekte durch bekannte Schadstoffe erklärt werden. Gleichzeitig zeigen chemische Non-Target-Analysen, dass aquatische Lebensgemeinschaften einer Vielzahl unbekannter oder unzureichend charakterisierter Stoffe ausgesetzt sind. Für eine Priorisierung und Identifizierung von Stoffen werden deshalb dringend innovative Ansätze zur Kopplung moderner chemischer und ökotoxikologischer Verfahren benötigt. Im Projekt SOURCE werden Wasser- und Sedimentproben entlang der Elbe chemisch und ökotoxikologisch charakterisiert und die Ergebnisse mithilfe wirkungsorientierter Analytik und der Modellierung molekularer und adverser Effekte integriert. Unter Berücksichtigung von Kombinationseffekten, die bei Umweltmischungen unweigerlich zu erwarten sind, wird somit eine Möglichkeit zur Identifizierung und Priorisierung von Schadstoffen und ihren Quellen geschaffen. Ziele - Bestandsaufnahme von Stoff- und Wirkungsprofilen von Sedimenten und Wasserproben entlang der Elbe - Kombination von chemisch analytischen Verfahren, Modellierung toxischer Effekte und effektbasierten Biotests - Entwicklung und Anwendung von Verfahren zur Identifizierung toxischer Stoffe und ihrer Eintragsquellen in Bundeswasserstraßen Woher kommen die Schadstoffe in unseren Flüssen? Um dieser Frage nachzugehen, werden im Projekt SOURCE Methoden der chemischen Target- und Non-Target-Analytik, bioanalytische Testverfahren und Modellierungsansätze kombiniert. Die Zahl der industriell hergestellten Chemikalien hat sich in den letzten 20 Jahren mehr als verdreifacht und liegt heute bei über 350.000 Substanzen. Gewässer werden in Europa routinemäßig jedoch nur auf wenige ausgewählte Stoffe untersucht. Dadurch bleiben Identität und Wirkung vieler Stoffe, die unsere Gewässer gefährden können, unerkannt. Vor dem Hintergrund der aktuellen Aktivitäten, z.B. zum Sedimentmanagement an der Elbe, ist es für die Entwicklung nachhaltiger Maßnahmen notwendig, die für Schadwirkungen verantwortlichen Stoffe zu identifizieren. Nur auf dieser Basis können Vorschläge zur zielgerichteten Minimierung der Einträge erarbeitet werden.

Anwendung Luftgütedatenbank des Landes Brandenburg

Die im Land Brandenburg kontinuierlich ermittelten Zeitreihen verschiedenster Luftschadstoffe werden erfasst, archiviert und fortgeschrieben. Die Überwachung der Luftqualität in Brandenburg erfolgt durch ein automatisches Luftgütemessnetz nach EU-weiten Vorgaben. Zeitnah werden die aktuellen Messwerte der Schadstoffe Ozon (O3), Stickstoffdioxid (NO2), Feinstaub- Partikel (PM10), Schwefeldioxid (SO2), Kohlenmonoxid (CO) und weitere mehr im LandesUmwelt / VerbraucherInformationssystem Brandenburg (LUIS-BB) veröffentlicht. Ergänzt werden diese Ergebnisse durch eine Zusammenstellung gültiger Grenzwerte sowie Monats- und Jahresauswertungen. Das Landesamt für Umwelt (LfU) betreibt für die kontinuierliche Luftüberwachung das automatische Luftgütemessnetz mit derzeit 17 Stationen zur Überwachung der Luft in Städten und ländlichen Regionen und 5 Stationen zur Überwachung der Luft im verkehrsnahen Raum. Zusätzlich existieren Messpunkte zur Bestimmung von Inhaltsstoffen im Staubniederschlag / in der Deposition. Mehr als 100 Messgeräte liefern täglich bis zu 12.000 Messwerte, die automatisch in die Messnetzzentrale des LfU übertragen, kontrolliert und von hier veröffentlicht werden.

Messwerte Ozon (1980 - 2026)

Im Messwertarchiv steht eine umfangreiche Sammlung der kontinuierlich erfassten Luftschadstoffmessdaten des LÜB-Messnetzes seit dem Jahr 1980 in stündlicher zeitlicher Auflösung zum Download zur Verfügung. Das Datenangebot umfasst die Stoffe Stickstoffdioxid, Stickstoffmonoxid, Feinstaub-PM10, Feinstaub-PM2,5, Ozon, Kohlenmonoxid, BTX (Benzol, Toluol und o-Xylol), Schwefeldioxid und Schwefelwasserstoff. Die Daten können je Schadstoff und Kalenderjahr für alle im jeweiligen Zeitraum aktiven LÜB-Messstationen heruntergeladen werden. [Wichtige Hinweise zu den Daten - PDF](https://www.lfu.bayern.de/luft/immissionsmessungen/messwertarchiv/doc/wichtige_hinweise_zu_den_daten.pdf) [Informationen zu den Messstationen](https://www.lfu.bayern.de/luft/immissionsmessungen/dokumentation/index.htm)

Messwerte Feinstaub PM10 (1980 - 2026)

Im Messwertarchiv steht eine umfangreiche Sammlung der kontinuierlich erfassten Luftschadstoffmessdaten des LÜB-Messnetzes seit dem Jahr 1980 in stündlicher zeitlicher Auflösung zum Download zur Verfügung. Das Datenangebot umfasst die Stoffe Stickstoffdioxid, Stickstoffmonoxid, Feinstaub-PM10, Feinstaub-PM2,5, Ozon, Kohlenmonoxid, BTX (Benzol, Toluol und o-Xylol), Schwefeldioxid und Schwefelwasserstoff. Die Daten können je Schadstoff und Kalenderjahr für alle im jeweiligen Zeitraum aktiven LÜB-Messstationen heruntergeladen werden. [Wichtige Hinweise zu den Daten - PDF](https://www.lfu.bayern.de/luft/immissionsmessungen/messwertarchiv/doc/wichtige_hinweise_zu_den_daten.pdf) [Informationen zu den Messstationen](https://www.lfu.bayern.de/luft/immissionsmessungen/dokumentation/index.htm)

1 2 3 4 51126 1127 1128