Waterbase is the generic name given to the EEA's databases on the status and quality of Europe's rivers, lakes, groundwater bodies and transitional, coastal and marine waters, on the quantity of Europe's water resources, and on the emissions to surface waters from point and diffuse sources of pollution.
Stammdaten der Badegewässer in Schleswig-Holstein Folgende Spalten sind enthalten: - `BADEGEWAESSERID` – Allgemein gültiger Identifikations-Code des Badegewässers - `BADEGEWAESSERNAME` – Vollständiger Name des Badegewässers - `KURZNAME` – Kurzname des Badegewässers - `ALLGEMEIN_GEBRAEUCHL_NAME` – allgemein gebräuchlicher Name des Badegewässers - `GEWAESSERKATEGORIE` – Art des Wasserkörpers, in dem das Badegewässer liegt - `KUESTENGEWAESSER` – zugehöriges Küstengewässer (Nordsee oder Ostsee) - `BADEGEWAESSERTYP` – Status des Badegewässers (bestehendes oder neues) - `WEITEREBESCHREIBUNG` – weitere Beschreibung des Badegewässers - `BADESTELLENLAENGE` - Länge der Uferlinie der Badestelle in Metern - `EUANMELDUNG` – Zeitpunkt der Anmeldung bei der EU - `EUABMELDUNG` – Zeitpunkt der Abmeldung bei der EU - `FLUSSGEBIETSEINHEITID` – ID der Flussgebietseinheit, zu der das Badegewässer gehört; Angabe gemäß Berichterstattung nach WRRL - `FLUSSGEBIETSEINHEITNAME` – Name der Flussgebietseinheit, zu der das Badegewässer gehört; Angabe gemäß Berichterstattung nach WRRL - `WASSERKOERPERID` – ID des Wasserkörpers, zu dem das Badegewässer gehört; Angabe gemäß Berichterstattung nach WRRL - `WASSERKOERPERNAME` – Name des Wasserkörpers, zu dem das Badegewässer gehört; Angabe gemäß Berichterstattung nach WRRL - `NATWASSERKOERPERID` – ID der nationalen Wassereinheit, zu der das Badegewässer gehört - `NATWASSERKOERPERNAME` – Name der nationalen Wassereinheit, zu der das Badegewässer gehört - `SCHLUESSELWOERTER` – zur Suche des Badegewässers in WISE (Water Information System for Europe) - `KREISNR` – interne Nummer des Kreises oder der kreisfreien Stadt, der oder die für die Überwachung des Badegewässers zuständig ist - `KREIS` – Name des Kreises oder der kreisfreien Stadt, der oder die für die Überwachung des Badegewässers zuständig ist - `GEMEINDENR` – interne Nummer der Gemeinde, in der das Badegewässer liegt - `GEMEINDE` – Name der Gemeinde, in der das Badegewässer liegt - `UTM_OST` – Rechtswert der Lage des Badegewässers im KBS (EPSG:4647, ETRS89 / UTM zone N32) - `UTM_NORD` – Hochwert der Lage des Badegewässers im KBS (EPSG:4647, ETRS89 / UTM zone N32) - `GEOGR_LAENGE` - Längengrad der Lage des Badegewässers im KBS (EPSG:4326, WGS 84) - `GEOGR_BREITE` - Breitengrad der Lage des Badegewässers im KBS (EPSG:4326, WGS 84) - `BADESTELLENINFORMATION` – Touristische Informationen zum Badegewässer - `AUSWIRKUNGEN_AUF_BADEGEWAESSER` – Angabe, ob das Badegewässer anfällig für Beeinträchtigungen ist - `MOEGLICHEBELASTUNGEN` – Angabe möglicher Belastungsquellen für das Badegewässer Zeichensatz ist ISO-8859-1, Spaltentrenner ist senkrechter Strich (pipe), Zeichenketten-Trenner ist das doppelte Anführungszeichen ("). ---- Für eine komplette Sicht auf die Badegewässerqualität in Schleswig-Holstein sollten diese fünf Datensätze einbezogen werden: - [Stammdaten](/collection/badegewasser-stammdaten/aktuell) - [Einstufung der Badegewässerqualität](/dataset/badegewasser-einstufung) - [Informationen zur vorhandenen Infrastruktur](/collection/badegewasser-infrastruktur/aktuell) - [Saisondauer](/dataset/badegewasser-saisondauer) - [Messungen](/dataset/badegewasser-messungen)
Die Daten beinhalten die Standorte mit potenziellen Schadstoffquellen nach der Industrieemissionsrichtlinie 2010/75/EU in den überschwemmten Flächen der Gebiete mit signifikantem Hochwasserrisiko bei einem 100-jährlichen Hochwasser (HQ 100).
Die Daten beinhalten die Standorte mit potenziellen Schadstoffquellen nach der Industrieemissionsrichtlinie 2010/75/EU in den überschwemmten Flächen der Gebiete mit signifikantem Hochwasserrisiko bei einem 300-jährlichen Hochwasser (HQ 300), gebietsweise wurde auch das Wiederkehrintervall 200 Jahre verwendet (HQ 200).
Die Daten beinhalten die Standorte mit potenziellen Schadstoffquellen nach der Industrieemissionsrichtlinie 2010/75/EU in den überschwemmten Flächen der Gebiete mit signifikantem Hochwasserrisiko bei einem 20-jährlichen Hochwasser (HQ 20), gebietsweise wurden auch andere Wiederkehrintervalle verwendet (HQ 5 bis HQ 25).
Das Projekt "Ecosystem Parameters for the Prognosis of the Behavior of New Chemicals in the Environment" wird/wurde gefördert durch: Bundesministerium des Innern. Es wird/wurde ausgeführt durch: Universität Kiel, Geographisches Institut, Schwerpunkt Fernerkundung und Umweltanalyse.
Das Projekt "Flugstaubeintrag und seine Wirkung auf die Bodenbildung im waldfreien Karst der Nördlichen Kalkalpen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität München, Institut für Geographie.Die Untersuchungsgebiete liegen in den alpinen bis nivalen Höhenstufen der Nördlichen Kalkalpen. Dort existieren auf verkarsteten Kalken (CaCO3-Gehalte größer 96 Prozent) unterschiedliche Entwicklungsstufen der humusreichen Rendzina (A-C-bzw. O-C Profile) sowie verbraunte und braune Bodentypen (A-B-C-Profile). Alle Böden, besonders die braunen Varianten, weisen allochthone Glimmer, Silikate und Schwerminerale auf. So wird der Einfluß von Flugstäuben auf die Solumbildung evident. Aus diesem Sachverhalt resultieren als Forschungsschwerpunkte die rezente Flugstaubdynamik und die dadurch beeinflußte Bodengenese auf Kalkstein. Im Rahmen des geplanten Projekts ergeben sich folgende Kernfragen: 1. Wie sind die Flugstäube durch die beeinflußten Böden in den einzelnen Höhenstufen verbreitet? Welche Geofaktoren steuern die räumliche Verteilung? 2. Wieviel Flugstaub wird rezent (Größenordnung, (mm/a) eingetragen? Welche Hauptliefergebiete gibt es? Wie korrelieren Staubmenge und Solummächtigkeit? 3. Wie verändern die Stäube die Böden? Welchen Anteil haben autochthone Terrae fuscae, allochthone Braunerden und Mischformen? Welche Divergenzen und Konvergenzen der Bodenbildung gibt es in den einzelnen Untersuchungsgebieten? Gibt es Anhaltspunkte für mögliche Bildungszeiträume eine Alterseinstufung der Böden?
Das Projekt "DDT and DDE Konzentrationen im Blut-Serum durch Pestizid belastete Wohnräume" wird/wurde gefördert durch: Bundesanstalt für Immobilienaufgaben, Zentrale. Es wird/wurde ausgeführt durch: Universität München, Institut und Poliklinik für Arbeits- und Umweltmedizin.Ziel: DDT wurde früher häufig als Insektizid auch im Wohnbereich eingesetzt. Messungen zeigten, dass auch noch lange nach dem DDT Verbot (15.09.1989) DDT Konzentrationen bis 90 mg/kg Hausstaub gemessen werden können. Handlungsbedarf besteht laut Umweltbundesamt bereits ab 4 mg DDT/kg. Da die Anreicherung bzw. die Probenahme des Hausstaubes in den meisten Fällen mit einfachen Staubsaugern durchgeführt wurden, liegen keine Kenntnisse über die Größenverteilung des gesammelten Staubes vor (z.B. über die Menge der einatembaren Staubfraktion). DDT könnte aber zusätzlich auch perkutan aus Kleidungsstücken, die in den übernommenen Einbauschränken aufbewahrt und kontaminiert werden, resorbiert werden. Eine Abschätzung der inneren Belastung allein über die DDT Konzentrationen in den gesammelten Staubfraktionen ist daher nicht möglich. Methodik: Im Serum von 16 Personen, die in früheren US Wohnungen mit angeblich erhöhten DDT Belastungen leben, führten wir ein human-biomonitoring durch. Wir bestimmten im Serum der Betroffenen den DDT Metaboliten 4,4 'DDE. Ergebnisse: Im Mittel lagen die 4,4 DDE Konzentrationen im Serum mit 1,62 my/l in der Größenordnung nicht belasteter Personen (1,82 my/l).
Das Projekt "Nachhaltige Ansätze zur Minimierung von Arsen in Trinkwasser und Reis in Vietnam" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Tübingen, Institut für Geowissenschaften, Zentrum für Angewandte Geowissenschaften.Arsen-kontaminiertes Grundwasser stellt eine große Gefahr für zig Millionen von Menschen dar, insbesondere in Süd- und Südost-Asien, durch seine Verwendung als Trinkwasser und für die Bewässerung von Reisfeldern. Das Hauptziel dieses Projekts ist es gemeinsam mit Wissenschaftlern der Stanford University die Menge an giftigem Arsen in den beiden wichtigsten Expositionsquellen, Wasser und Reis, zu reduzieren und zu bestimmen wie i) Arsen effizient mit Wasserfiltern aus dem Trinkwasser entfernt und ii) die Arsenaufnahme durch Reis während der Nasskultivierung reduziert werden kann. Im ersten Teilprojekt planen wir in Vietnam zu untersuchen, unter welchen Bedingungen Wasserfilter Arsen effizient entfernen, wie lange die Filter verwendet werden können und ob gesundheits-schädigende Konzentrationen von Nitrate in den Filtern gebildet werden. Wir werden einen visuell sichtbaren Indikator in den Filtern entwickeln, der es der breiten Bevölkerung erlaubt, ohne analytische Verfahren oder besonderen Bildungsstand zu bestimmen, wann die Effizienz des Filters aufgrund der Sättigung mit Arsen verschwindet und das Filtermaterial ersetzt werden muss. Darüber hinaus werden wir untersuchen, wie das Arsen-verschmutzte Filtermaterial ohne weitere Risiken entsorgt werden kann. Im zweiten Teilprojekt werden wir untersuchen, ob die Stimulation von nitrat-reduzierenden, eisenoxidierenden Bakterien in Reisfeldböden die Arsenaufnahme in Reis reduziert durch die Bindung von Arsen an die gebildeten Minerale. Wir werden bestimmen, wie die Zugabe definierter Mengen an Nitrat helfen kann, gleichzeitig die Arsenaufnahme in den Reis und die Emission des Treibhausgases N2O zu minimieren. Dieses Projekt wird für die Bevölkerung in Arsen-betroffenen Ländern praktische Lösungen bieten, um mögliche Schädigungen durch Arsen und Nitrat zu reduzieren und ihre Gesundheit und Lebenssituation zu verbessern.
Das Projekt "CO2 Mofetten - Überwachung natürlicher CO2 Emissionen unter Verwendung eines Netzwerks aus low-cost Sensoren" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Tübingen, Mathematisch-Naturwissenschaftliche Fakultät, Zentrum für Angewandte Geowissenschaften (ZAG), Arbeitsgruppe für Umweltsphysik.Im beantragten Forschungsvorhaben wird der natürliche Austritt von Kohlenstoffdioxid (CO2) aus Mofetten im Eyachtal zwischen Horb und Rottenburg untersucht. CO2 kann sich in der bodennahen Atmosphäre ansammeln und in entsprechender Konzentration für Mensch und Tier gefährlich werden. Die im Eyachtal austretenden Mengen wurden bislang nicht zuverlässig quantifiziert. Darüber hinaus ist CO2 ein Treibhausgas und steht im Zusammenhang mit dem weltweiten Klimawandel. Ähnliche und auch größere Quellgebiete existieren an verschiedenen Orten der Welt. Der quantitative Einfluss dieser natürlichen geologischen Gasquellen auf den Gashaushalt der Erde ist unbekannt, da auch die Menge des ausströmenden CO2 nicht bekannt ist.Ziel des Vorhabens ist die Überwachung der natürlichen CO2 Austrittsquellen sowie der umgebenden Atmosphäre im Eyachtal. Die Messdaten dienen der Bilanzierung der Austrittsmengen sowie die Ermittlung der horizontalen und vertikalen Flüsse im Versuchsgebiet. Hierbei wird auch die zeitliche Veränderung dieser Austritte erfasst.Zu diesem Zweck soll ein mikro-meteorologisches Messsystem (Eddy-Covariance Station) in Kombination mit einem verteilten Netzwerk aus vielen kostengünstigen CO2 Sensoren installiert werden. Ein solches Netzwerk kann die inhomogene Verteilung der Austritte sowohl zeitlich als auch räumlich erfassen. Die Verwendung von kostengünstigen Sensoren erlaubt den Betrieb einer größeren Anzahl von Sensoren und damit verbunden eine größere räumliche Abdeckung.In den letzten Jahren hat die Arbeitsgruppe Umweltphysik der Universität Tübingen eine neue Methode entwickelt, CO2 mit günstigen Sensoren in Bodennähe zu messen. Ein Nachteil der kostengünstigen Sensoren liegt in der (im Vergleich zu hochwertigen Sensoren) geringeren absoluten Messgenauigkeit. Die EC Station dient daher als Referenz, um die erreichbare Genauigkeit und Langzeitstabilität des Sensornetzes zu bewerten, die günstigen Sensoren zu kalibrieren und den turbulenten Transport des CO2 zumindest an einer Stelle direkt zu messen. Für ein vollständiges Netzwerk müssen die CO2 Sensoren noch mit geeigneten Feuchte- und Temperatursensoren ergänzt werden. Die entsprechende Hardware muss beschafft und schrittweise aufgebaut werden.Im Projekt soll ein Netzwerk aus z.B. 64 Sensoren aufgebaut werden, das die räumliche und zeitliche Verteilung des CO2 im Untersuchungsgebiet experimentell bestimmt. Die Beschaffung der Geräte ist bereits von der Alfred-Teufel Stiftung finanziert. Die Messungen werden über eine Datenbank mit Internet Schnittstelle auch der wissenschaftlichen Öffentlichkeit zur Verfügung gestellt.Das Vorhaben gliedert sich in zwei Projektphasen von je drei Jahren Dauer, beantragt wird die erste Phase. In der 2. Phase ist die numerische Simulation der CO2 Ausbreitung und die Übertragung der Methode auf andere Regionen vorgesehen.
Origin | Count |
---|---|
Bund | 871 |
Europa | 26 |
Land | 277 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 764 |
Software | 1 |
Text | 104 |
unbekannt | 274 |
License | Count |
---|---|
geschlossen | 281 |
offen | 834 |
unbekannt | 28 |
Language | Count |
---|---|
Deutsch | 985 |
Englisch | 245 |
Resource type | Count |
---|---|
Bild | 3 |
Datei | 64 |
Dokument | 52 |
Keine | 695 |
Multimedia | 1 |
Unbekannt | 3 |
Webseite | 380 |
Topic | Count |
---|---|
Boden | 1143 |
Lebewesen & Lebensräume | 1143 |
Luft | 1143 |
Mensch & Umwelt | 1143 |
Wasser | 1143 |
Weitere | 1132 |