API src

Found 390 results.

Related terms

Entwicklung eines Rotorblattes aus Stahl für Onshore Windenergieanlagen, Teilvorhaben: Akustische Bewertung

Das Projekt SteelBlade beschäftigt sich mit der Entwicklung und Konstruktion eines Onshore Rotorblattes für Windenergieanlagen, das für den Einsatz des Werkstoffs Stahl optimiert wird. Leichtbau- und Optimierungsmethoden aus der Luft- und Raumfahrt sowie dem Fahrzeugbau sollen den effizienten Einsatz des Werkstoffes sichern. Durch eine gleichzeitige Akustik-Optimierung der Struktur kann die Umweltbelastung durch Schallemissionen für Mensch und Tier kontrolliert und gesenkt werden. Der Fokus bei der Entwicklung des Stahlrotorblattes liegt auf der Konstruktion der inneren Struktur sowie der Auslegung einer Blattaußenhülle, die auf Basis aerodynamischer Gesichtspunkte entwickelt wird. Die Konstruktion des Stahlrotorblattes erfolgt durch konsequente Leichtbaumethodik, um das Gesamtgewicht des Stahlblattes auf dem Niveau des GFK-Blattes zu halten. Um die Anwendbarkeit der Neuentwicklung zu gewährleisten, wird Novicos insbesondere das akustische Verhalten mitbetrachten, insbesondere vor dem Hintergrund des geänderten Körperschalltransfers sowie geringerer Dämpfung des Werkstoffs Stahl. Aufgrund der sehr großen Systeme, sowie der Relevanz des Doppler-Effektes bei rotierenden schallemittierenden Oberflächen, wird der Einfluss der neu entwickelten Blattkonstruktion auf die WEA-Schallemission mithilfe der Boundary-Elemente-Methode (BEM) bestimmt. Im Rahmen dieses Projektes wird Novicos das schnelle BEM-Verfahren der hierarchischen Matrizen mit geschachtelten Clusterbasen an die speziellen Anforderungen der Schallemissionssimulation von Windenergieanlagen anpassen. Dies umfasst Berücksichtigung der Bodeneigenschaften sowie des Doppler-Effekts wie die Ausnutzung von WEA-Oberflächensymmetrien zur Verringerung des Rechenaufwands. Basierend auf den Erweiterungen des schnellen BEM-Lösers wird Novicos die Konstruktionsvarianten des Rotorblattes für die betrachteten WEA-Konzepte analysieren und unter akustischen Gesichtspunkten bewerten.

Humanisierung des Arbeitslebens von Schweissern (Verbundprojekt)

Untersuchung der Entstehung gesundheitsgefaehrdender Schweissrauche und -gase, Massnahmen zu deren Reduzierung, Vermeidung oder zum Schutz vor schaedigendem Einfluss. Bestimmung von Schallemissionskennwerten und Massnahmen zur Vermeidung oder Minderung von schaedigenden Einfluessen. (Die genannten uebergeordneten Themen beziehen sich auf Schweissen und verwandte Verfahren, zum Beispiel Brennschneiden, Loeten, thermisches Spritzen).

Modulares Antriebskonzept mit Brennstoffzelle für Anwendungen im Spezialtiefbau, Teilvorhaben: Analyse makroskopischer und mikroskopischer Energieflüsse eines brennstoffzellenbetriebenen Tiefbohrgerätes

Die Verbundpartner erarbeiten gemeinsam ein Konzept, um Baumaschinen für den Spezialtiefbau CO2-emissionsfrei betreiben zu können. Hierfür ist die Entwicklung eines Antriebssystems bestehend aus Wasserstoff-Brennstoffzelle, Peripherie-Komponenten ('balance of plant'), elektronischer Steuerung, Pufferbatterie und Tanksystem sowie die Einbindung in das elektronische und mechanische System des Großdrehbohrgeräts geplant. Als Basis dient ein elektro-hydraulisches Spezialtiefbaugerät der BAUER Maschinen GmbH, das aktuell entweder mit Strom aus dem Netz oder aus Akkus gespeist wird. Das Brennstoffzellensystem sowie die zusätzlich notwendigen Komponenten wie H2-Speicher und Kühlungseinheit werden möglichst universell einsetzbar als Plug-In-Modul konzipiert. Innerhalb des Projekts werden Betriebsstrategien von Brennstoffzelle und Pufferbatterie im Hinblick auf technische und wirtschaftliche Anforderungen untersucht. Darüber hinaus stehen Simulation und Entwicklung des Kühlkonzepts inklusive Auswahl passender Komponenten im Fokus. Ein weiterer Arbeitsschwerpunkt ist das gezielte Beeinflussen der Schallemissionen, die beim Betrieb von Baumaschinen eine Belastung für Geräteführer und Umwelt darstellen. Gestützt durch Aeroakustik-Simulationen und dem Ableiten von schallreduzierenden Maßnahmen ist es das Ziel, die Emissionen im Vergleich zu einem konventionellen, dieselbetriebenen Gerät erheblich zu senken. Ein weiterer Schwerpunkt wird die Wasserstoffbereitstellung und -Speicherung sowohl generell für eine Baustelle als auch konkret auf der Baumaschine sein. Nach dem Aufbau der Gesamt-Steuerung werden die Module zur Validierung des Gesamtkonzepts als Anbau-Aggregat auf einem BAUER Gerät installiert und im Praxiseinsatz erprobt.

Modulares Antriebskonzept mit Brennstoffzelle für Anwendungen im Spezialtiefbau, Teilvorhaben: Entwicklung eines effizienten Kühlsystems für die Brennstoffzelle und akustische Optimierung des Gesamtsystems Drehbohrgerät

Die Verbundpartner erarbeiten gemeinsam ein Konzept, um Baumaschinen für den Spezialtiefbau CO2-emissionsfrei betreiben zu können. Hierfür ist die Entwicklung eines Antriebssystems bestehend aus Wasserstoff-Brennstoffzelle, Peripherie-Komponenten ('balance of plant'), elektronischer Steuerung, Pufferbatterie und Tanksystem sowie die Einbindung in das elektronische und mechanische System des Großdrehbohrgeräts geplant. Als Basis dient ein elektro-hydraulisches Spezialtiefbaugerät der BAUER Maschinen GmbH, das aktuell entweder mit Strom aus dem Netz oder aus Akkus gespeist wird. Das Brennstoffzellensystem sowie die zusätzlich notwendigen Komponenten wie H2-Speicher und Kühlungseinheit werden möglichst universell einsetzbar als Plug-In-Modul konzipiert. Innerhalb des Projekts werden Betriebsstrategien von Brennstoffzelle und Pufferbatterie im Hinblick auf technische und wirtschaftliche Anforderungen untersucht. Darüber hinaus stehen Simulation und Entwicklung des Kühlkonzepts inklusive Auswahl passender Komponenten im Fokus. Ein weiterer Arbeitsschwerpunkt ist das gezielte Beeinflussen der Schallemissionen, die beim Betrieb von Baumaschinen eine Belastung für Geräteführer und Umwelt darstellen. Gestützt durch Aeroakustik-Simulationen und dem Ableiten von schallreduzierenden Maßnahmen ist es das Ziel, die Emissionen im Vergleich zu einem konventionellen, dieselbetriebenen Gerät erheblich zu senken. Ein weiterer Schwerpunkt wird die Wasserstoffbereitstellung und -Speicherung sowohl generell für eine Baustelle als auch konkret auf der Baumaschine sein. Nach dem Aufbau der Gesamt-Steuerung werden die Module zur Validierung des Gesamtkonzepts als Anbau-Aggregat auf einem BAUER Gerät installiert und im Praxiseinsatz erprobt.

Modulares Antriebskonzept mit Brennstoffzelle für Anwendungen im Spezialtiefbau, Teilvorhaben: System-Integration und Test H2-Brennstoffzellen-Plug-In

Die Verbundpartner erarbeiten gemeinsam ein Konzept, um Baumaschinen für den Spezialtiefbau CO2-emissionsfrei betreiben zu können. Hierfür ist die Entwicklung eines Antriebssystems bestehend aus Wasserstoff-Brennstoffzelle, Peripherie-Komponenten ('balance of plant'), elektronischer Steuerung, Pufferbatterie und Tanksystem sowie die Einbindung in das elektronische und mechanische System des Großdrehbohrgeräts geplant. Als Basis dient ein elektro-hydraulisches Spezialtiefbaugerät der BAUER Maschinen GmbH, das aktuell entweder mit Strom aus dem Netz oder aus Akkus gespeist wird. Das Brennstoffzellensystem sowie die zusätzlich notwendigen Komponenten wie H2-Speicher und Kühlungseinheit werden universell einsetzbar als Plug-In-Modul konzipiert. Innerhalb des Projekts werden Betriebsstrategien von Brennstoffzelle und Pufferbatterie im Hinblick auf technische und wirtschaftliche Anforderungen untersucht. Darüber hinaus stehen Simulation und Entwicklung des Kühlkonzepts inklusive der Auswahl passender Komponenten im Fokus. Ein weiterer Arbeitsschwerpunkt ist das gezielte Beeinflussen der Schallemissionen, die beim Betrieb von Baumaschinen eine Belastung für Geräteführer und Umwelt darstellen. Gestützt durch Aeroakustik-Simulationen und davon abgeleiteten schallreduzierenden Maßnahmen ist es das Ziel, die Emissionen im Vergleich zu einem konventionellen, dieselbetriebenen Gerät erheblich zu senken. Ein weiterer Schwerpunkt wird die Wasserstoffbereitstellung und -Speicherung sowohl generell für eine Baustelle als auch konkret auf der Baumaschine sein. Nach dem Aufbau der Gesamt-Steuerung werden die Module zur Validierung des Gesamtkonzepts als Anbau-Aggregat auf einem BAUER Gerät installiert und im Praxiseinsatz erprobt.

Modulares Antriebskonzept mit Brennstoffzelle für Anwendungen im Spezialtiefbau

Die Verbundpartner erarbeiten gemeinsam ein Konzept, um Baumaschinen für den Spezialtiefbau CO2-emissionsfrei betreiben zu können. Hierfür ist die Entwicklung eines Antriebssystems bestehend aus Wasserstoff-Brennstoffzelle, Peripherie-Komponenten ('balance of plant'), elektronischer Steuerung, Pufferbatterie und Tanksystem sowie die Einbindung in das elektronische und mechanische System des Großdrehbohrgeräts geplant. Als Basis dient ein elektro-hydraulisches Spezialtiefbaugerät der BAUER Maschinen GmbH, das aktuell entweder mit Strom aus dem Netz oder aus Akkus gespeist wird. Das Brennstoffzellensystem sowie die zusätzlich notwendigen Komponenten wie H2-Speicher und Kühlungseinheit werden universell einsetzbar als Plug-In-Modul konzipiert. Innerhalb des Projekts werden Betriebsstrategien von Brennstoffzelle und Pufferbatterie im Hinblick auf technische und wirtschaftliche Anforderungen untersucht. Darüber hinaus stehen Simulation und Entwicklung des Kühlkonzepts inklusive der Auswahl passender Komponenten im Fokus. Ein weiterer Arbeitsschwerpunkt ist das gezielte Beeinflussen der Schallemissionen, die beim Betrieb von Baumaschinen eine Belastung für Geräteführer und Umwelt darstellen. Gestützt durch Aeroakustik-Simulationen und davon abgeleiteten schallreduzierenden Maßnahmen ist es das Ziel, die Emissionen im Vergleich zu einem konventionellen, dieselbetriebenen Gerät erheblich zu senken. Ein weiterer Schwerpunkt wird die Wasserstoffbereitstellung und -Speicherung sowohl generell für eine Baustelle als auch konkret auf der Baumaschine sein. Nach dem Aufbau der Gesamt-Steuerung werden die Module zur Validierung des Gesamtkonzepts als Anbau-Aggregat auf einem BAUER Gerät installiert und im Praxiseinsatz erprobt.

Entwicklung eines Rotorblattes aus Stahl für Onshore Windenergieanlagen

Das Projekt SteelBlade beschäftigt sich mit der Entwicklung und Konstruktion eines Onshore Rotorblattes für Windenergieanlagen (WEA), das für den Einsatz des Werkstoffs Stahl optimiert wird. Leichtbau- und Optimierungsmethoden aus der Luft- und Raumfahrt sollen dabei den effizienten Einsatz des Werkstoffes sichern, sodass die Rotorblattkonstruktion in einem für das System Windenergieanlage verträglichen Bereich liegen wird. Durch eine gleichzeitige Akustik-Optimierung der Struktur kann die Umweltbelastung durch Schallemissionen für Mensch und Tier kontrolliert und eventuell sogar weiter gesenkt werden. Der Fokus bei der Entwicklung des Stahlrotorblattes liegt auf der Konstruktion der inneren Struktur sowie der Auslegung einer Blattaußenhülle, die auf Basis aerodynamischer Gesichtspunkte entwickelt wurde. Die Konstruktion des Stahlrotorblattes erfolgt durch den konsequenten Transfer innovativer Leichtbautechniken aus der Luft- und Raumfahrt sowie dem Automobilbau in den Windenergieanlagenbau mit dem Ziel, dass das Gesamtgewicht des Stahlblattes auf dem Niveau des GFK-Blattes liegt. Im Rahmen des Projektes werden zunächst die technische, wirtschaftliche und nachhaltige Machbarkeit konkret nachgewiesen. Dabei werden insbesondere auch Transport-, Standardisierungs- und Nachhaltigkeitspotentiale berücksichtigt. Bei der Auslegung wird neben den strukturellen und dynamischen Eigenschaften des Rotorblattes ebenfalls das strukturdynamische Verhalten der gesamten WEA über den vollen Betriebsbereich ermittelt. Die Gesamtanlagensimulation wird basierend auf einer flexiblen Mehrkörpersimulation (MKS) im Zeitbereich durchgeführt und ermöglicht eine genaue Auflösung der dynamischen, nichtlinearen Lasten im Antriebsstrang, deren Kenntnis für die Lebensdauervorhersage sowie der Ermittlung der Belastungen der einzelnen Komponenten der WEA erforderlich ist. Im Rahmen dieses Projektes wird das dynamische Verhalten der gesamten WEA sowie der Schallemission untersucht.

Entwicklung eines Rotorblattes aus Stahl für Onshore Windenergieanlagen, Teilvorhaben: Konstruktion und techno-ökonomische Bewertung

Das Projekt SteelBlade beschäftigt sich mit der Entwicklung und Konstruktion eines Onshore Rotorblattes für Windenergieanlagen (WEA), das für den Einsatz des Werkstoffs Stahl optimiert wird. Leichtbau- und Optimierungsmethoden aus der Luft- und Raumfahrt sollen dabei den effizienten Einsatz des Werkstoffes sichern, sodass die Rotorblattkonstruktion in einem für das System Windenergieanlage verträglichen Bereich liegen wird. Durch eine gleichzeitige Akustik-Optimierung der Struktur kann die Umweltbelastung durch Schallemissionen für Mensch und Tier kontrolliert und eventuell sogar weiter gesenkt werden. Der Fokus bei der Entwicklung des Stahlrotorblattes liegt auf der Konstruktion der inneren Struktur sowie der Auslegung einer Blattaußenhülle, die auf Basis aerodynamischer Gesichtspunkte entwickelt wurde. Die Konstruktion des Stahlrotorblattes erfolgt durch den konsequenten Transfer innovativer Leichtbautechniken aus der Luft- und Raumfahrt sowie dem Automobilbau in den Windenergieanlagenbau mit dem Ziel, dass das Gesamtgewicht des Stahlblattes auf dem Niveau des GFK-Blattes liegt. Im Rahmen des Projektes werden zunächst die technische, wirtschaftliche und nachhaltige Machbarkeit konkret nachgewiesen. Dabei werden insbesondere auch Transport-, Standardisierungs- und Nachhaltigkeitspotentiale berücksichtigt. Bei der Auslegung wird neben den strukturellen und dynamischen Eigenschaften des Rotorblattes ebenfalls das strukturdynamische Verhalten der gesamten WEA über den vollen Betriebsbereich ermittelt. Die Gesamtanlagensimulation wird basierend auf einer flexiblen Mehrkörpersimulation (MKS) im Zeitbereich durchgeführt und ermöglicht eine genaue Auflösung der dynamischen, nichtlinearen Lasten im Antriebsstrang, deren Kenntnis für die Lebensdauervorhersage sowie der Ermittlung der Belastungen der einzelnen Komponenten der WEA erforderlich ist. Im Rahmen dieses Projektes wird das dynamische Verhalten der gesamten WEA sowie der Schallemission untersucht.

Bestimmung der Schallemission von abgestellten Schienenfahrzeugen - Abstellgeräusche

Dauerhafte durchgehend bewehrte Betonfahrbahnen mit besonderen funktionalen Anforderungen auf dem Weg zur Klimaneutralität

1 2 3 4 537 38 39