Nicht-konventionelle KW (INSPIRE) presents the results of the NiKo project according to data specifications Energy Resources (D2.8.III.20) und Geology (D2.8.II.4_v3.0). NiKo stands for „unconventional hydrocarbons“, „Nicht-konventionelle Kohlenwasserstoffe“ in German. In the NiKo project the Federal Institute for Geosciences and Natural Resources (BGR) has investigated the potential resources for shale oil and shale gas in Germany. The study was published in 2016 as a report titled „Schieferöl und Schiefergas in Deutschland – Ressourcen und Umweltaspekte“ (available in German only). The colloquial terms shale oil and shale gas refer to oil and natural gas resources in sedimentary shale rock formations, with high organic matter content. In the study, seven formations were identified to have a shale oil and/or gas potential in Germany and their distribution has been mapped in small scale. For each of the formations the organic-rich facies distribution is provided and, if appropriate, the regional potential resource distribution: Fischschiefer (Oligocene), Blättertone (Barremium - Lower-Aptian), Wealden (Berriasium), Posidonienschiefer (Lower-Toarcium), Middel-Rhaetium (Oberkeuper), Permokarbon (Stefanium - Rotliegend) und Lower Carboniferous (Upper Alaunschiefer (Kulm-Facies) + Kohlenkalk-Facies). Corresponding to the overview maps in the report two GML-files for these layers are provided, omitting however the sub-category “possible potential regions”. Bituminous facies distribution (0-5000 m Tiefe) – data specification Geology: GeologicUnit.Distribution_of_bituminous_facies.gml Distribution shale oil and shale gas – potential resources (1000 - 5000 m Tiefe) – data specification Energy Resources: FossilFuelRessource_Potential_resource_regions.gml The distribution maps of the potential resources for shale oil and gas are based on geoscientific criteria. Further non-geoscientific limiting criteria, e.g. exclusion areas, have not been taken into account for the assessment. These assessments are based on appraisements of input parameters naturally with large uncertainties for the potential resources and their distribution in the deep underground. Based on the incipient exploration status of unconventionals in Germany, these resources are considered as undiscovered. The assessed shale oil and gas resources for Germany, represent the order of magnitude of potential resources. Reference: BGR 2016 - Schieferöl und Schieferöl in Deutschland- Potenziale und Umweltaspekte https://www.bgr.bund.de/DE/Themen/Energie/Downloads/Abschlussbericht_13MB_Schieferoelgaspotenzial_Deutschland_2016.html
Kurzinformation des wissenschaftlichen Dienstes des Deutschen Bundestages. 4 Seiten. Auszug der ersten drei Seiten: Wissenschaftliche Dienste Kurzinformation Einzelfragen zu Hydraulic Fracturing in den USA Die Quantifizierung des Anteils klimaschädlicher Gase, die beim Förderprozess / Verarbeitungs- prozess von Erdgas und Erdöl mithilfe von Hydraulic Fracturing in den USA entweichen, ist all- gemein schwer zu beantworten. Die Messungen hängen von der Methodik und zahlreichen weite- ren Faktoren wie beispielsweise dem Wetter ab; beispielsweise fallen Wintermessungen allge- mein höher aus (vgl. hierzu Oltmans et al. 2014 ). Eine standardisierte unumstrittene Methodik 1 und Prozedur existiert nicht. Eine grundsätzliche Diskussion der Problematik findet sich in Allen 2014 , ferner Allen 2016 . 2 3 Abschätzungen sind Gegenstand der Publikationen Karion et al. 2015 und Karion et al. 2013 , 4 5 die Auswirkungen einer Panne werden in Conley et al. 2015 beschrieben. Aufgrund dessen, dass 6 - wie dargestellt - keine einheitlichen Messergebnisse angegeben werden können, ist auch ein quantitativer Vergleich mit dem Aufkommen von Schadstoffen durch andere Prozesse (Haushalt, 1 Oltmans, S., R. Schnell, B. Johnson, G. Pétron, T. Mefford, and R. Neely III. 2014. Anatomy of wintertime ozone associated with oil and natural gas extraction activity in Wyoming and Utah. Elem. Sci. Anthol. 2:000024. doi:10.12952/journal.elementa.000024. 2 Allen, D.T. 2014. Methane emissions from natural gas production and use: Reconciling bottom-up and top- down measurements. Curr. Opin. Chem. Eng. 5:78–83. doi:10.1016/j.coche.2014.05.004. 3 David T. Allen (2016) Emissions from oil and gas operations in the United States and their air quality implica- tions, Journal of the Air & Waste Management Association, 66:6, 549-575, doi:10.1080/10962247.2016.1171263. 4 Karion, A., C. Sweeney, E.A. Kort, J.B. Shepson, A. Brewer, M. Cambaliza, S.A. Conley, K. Davis, A. Deng, M. Hardesty, S.C. Herndon, T. Lauvaux, T. Lavoie, D. Lyon, T. Newberger, G. Pétron, C. Rella, M. Smith, S. Wolter, T. I. Yacovitch, and P. Tans. 2015. Aircraft-based estimate of total methane emissions from the Barnett Shale region. Environ. Sci. Technol. 49:8124–8131. doi:10.1021/acsest.5b00217. 5 Karion, A., C. Sweeney, G. Pétron, G. Frost, R.M. Hardesty, J. Kofler, B.R. Miller, T. Newberger, S. Wolter, R. Banta, A. Brewer, E. Dlugokencky, P. Lang, S.A. Montzka, R. Schnell, P. Tans, M. Trainer, R. Zamora, and S. Conley. 2013. Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophys. Res. Lett. 40:1–5. doi:10.1002/grl.50811. 6 Conley, S., G. Franco, I. Faloona, D.R. Blake, J. Peischl, and T.B. Ryerson. 2016. Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA. Science 351:1317–1320. doi:10.1126/science.aaf2348. WD 8 - 3000 - 012/18 (1. Februar 2018) © 2018 Deutscher Bundestag Die Wissenschaftlichen Dienste des Deutschen Bundestages unterstützen die Mitglieder des Deutschen Bundestages bei ihrer mandatsbezogenen Tätigkeit. Ihre Arbeiten geben nicht die Auffassung des Deutschen Bundestages, eines sei- ner Organe oder der Bundestagsverwaltung wieder. Vielmehr liegen sie in der fachlichen Verantwortung der Verfasse- rinnen und Verfasser sowie der Fachbereichsleitung. Arbeiten der Wissenschaftlichen Dienste geben nur den zum Zeit- punkt der Erstellung des Textes aktuellen Stand wieder und stellen eine individuelle Auftragsarbeit für einen Abge- ordneten des Bundestages dar. Die Arbeiten können der Geheimschutzordnung des Bundestages unterliegende, ge- schützte oder andere nicht zur Veröffentlichung geeignete Informationen enthalten. Eine beabsichtigte Weitergabe oder Veröffentlichung ist vorab dem jeweiligen Fachbereich anzuzeigen und nur mit Angabe der Quelle zulässig. Der Fach- bereich berät über die dabei zu berücksichtigenden Fragen.[.. next page ..]Wissenschaftliche Dienste Kurzinformation Seite 2 Einzelfragen zu Hydraulic Fracturing in den USA Verkehr etc.) nicht möglich. Allerdings werden einzelne Aspekte des Schadstoffvergleichs in ver- schiedenen Publikationen andiskutiert: Kort et al. 2014 , Lamb et al. 2015 , Litovitz et al. 2013 , 7 8 9 McKain et al. 2015 , Zavala-Araiza et al. 2015 . 10 11 Die vorrangig zu benennenden Quellen für die Freisetzung von Partikeln und flüchtige organi- sche Verbindungen (VOCs), insbesondere Methan, sind laut einer aktuellen Publikation zum „Schiefergas-Boom in den USA“ 12 • Dieselmotoren (LKWs und Stromerzeugungsprozess) • Lecks (in Verarbeitungs- und Transporteinrichtungen entweichen durch Lecks insbe- sondere Methan) • Verdunstung (Verdunstung von Flüssigkeiten, z.B. offene Lagerbecken) • Stützmittel (eventuell durch Kieselsandverwendung) • Abfackeln von Erdgas (Abfackeln von Erdgas aus der Flowbackphase, es entsteht ins- besondere CO2) • bodennahes Ozon (durch Reaktion von Luftschadstoffen). Eine übersichtliche kurze Einführung in die Problematik der Methanemissionen aus der Erdgas- lieferkette bietet das Kapitel „Methane Emissions from the Natural Gas Supply Chain“ in einem 2015 erschienenen Buch zu „Environmental and Health Issues in Unconventional Oil and Gas Development“ . 13 7 Kort, E.A., C. Frankenberg, K.R. Costigan, R. Lindenmaier, M.K. Dubey, and D. Wunch. 2014. Four corners: The largest US methane anomaly viewed from space. Geophys. Res. Lett. 41:6898–6903. doi:10.1002/2014GL061503. 8 Lamb, B.K., S.L. Edburg, T.W. Ferrara, T. Howard, M.R. Harrison, C.E. Kolb, A. Town-send-Small, W. Dyck, A. Possolo, and J.R. Whetstone. 2015. Direct measurements show decreasing methane emissions from natural gas local distribution systems in the United States. Environ. Sci. Technol. 49:5161−5169. doi:10.1021/es505116p. 9 Litovitz, A., A. Curtright, S. Abramzon, N. Burger, and C. Samaras. 2013. Estimation of regional air quality dam- ages from Marcellus Shale natural gas extraction in Pennsylva-nia. Environ. Res. Lett. 8:014017. doi:10.1088/1748-9326/8/1/014017. 10 McKain, K., A. Down, S.M. Raciti, J. Budney, L.R. Hutyra, C. Floerchinger, S.C. Herndon, T. Nehrkorn, M.S. Zahniser, R.B. Jackson, N. Phillips, and S.C. Wofsy. 2015. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts. Proc. Natl. Acad. Sci. U. S. A. 112:1941–1946. doi:10.1073/pnas.1416261112. 11 Zavala-Araiza, D., D.T. Allen, M. Harrison, F.C. George, and G.R. Jersey. 2015. Allocating Methane emissions to natural gas and oil production from shale formations. ACS Sustain. Chem. Eng. 3:492–498. doi:10.1021/sc500730x. 12 Meyer-Renschhause, M.; Klippel, P.: Schiefergas-Boom in den USA, Metropolis-Verlag, Marburg 2017; ISBN: 978-3-7316-1258-2. 13 Kaden, Debra; Rose, Tracie: Environmental and Health Issues in Unconventional Oil and Gas Development; 7. Dezember 2015; ISBN: 9780128041116. Fachbereich WD 8 (Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung)[.. next page ..]Wissenschaftliche Dienste Kurzinformation Seite 3 Einzelfragen zu Hydraulic Fracturing in den USA Auf die Problematik der Lecks wird anhand spezifischer US-amerikanischer Beispiele in folgen- den Publikationen eingegangen: Brandt et al. 2014 , Peischl et al. 2015 , Subramanian et al. 14 15 2015 .16 Die Auswirkung von VOCs auf die Umwelt (und Treibhausbilanz) wird in verschiedenen Publi- kationen diskutiert. Ein Übersichtsartikel aus dem Jahr 2014 untersucht Emissionen und Auswir- kungen von Luftschadstoffen, die mit der Schiefergasproduktion und -nutzung verbunden sind. Emissionen und Auswirkungen von Treibhausgasen, photochemisch aktiven Luftschadstoffen und toxischen Luftschadstoffen werden beschrieben. Neben den direkten atmosphärischen Aus- wirkungen der erweiterten Erdgasförderung werden auch indirekte Effekte genannt. In einem 17 anderen Artikel aus dem Jahr 2015 geht der Autor auf die Klimawirksamkeit von Methan ein. 18 Hier werden unterschiedliche Größen (basierend auf unterschiedlichen Studien) der Methan- emissionen bei der Produktion von Schiefergas angegeben. Zusammenfassend konstatiert der Au- tor, dass die Schiefergasproduktion (im Zeitraum 2009-2011), wenn man sich den gesamten „life cycle“ ansehe (einschließlich Lagerung und Lieferung), zur Emission von durchschnittlich 12% des produzierten Methans geführt hat. Trendbetrachtungen zu Treibhausgasemissionen mit und ohne Methangasemission werden ebenfalls untersucht und grafisch dargestellt. Zwei wesentliche Daten-Quellen für die Methangasemission-Berichterstattung in den USA sind zum einen das US Greenhouse Gas Inventory (GHGI). Hierbei handelt es sich um einen jährli- chen Bericht, der die Schätzwerte US-amerikanischer Treibhausgasemissionen nach Quell-Kate- gorien ab 1990 bis zwei Jahre vor Publikationsdatum angibt. Er wird in Erfüllung der Verpflich- tungen der United Nations Framework Convention on Climate Change publiziert. Es gab in den vergangenen Jahren eine Reihe methodischer Veränderungen. Das Greenhouse Gas Reporting Pro- gram (GHGRP) ist ein obligatorisches Berichterstattungsprogramm für US-amerikanische Einrich- tungen mit einer jährlichen Treibhausgasemission von mehr als 25.000 Tonnen Kohlendioxi- däquivalent. Die neuesten Daten stammen von 2016. 14 Brandt, A.R., G.A. Heath, E.A. Kort, F. O’Sullivan, G. Pétron, S.M. Jordaan, P. Tans, J. Wilcox, A.M. Gopstein, D. Arent, S. Wofsy, N.J. Brown, R. Bradley, G.D. Stucky, D. Eardley, and R. Harriss. 2014. Methane leaks from North American natural gas systems. Science 343:733–735. doi:10.1126/ science.1247045. 15 Peischl, J., T.B. Ryerson, K.C. Aikin, J.A. de Gouw, J.P. Gilman, J.S. Holloway, B.M. Lerner, R. Nadkarni, J.A. Neuman, J.B. Nowak, M. Trainer, C. Warneke, and D.D. Parrish. 2015. Quantifying atmospheric methane emis- sions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. J. Geophys. Res. Atmos. doi:10.1002/2014JD022697. 16 Subramanian, R., L.L. Williams, T.L. Vaughn, D. Zimmerle, J. R. Roscioli, S.C. Herndon, T.I. Yacovitch, C. Floerchinger, D.S. Tkacik, A.L. Mitchell, M.R. Sullivan, T.R. Dallmann, and A.L. Robinson. 2015. Methane emissions from natural gas compressor stations in the transmission and storage sector: Measurements and com- parisons with the EPA Greenhouse Gas Reporting Program Protocol. Environ. Sci. Technol. 49:3252−3261 doi:10.1021/es5060258. 17 Allen, D.T. 2014. Atmospheric emissions and air quality impacts from natural gas production and use. Annu. Rev. Chem. Biomol. Eng. 5:55–75. doi:10.1146/annurev-chembioeng-060713-035938. 18 Howarth, Robert W.: Methane emissions and climatic warming risk from hydraulic fracturing and shale gas de- velopment: implications for policy; Energy and Emission Control Technologies 2015:3 45–54. Fachbereich WD 8 (Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung)
The WMS Nicht-konventionelle KW (INSPIRE) presents the results of the NiKo project according to data specifications Energy Resources (D2.8.III.20) und Geology (D2.8.II.4_v3.0). NiKo stands for „unconventional hydrocarbons“, „Nicht-konventionelle Kohlenwasserstoffe“ in German. In the NiKo project the Federal Institute for Geosciences and Natural Resources (BGR) has investigated the potential resources for shale oil and shale gas in Germany. The study was published in 2016 as a report titled „Schieferöl und Schiefergas in Deutschland – Ressourcen und Umweltaspekte“ (available in German only). The colloquial terms shale oil and shale gas refer to oil and natural gas resources in sedimentary shale rock formations, with high organic matter content. In the study, seven formations were identified to have a shale oil and/or gas potential in Germany and their distribution has been mapped in small scale. For each of the formations the organic-rich facies distribution is provided as layer and, if appropriate, the regional potential resource distribution: Fischschiefer (Oligocene), Blättertone (Barremium - Lower-Aptian), Wealden (Berriasium), Posidonienschiefer (Lower-Toarcium), Middel-Rhaetium (Oberkeuper), Permokarbon (Stefanium - Rotliegend) und Lower Carboniferous (Upper Alaunschiefer (Kulm-Facies) + Kohlenkalk-Facies). According to the overview maps in the report the following layers are provided, omitting however the sub-category “possible potential regions”. Bituminous facies distribution (0-5000 m depth) – data specification Geology: GE.GeologicUnit.Fischschiefer_distribution, GE.GeologicUnit.Blaettertone_distribution, GE.GeologicUnit.Wealden_distribution, GE.GeologicUnit.Posidonienschiefer_distribution, GE.GeologicUnit.Mittelrhaetium_black_shale_thicker_20m_distribution, GE.GeologicUnit.Permokarbon_black_shale_distribution, GE.GeologicUnit.Unterkarbon_Hangende_Alaunschiefer_distribution und GE.GeologicUnit.Unterkarbon_Kohlenkalk Facies layers are coloured according to the corresponding oldest formation age (olderNamedAge). Distribution shale oil and shale gas – potential resources (1000 - 5000 m depth) – data specification Energy Resources: ER.FossilFuelRessource.Blaettertone, ER.FossilFuelRessource.Wealden, ER.FossilFuelRessource.Posidonienschiefer, ER.FossilFuelRessource.Mittelrhaetschiefer, ER.FossilFuelRessource.Permokarbon und ER.FossilFuelRessource.Unterkarbon The shale oil and shale gas distribution layers are not coloured according to INSPIRE guidelines, but rather as common international practice in green and red, respectively. The distribution maps of the potential resources for shale oil and gas are based on geoscientific criteria. Further non-geoscientific limiting criteria, e.g. exclusion areas, have not been taken into account for the assessment. These assessments are based on appraisements of input parameters naturally with large uncertainties for the potential resources and their distribution in the deep underground. Based on the incipient exploration status of unconventionals in Germany, these resources are considered as undiscovered. The assessed shale oil and gas resources for Germany, represent the order of magnitude of potential resources. Source: BGR 2016 - Schieferöl und Schieferöl in Deutschland in 2016: - Potenziale und Umweltaspekte https://www.bgr.bund.de/DE/Themen/Energie/Downloads/Abschlussbericht_13MB_Schieferoelgaspotenzial_Deutschland_2016.html
Das Heft Nr. 23 aus der Serie „scriptum – Arbeitsergebnisse aus dem Geologischen Dienst Nordrhein-Westfalen“ behandelt die Frage nach den Potenzialen und Risiken der Gewinnung von Erdgas aus unkonventionellen Lagerstätten. Es beinhaltet eine Auswertung zahlreicher Gutachten zu diesem Thema, eine kritische Betrachtung der regionalgeologischen Erkenntnisse in Nordrhein-Westfalen und der aktuellen internationalen Literatur. Es wird die Bedeutung der in NRW möglicherweise vorhandenen unkonventionellen Erdgasvorkommen mit Blick auf die Frage der Versorgungssicherheit diskutiert. Außerdem werden die verschiedenen Vorkommen an Schiefer- und Flözgas beschrieben und es wird eine ansatzweise Mengenabschätzung der Potenziale vorgenommen. [2016. 128 S., 42 Abb., 8 Tab.; ISSN 1430-5267]
Mit Blick auf die zwischenzeitlich hohen Gaspreise und die Debatten zur Diversifizierung der Energieabhängigkeiten, Resilienz bei der Versorgungssicherheit und mehr Unabhängigkeit scheinen die nationalen Schiefergasreserven verlockend. Das Umweltbundesamt begleitet die Debatte zu Fracking seit Jahren und ist per Gesetz in der Expertenkommission Fracking vertreten. Unserer aktuellen Einschätzung nach ist die Schiefergasförderung in Deutschland weder notwendig, noch kann sie kurzfristig zur Vermeidung von Gasmangellagen und signifikanten Preissignalen beitragen. Darüber hinaus hat sie als fossile Technik keine mittel- und langfristige Perspektive in einer treibhausgasneutralen Energieversorgung. Quelle: www.umweltbundesamt.de
Das Fracking-Verfahren zur Förderung fossiler Rohstoffe aus unkonventionellen Lagerstätten führt zu einer starken Dynamik im Rohstoffmarkt. Die für die Kunststoffindustrie bedeutende Grundchemikalie Propen kann aus Schiefergasen nicht in einer ausreichenden Menge hergestellt werden. Eine Erhöhung der Menge an Propen kann durch die wirtschaftsorientierte Anpassung des klassischen Fluid Catalytic Crackings (FCC) realisiert werden. Der Einsatz eines ZSM-5-haltigen Katalysatoradditivs führt zu einer Selektivitätsverbesserung und höheren Rohstoffeffizienz aber auch gleichzeitig zu einer Verschlechterung von Standzeit und Regenerierbarkeit der verwendeten Katalysatoren. Aus dieser Problemstellung ergibt sich der Bedarf an innovativen Katalysatoren oder Katalysatoradditiven über Synthese, Post-Synthese und Katalysatorformgebung. Das Ziel des Projektes ist die nachhaltige und anwendungsorientierte Entwicklung einer einfach und reproduzierbar durchführbaren Gesamtstrategie hin zu ZSM-5-haltigen Katalysatoradditiven und Zeolith Y - haltigen Crackkatalysatoren im internationalen Verbund. Dabei sollen neben herkömmlichen Einsatzstoffen besonders in Vietnam verfügbare Silizium- und Aluminium-haltige Rohstoffquellen sowie recycelte Komponenten (gebrauchte Katalysatoren) herangezogen werden. Die neuen Katalysatoren sind anschließend den Herausforderungen des FCC-Prozesses, des steigenden Propenbedarfs und des Ressourcenwechsels zu leichteren fossilen und biogenen Rohstoffen auch in der technischen Anwendung gewachsen. Das Projekt umfasst 4 Arbeitspakete (AP) zur Erreichung der abgesteckten Ziele: AP 1 Synthese von Aktivkomponenten AP 2 Formulierung technischer Katalysatoren AP 3 Postsynthetische Modifikationen AP 4 Analytik, katalytische Austestung und Bewertung Dabei bauen die Arbeitspakete logisch aufeinander auf, verlaufen jedoch chronologisch parallel über die gesamte Projektdauer. Die einzelnen Teilaufgaben umfassen dabei Forschungs-, Up-Scaling- und Anwendungsbereiche.
The South African Karoo Basin, which is known for its potentially shale gas bearing formations, was the target of an extensive research programme launched by the Nelson Mandela University, South Africa. The aim of this project was to obtain a fundamental understanding of the geology, petrology and hydrology of the sedimentary layers. In 2014, Magnetotelluric (MT) measurements were conducted in the Eastern Karoo Basin to image the electrical conductivity structure of the shallow subsurface and to develop a three-dimensional (3D) model. Previous studies by Weckmann et al. (2007a, b) and Branch et al. (2007) identified the potentially shale gas bearing Whitehill Formation as an electrically conductive sub-horizontal layer, which covers large parts of the Karoo Basin. The increased interest in future shale gas exploration raised concerns regarding the potential impact on aquifers in this water scarce and fragile environment. Since the electrical conductivity is sensitive to fluids, imaging both, the black shale horizon and the deep aquifer system in this region was the ultimate goal of the MT study. Our field experiment is designed to serve as a baseline study before any activity regarding shale gas exploitation commenced. With high resolution 2D and regional 3D inversion and forward models several aquifers, the Whitehill formation and the possible source region of the Beattie Magnetic Anomaly could be mapped.This data publication (10.5880/GIPP-MT.201423.1) encompasses a detailed report in pdf format with a description of the project, information on the experimental setup, data collection, instrumentation used, recording configuration and data quality. The folder structure and content of the data repository are described in detail in Ritter et al. (2019). Time-series data are provided in EMERALD format (Ritter et al., 2015).
Die Studie dient der Erforschung und Abschätzung des Erdgaspotenzials aus dichten Tongesteinen (Schiefergas) in Deutschland. Die BGR hat im Mai 2012 einen Zwischenbericht mit ersten noch vorläufigen Zahlen veröffentlicht. Die Abschätzung basiert auf der Auswertung von drei überregional verbreiteten Tongesteinsformationen und liefert im Wesentlichen eine Größenordnung des zu erwartenden Potenzials. Die möglichen Umweltauswirkungen der Schiefergas-Erschließung stehen derzeit in der öffentlichen Diskussion. Der Bericht enthält Erläuterungen zur technischen Ausführung einer Bohrung, die Ausbreitung hydraulischer Risse (Fracking) und deren Rolle bei seismischen Ereignissen. Weiterhin werden Aspekte zum Wasserbedarf und -entsorgung sowie Informationen zu Grundwasser und Fracking-Flüssigkeiten dargestellt. Schiefergas wird inzwischen weltweit als bedeutende Erdgasressource angesehen. Auslöser hierfür war die Erschließung zahlreicher Schiefergas-Vorkommen in Nordamerika, wodurch die USA ihren Erdgasbedarf mittlerweile vollständig aus eigenen Quellen decken kann. Deutschland hingegen versorgt sich zu über 80 % aus Importen mit Erdgas. Für die kommenden Jahrzehnte wird Erdgas als Brücke zu der für die Zukunft angestrebten Deckung eines Großteils des Energiebedarfs durch erneuerbare Energien eine große Bedeutung zugesprochen. Die besondere Rolle von Erdgas ergibt sich dabei aus seiner flexiblen und vielfältigen Anwendbarkeit in der Strom- und Wärmegewinnung und durch die im Vergleich zu Erdöl und Kohle geringen CO2-Emission. Aufgrund der fortschreitenden Erschöpfung der konventionellen heimischen Erdgas-Lagerstätten kann daher mit einem weiteren Anstieg der Erdgasimporte gerechnet werden. In Deutschland könnten erhebliche, bislang ungenutzte Potenziale in nicht-konventionellen Erdgasvorkommen existieren. Bislang liegen allerdings keine belastbaren Informationen zum tatsächlichen Rohstoffpotenzial von Schiefergas in Deutschland vor. Vor diesem Hintergrund hat die BGR das Projekt 'NiKo' initiiert. Primäres Ziel dieses Vorhabens ist zunächst die Erfassung des heimischen Nutzungspotenzials von Erdgas aus Tonsteinen. In einem zweiten Schritt soll auch das Potenzial von Erdöl aus Tonsteinen ermittelt werden.
Am 22. Januar 2014 erließ die Europäische Kommission eine Empfehlung, mit der sichergestellt werden soll, dass beim sogenannten Fracking ein angemessener Umwelt- und Klimaschutz gewährleistet ist. Die Empfehlung soll allen Mitgliedstaaten, die diese Technik anwenden wollen, helfen, Gesundheits- und Umweltrisiken zu vermeiden und die Transparenz für den Bürger zu verbessern. Die Empfehlung geht mit einer Mitteilung einher, die die Möglichkeiten und Probleme der Anwendung der Fracking-Technik für die Kohlenwasserstoffförderung untersucht. Beide Dokumente sind Teil einer weiterreichenden Initiative der Kommission, mit der für den Zeitraum bis 2030 ein integrierter klima- und energiepolitischer Rahmen geschaffen werden soll. Die Mitgliedstaaten der EU werden gebeten, diese Grundsätze innerhalb von sechs Monaten anzuwenden und der Kommission ab Dezember 2014 jährlich mitzuteilen, welche Maßnahmen eingeführt wurden. Die Kommission wird die Anwendung der Empfehlung anhand eines öffentlich zugänglichen Fortschrittsanzeigers überwachen und die Lage in den verschiedenen Mitgliedstaaten vergleichen. Sie wird die Wirksamkeit dieses Ansatzes in 18 Monaten überprüfen.
| Origin | Count |
|---|---|
| Bund | 21 |
| Land | 4 |
| Wissenschaft | 1 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Ereignis | 2 |
| Förderprogramm | 9 |
| Text | 6 |
| unbekannt | 7 |
| License | Count |
|---|---|
| geschlossen | 10 |
| offen | 14 |
| Language | Count |
|---|---|
| Deutsch | 19 |
| Englisch | 6 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Datei | 4 |
| Dokument | 6 |
| Keine | 8 |
| Webdienst | 2 |
| Webseite | 11 |
| Topic | Count |
|---|---|
| Boden | 24 |
| Lebewesen und Lebensräume | 15 |
| Luft | 11 |
| Mensch und Umwelt | 24 |
| Wasser | 13 |
| Weitere | 22 |