Im Zuge der industriellen Entwicklung hat die Einleitung von Schadstoffen in die Gewässer immens zugenommen. Neben ihrem Vorkommen im Wasser findet eine fortwährende Anreicherung der Gewässerböden mit Schadstoffen, wie z.B. Schwermetallen und Chlorierten Kohlenwasserstoffen, statt. Ablagerung im Sediment Im Stoffkreislauf eines Gewässers bilden die Sedimente ein natürliches Puffer- und Filtersystem, das durch Strömung, Stoffeintrag/-transport und Sedimentation starken Veränderungen unterliegt. Die im Ballungsraum Berlin vielfältigen Einleitungen, häusliche und industrielle Abwässer, Regenwasser u.a. fließen über die innerstädtischen Wasserwege letztlich vorwiegend in die Unterhavel. Die seenartig erweiterte Unterhavel mit ihrer niedrigen Fließgeschwindigkeit bietet ideale Voraussetzungen dafür, daß sich die im Wasser befindlichen Schwebstoffe hier auf dem Gewässergrund absetzen (sedimentieren). Für die Beurteilung der Qualität des gesamten Ökosystems eines Gewässers kommt daher zu den bereits seit Jahren analysierten Wasserproben immer stärker auch der Analyse der Sedimente besondere Bedeutung zu. Sedimentuntersuchungen spiegeln gegenüber Wasseruntersuchungen unabhängig von aktuellen Einträgen die langfristige Gütesituation wider und stellen damit eine wesentlich bessere Vergleichsgrundlage mit anderen Fließgewässern dar. Während bei Wasseruntersuchungen eine klare Abgrenzung zwischen dem echten Schwebstoffgehalt und einem zeitweiligen Auftreten von Schwebstoffen durch aufgewirbelte Sedimentanteile nicht möglich ist, bieten sich Sedimente als nicht oder nur gering durch unerwünschte Einflüsse beeinträchtigtes Untersuchungsmedium an. Die im Gewässer befindlichen Schweb- und Sinkstoffe mineralischer und organischer Art sind in der Lage, Schadstoffpartikel anzulagern (Adsorption). Die auf dem Grund eines Gewässers abgelagerten Schweb- und Sinkstoffe, die Sedimente, bilden somit das Reservoir für viele schwerlösliche und schwerabbaubare Schad- und Spurenstoffe. (Schad-)Stoffe werden im Sediment entsprechend ihrer chemischen Persistenz und den physikalisch-chemischen und biochemischen Eigenschaften der Substrate über lange Zeit konserviert. Die Analysen der Sedimentproben aus unterschiedlichen Schichttiefen liefern eine chronologische Aufzeichnung des Eintrages in Gewässer, die u. a. auch Rückschlüsse auf Kontaminationsquellen erlauben. Nach der Sedimentation kann ein Teil der fixierten Stoffe u. a. durch Desorption, Freisetzung nach Mineralisierung von organischem Material, Aufwirbelung, Verwitterung und schließlich durch physikalische und physiologische Aktivitäten benthischer (bodenorientierter) Organismen wieder remobilisiert und in den Stoffkreislauf eines Gewässers zurückgeführt werden. Schwermetalle Schwermetalle können auf natürlichem Weg, z. B. durch Erosion und Auswaschungsprozesse, in die Gewässer gelangen; durch die oben erwähnten Einleitungen wurde ihr Gehalt in den Gewässern ständig erhöht. Sie kommen in Gewässern nur in geringem Maße in gelöster Form vor, da Schwermetallverbindungen schwer löslich sind und daher ausfallen. Mineralische Schweb- und Sinkstoffe sind in der Lage, Schwermetallionen an der Grenzflächenschicht anzulagern. Sie können ferner in Wasserorganismen gebunden sein. Über die Nahrungskette werden die Schwermetalle dann von höheren Organismen aufgenommen oder sinken entsprechend der Fließgeschwindigkeit eines Gewässers als Ablagerung (Sediment) auf den Gewässergrund ab. Einige Schwermetalle sind in geringen Mengen (Spurenelemente wie z.B. Kupfer, Zink, Mangan) lebensnotwendig, können jedoch in höheren Konzentrationen ebenso wie die ausgesprochen toxischen Schwermetalle (z. B. Blei und Cadmium) Schadwirkungen bei Mensch, Tier und Pflanze hervorrufen. Die in den Berliner Gewässersedimenten am häufigsten erhöhte Meßwerte aufweisenden Schwermetalle werden nachstehend kurz beschrieben. Kupfer ist ein Halbedelmetall und wird u.a. häufig in der Elektroindustrie verwendet. Die toxische Wirkung der Kupferverbindungen wird in der Anwendung von Algiziden und Fungiziden genutzt. Kupfer ist für alle Wasserorganismen (Bakterien, Algen, Fischnährtiere, Fische) schon in geringen Konzentrationen toxisch und kann sich daher negativ auf die Besiedlung und Selbstreinigung eines Gewässers auswirken. Als wichtigstes Spurenelement ist Kupfer für den menschlichen Stoffwechsel von Bedeutung; es führt jedoch bei erhöhten Konzentrationen zu Schädigungen der Gesundheit, die in der Regel nur vorübergehend und nicht chronisch sind. Wie Kupfer ist Zink in geringen Mengen ein lebenswichtiges Element für den Menschen. Zink wird u.a. häufig zur Oberflächenbehandlung von Rohren und Blechen sowie zu deren Produktion verwendet. Ähnlich wie Kupfer haben erhöhte Zinkkonzentrationen toxische Wirkung auf Wasserorganismen; vor allem in Weichtieren (Schnecken, Muscheln) reichert sich Zink an. Blei gehört neben Cadmium und Quecksilber zu den stark toxischen Schwermetallen, die für den menschlichen Stoffwechsel nicht essentiell sind. Bleiverbindungen werden z. B. bei der Produktion von Farben und Rostschutzmitteln sowie Akkumulatoren eingesetzt. Teilweise befinden sich in Altbauten auch noch Wasserleitungen aus Blei. Der größte Bleiemittent ist – trotz starkem Rückgang des Verbrauchs von verbleitem Benzin – immer noch der Kraftfahrzeugverkehr. Die ständige Aufnahme von Blei kann zu schweren gesundheitlichen Schädigungen des Nervensystems und zur Inaktivierung verschiedener Enzyme führen. Cadmium wird bei der Produktion von Batterien, als Stabilisator bei der PVC-Herstellung, als Pigment für Kunststoffe und Lacke sowie in der Galvanotechnik verwendet. Die toxische Wirkung von Cadmium bei bereits geringen Konzentrationen ist bekannt, wobei das Metall vor allem von Leber, Niere, Milz und Schilddrüse aufgenommen wird und zu schweren Schädigungen dieser Organe führen kann. Pestzide, PCB und deren Aufnahme durch Aale Chlorierte Kohlenwasserstoffe (CKW) haben an ihrem Kohlenstoffgerüst Chlor gebunden. Innerhalb der Gruppe der halogenierten Kohlenwasserstoffe finden sie die bei weitem meiste Herstellung, Anwendung und Verbreitung. Chlorierte Kohlenwasserstoffe sind wegen ihrer vielfältigen Verbindungen sehr zahlreich. Viele organische Chlorverbindungen, wie z.B. DDT und insbesondere die polychlorierten Biphenyle (PCB), weisen eine hohe Persistenz auf. Viele Verbindungen der Chlorierten Kohlenwasserstoffe sind im Wasser löslich, andere, wie z. B. DDT und PCB, sind dagegen fettlöslich und reichern sich im Fettgewebe von Organismen an. Verschiedene Pestizide und PCB haben – vor allem mit abnehmender Wasserlöslichkeit – die Eigenschaft, sich adsorbtiv an Schwebstoffen oder auch an Pflanzenorganismen anzulagern. In strömungsarmen Bereichen des Gewässers sinken die Schwebstoffe ab und gelangen mit den Schadstoffen auch in das Sediment. Die hier lebenden Organismen sind eine wichtige Nahrungsgrundlage für Fische. Vorwiegend die benthisch lebenden Fische vermögen daher hohe Schadstoffkonzentrationen im Fettgewebe aufzunehmen. Vor allem die fettreich werdenden Aale fressen Bodenorganismen und graben sich im Sediment ein. Diese Lebensweise führt dazu, Pestizide und PCB nicht nur über die Nahrung, sondern auch über die Haut aufzunehmen und im Körperfett zu speichern. DDT, Dichlor-Diphenyl-Trichlorethan, ist ein schwer abbaubarer Chlorierter Kohlenwasserstoff, der zu den bekanntesten Schädlingsbekämpfungsmitteln gehört und früher weltweit eingesetzt wurde. Aufgrund der fettlöslichen Eigenschaften und der äußerst hohen Persistenz wird DDT vornehmlich in den Körperfetten nahezu aller Organismen gespeichert. Die globale Anwendung von DDT hat so zu einer Belastung der gesamten Umwelt geführt. Inzwischen ist die DDT-Anwendung von fast allen Ländern gesetzlich verboten. DDT ist mutagen (erbschädigend) und steht in Verdacht, krebserregend zu sein. Lindan wird vor allem als Kontakt- und Fraßgift zur Schädlingsbekämpfung von Bodeninsekten und als Mittel zur Saatgutbehandlung verwendet. Lindan ist bei Temperaturen bis 30° C nicht flüchtig und weist eine geringe chronische Toxizität auf – ist dafür aber akut toxisch. Vergiftungserscheinungen können z. B. beim Menschen zu Übelkeit, Kopfschmerzen, Erbrechen Krampfanfällen, Atemlähmung bis hin zu Leber- und Nierenschäden führen. Zudem besitzt Lindan eine hohe Giftigkeit für Fische; es wird aber relativ schnell wieder ausgeschieden und abgebaut. PCB, polychlorierte Biphenyle, sind schwer abbaubare Chlorierte Kohlenwasserstoffe, die mit zu den stabilsten chemischen Verbindungen gehören. Wegen ihrer guten Isoliereigenschaften und der schlechten Brennbarkeit werden sie in Kondensatoren oder Hochspannungstransformatoren verwendet. Weitere Verwendung finden PCB bei Schmier-, Imprägnier- und Flammschutzmitteln. Verursacher des PCB-Eintrages in die Berliner Gewässer sind im wesentlichen der KFZ-Verkehr, die durch KFZ belastete Regenentwässerung sowie die KFZ- und Schrott-Entsorgung. In hohen Konzentrationen verursachen PCB Leber-, Milz- und Nierenschäden. Bei schweren Vergiftungen kommt es zu Organschäden und zu Krebs. Einige PCB-Vertreter unterliegen im Rahmen der gesetzlichen Regelungen seit 1989 Einschränkungen bei der Herstellung bzw. Verwendung (PCB-, PCT-, VC-Verbotsverordnung vom 18.7.89). Neben dem Nachweis erhöhter Werte im Wasser und in Sedimenten Berliner Gewässer wurden in den 80er Jahren bei Fischuntersuchungen lebensmittelrechtlich äußerst bedenkliche Konzentrationen von CKW, wie z. B. PCB und die Pestizide DDT und Lindan nachgewiesen. Dies führte im Westteil von Berlin nach Inkrafttreten der Schadstoff-Höchstmengenverordnung (SHmV vom 23. 3. 1988) zum Vermarktungsverbot für aus Berliner Gewässern gefangene Fische. Die seit dieser Zeit gefangenen Fische wurden der Sondermüllentsorgung zugeführt. Die Berufsfischerei führte im Auftrag des Fischereiamtes Berlin aufgrund eines Senatsbeschlusses Befischungsmaßnahmen durch, die durch gezielte Beeinflussung der Alterszusammensetzung eine Reduzierung der Schadstoffbelastung der Berliner Fischbestände bewirken sollten. Die intensive Befischung der Überständler hatte einen jüngeren, fett- und damit schadstoffärmeren Bestand zum Ziel; jüngere, fettärmere Fische enthalten weniger Anteile der lipophilen (fettliebenden) CKW, wie PCB, DDT, Lindan u.a. Infolge verschärfter Genehmigungsverfahren für potentielle Schadstoffeinleiter sowie insbesondere aufgrund des derzeitig verjüngten Fischbestandes konnte das Vermarktungsverbot im Mai 1992 aufgehoben werden.
Bundesamt für Strahlenschutz: Bekanntmachung der aktualisierten diagnostischen Referenzwerte für nuklearmedizinische Untersuchungen Die Strahlenschutzverordnung (StrlSchV) vom 20. Juli 2001 (BGBl. I S. 1714; 2002 I S. 1459), die zuletzt durch Artikel 5 Absatz 7 des Gesetzes vom 24. Februar 2012 (BGBl. I S. 212) geändert worden ist, sieht in § 81 Absatz 2 Satz 1 vor, dass bei der Untersuchung von Menschen diagnostische Referenzwerte zu Grunde zu legen sind. Auf der Grundlage des § 81 Absatz 2 Satz 3 StrlSchV werden die aktualisierten diagnostischen Referenzwerte in Tabellen für folgende Untersuchungsarten bekannt gemacht (Anlage): Tabelle 1: Tabelle 2: Diagnostische Referenzwerte für häufige und dosisintensive nuklearmedizinische Untersuchungsverfahren Bruchteile der zu verabreichenden Erwachsenen-Aktivität bei Kindern unterschiedlichen Körpergewichts Weitere Ausführungen dienen der Erläuterung der Grundlagen der diagnostischen Referenzwerte und enthalten Hinweise für deren Anwendung. Salzgitter, den 25. September 2012 Bundesamt für Strahlenschutz Im Auftrag Dr. D. Noßke -2- Anlage Tabelle 1: Diagnostische Referenzwerte für häufige und dosisintensive nuklearmedizinische Untersuchungsverfahren OrganScan/TestRadiopharmakonDRW (MBq)Höchstwert (MBq)Minimale Aktivität für pädiatrische Untersuchun gen (MBq) Schilddrüse SkelettSzintigraphie Knochenszinti- graphie - benigne Erkrankungen - maligne Erkrankungen PET Perfusion/ Vitalität[99mTc]Pertechnetat [99mTc]MDP/DPD/HDP707510 500550650700 Herz Nieren Lunge Natrium[18F]fluorid [99mTc]Sestamibi/ Tetrofosmin - Zweitagesprotokoll - Eintagesprotokoll [201Tl]Chlorid [99mTc]Erythrozyten [99mTc]MAG325030014 4001 10002 75 700 1005001 11002 90 730 125801 801 - - 15 DAT-SPECT PET Szintigraphie[99mTc]MAA - planar - SPECT [99mTc]DTPA [99mTc]Technegas [123I]FP-CIT [18F]FDG [99mTc]Sestamibi100 160 10003 3503 180 200 550125 200 11003 5003 190 250 675- - - 14 80 PET[18F]FDG435038014 Szintigraphie[111In]Octreotid150175- RNV Funktionsszinti- graphie Perfusion Ventilation Gehirn Nebenschild- drüse Tumordetek- tion im Körperstamm 1 2 3 4 40 10 pro Applikation für beide Applikation zusammen im Vernebler Für diagnostische Ganzkörper-CT-Untersuchungen bei PET/CT-Untersuchungen wird ein DRW von CTDIVol = 15 mGy festgelegt -3- Tabelle 2: Bruchteile der zu verabreichenden Erwachsenen-Aktivität bei Kindern unterschiedlichen Körpergewichts Körpergewicht in kgBruchteil der zu verabreichenden Erwachsenen-Aktivität 3 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 700,07 0,08 0,12 0,15 0,19 0,22 0,25 0,28 0,31 0,34 0,37 0,40 0,43 0,45 0,48 0,51 0,54 0,56 0,59 0,62 0,64 0,67 0,70 0,72 0,75 0,77 0,80 0,82 0,85 0,88 0,90 0,93 0,95 0,98 1
Im Folgenden erhalten Sie einen Überblick über die Gesetze, welche den Umgang mit radioaktiven Stoffen bestimmen und regeln, sowie über die, die der Gefahrenabwehr und dem Gesundheitserhalt der Menschen dienen sollen. Desweiteren finden Sie hier die rechtlichen Grundlagen für die Tätigkeit der Berliner Personendosismessstelle als auch für die Aufsicht über kerntechnische Anlagen und die Überwachung der Umweltradioaktivität. Gemäß Artikel 73 Absatz 1 Nr. 14 des Grundgesetzes sind die Erzeugung und Nutzung der Kernenergie zu friedlichen Zwecken, die Errichtung und der Betrieb von Anlagen, die diesen Zwecken dienen, der Schutz gegen Gefahren, die bei Freiwerden von Kernenergie oder durch ionisierende Strahlen entstehen, und die Beseitigung radioaktiver Stoffe Gegenstand der Bundesgesetzgebung. Die Ausführung der Gesetze obliegt daher ebenfalls dem Bund. Gemäß Artikel 87c des Grundgesetzes kann der Bund aber die Bundesländer beauftragen, Teile der Durchführung der gesetzlichen Aufgaben zu übernehmen (“Auftragsverwaltung des Bundes”). Das Atomgesetz (AtG) ist 1959 erlassen worden. Es regelt vor allem die Angelegenheiten der kerntechnischen Einrichtungen, der Kernreaktoren, Brennelementfabriken und anderer Einrichtungen, in denen mit Kernbrennstoffen umgegangen wird. . In der gegenwärtig in Kraft befindlichen Fassung enthält es auch die Vorschriften zum sogenannten Atomausstieg. Das Atomgesetz ermächtigt zum Erlass von Rechtsverordnungen zur Regelung weiterer atomrechtlicher Fragen. Es gibt zur Zeit folgende neun Verordnungen zum Atomgesetz: Atomrechtliche Verfahrensverordnung (AtVfV) , regelt das Verfahren zur Erteilung einer Genehmigung für Kernanlagen. Strahlenschutzverordnung (StrlSchV) , regelt vor allem den Umgang mit radioaktiven Stoffen, die nicht Kernbrennstoffe sind und darüber hinaus die Angelegenheiten des Strahlenschutzes. Atomrechtliche Zuverlässigkeitsüberprüfungsverordnung (AtZüV)* , regelt, wie die Zuverlässigkeit der in kerntechnischen Einrichtungen beschäftigten Personen überprüft wird. Atomrechtliche Sicherheitsbeauftragten- und Meldeverordnung (AtSMV) , regelt die Stellung des Sicherheitsbeauftragen in einer Kernanlage und das Verfahren bei der Meldung eines meldepflichtigen Ereignisses in so einer Anlage. Atomrechtliche Deckungsvorsorgeverordnung (AtDeckV) , regelt die Deckungsvorsorge (die Haftpflichtversicherung) für Einrichtungen, in denen mit radioaktiven Stoffen umgegangen wird. Atomrechtliche Kostenverordnung (AtKostV) , regelt die Gebühren und Kosten für Amtshandlungen nach dem Atomgesetz. Endlagervorausleistungsverordnung (EndlagerVlV)* , regelt die von den Abfallerzeugern bereits jetzt zu erhebenden Kosten für Planung, Errichtung und Betrieb von Endlagern für radioaktive Stoffe. Atomrechtliche Abfallverbringungsverordnung (AtAV) , regelt die grenzüberschreitende Verbringung radioaktiver Abfälle oder abgebrannter Kernbrennelemente. Die Gorleben-Veränderungssperren-Verordnung (GorlebenVSpV), die den Schutz des möglichen Standortes Gorleben für ein Endlager vor störenden Eingriffen in den Untergrund regelte, trat außer Kraft. Das Strahlenschutzvorsorgegesetz (StrVG) wurde 1986 erlassen, weil sich anlässlich des Tschernobyl-Ereignisses herausstellte, dass das bis dahin vorliegende Recht – auch das Recht der EU – keinen Ansatzpunkt für Maßnahmen gegen die Auswirkungen eines Störfalls in einer außereuropäischen Anlage enthielt. Den Auswirkungen des Ereignisses im Inland wurde daher uneinheitlich und unkoordiniert begegnet. Es ist im Strahlenschutzgesetz (StrSchG) aufgegangen. Das Strahlenschutzgesetz regelt für solche Fälle zwei Aspekte: a) Tritt eine Lage mit erhöhter nicht nur örtlich begrenzter Umweltradioaktivität auf, können die zuständigen Ministerien Rechtsverordnungen für Maßnahmen ergreifen wie das Festlegen der Grenzkonzentration für Waren, die importiert/vermarktet/verarbeitet werden dürfen, das Aussprechen von Empfehlungen für Verhaltensweisen (Meiden bestimmter Lebensmittel oder dergleichen) und so weiter, b) als Grundlage dafür die Errichtung und den Betrieb eines umfassenden bundesweiten Messsystems, damit überhaupt genügend Daten verfügbar sind. Das Strahlenschutzgesetz schreibt daher den Aufbau und Betrieb eines Systems ( Integriertes Mess- und Informationssystem zur Überwachung der Umweltradioaktivität -IMIS- ) vor, mit dem die Radioaktivität in Umweltmedien laufend überwacht wird. Es gibt Bundesgesetze, die sich zwar in der Hauptsache nicht mit radioaktiven Stoffen oder Strahlenschutz beschäftigen, aber dennoch Grundlage für den Erlass weiterer Verordnungen zu dieser Thematik sind. Die Lebensmittelbestrahlungsverordnung (LMBestrV) auf der Grundlage des Lebensmittel-, Bedarfsgegenstände- und Futtermittelgesetzbuches (LFGB) enthält das grundsätzliche Verbot der Behandlung von Lebensmitteln mit ionisierender Strahlung und die Ausnahmeregelungen. Die Verordnung über radioaktive oder mit ionisierenden Strahlen behandelte Arzneimittel (AMRadV) ist eine der Verordnungen auf der Grundlage des Arzneimittelgesetzes (AMG) . Sie regelt die Verkehrsfähigkeit radioaktiver oder mit ionisierender Strahlung behandelter Arzneimittel. Die Kaliumiodidverordnung (KIV) ist eine weitere Verordnung nach dem Arzneimittelgesetz. Sie regelt die Ausnahmen von den Vorschriften des Arzneimittelgesetzes, die erforderlich sind, damit im Notfall Kaliumiodid zur Blockierung der Schilddrüse [Iodblockade] gegen die Aufnahme radioaktiven Iods eingesetzt werden darf. Völlig getrennt und in das Rechtsgebiet “Transportrecht” eingefügt wurden in der Bundesrepublik die Vorschriften zum Transport radioaktiver Stoffe. Hier besteht das deutsche Recht im Wesentlichen auf der Übernahme von internationalem Recht. Eine Übersicht findet man beim Bundesamt für Sicherheit der nuklearen Entsorgung: 1C Transportrecht (Regelungen beim Transport radioaktiver Stoffe) 1F Recht der Europäischen Union
"Kaliumiodidverordnung vom 5. Juni 2003 (BGBl. I Seite 850), die durch Artikel 70 des Gesetzes vom 21. Juni 2005 (BGBl. I Seite 1818) geändert worden ist." Auf Grund des Paragraf 71 Absatz 2 und 3 des Arzneimittelgesetzes in der Fassung der Bekanntmachung vom 11. Dezember 1998 (BGBl. I Seite 3586) in Verbindung mit Paragraf 1 des Zuständigkeitsanpassungsgesetzes vom 16. August 2002 (BGBl. I Seite 3165) und dem Organisationserlass vom 22. Oktober 2002 (BGBl. I Seite 4206) verordnet das Bundesministerium für Gesundheit und Soziale Sicherung im Einvernehmen mit dem Bundesministerium der Verteidigung und dem Bundesministerium des Innern. Hinweis: Das PDF-Dokument sowie die Textversion sind ein Service der juris GmbH (Juristisches Informationssystem für die Bundesrepublik Deutschland). Es handelt sich um eine Verordnung auf nationaler Ebene. Der übergeordnete Rahmen ist die/das KIV.
Wirkungen von Cadmium und seinen Verbindungen Gesundheitliche Beeinträchtigungen durch Cadmium und seine Verbindungen können sowohl nach inhalativer als auch nach oraler Aufnahme verursacht werden, wobei der orale Aufnahmepfad als bedeutsamer einzustufen ist. Die orale Aufnahme erfolgt hauptsächlich über die Nahrung. Ein besonderer Zufuhrpfad ist die inhalative Aufnahme über den Tabakrauch. Cadmium und seinen Verbindungen können nach inhalativer Aufnahme verschiedene gesundheitsschädigende Effekte verursachen. Für alle Kadmiumverbindungen werden hierbei trotz der Unterschiede in der Wasserlöslichkeit annähernd vergleichbare toxische Wirkungen festgestellt. Nur Cadmiumsulfid scheint nach vorliegenden Erkenntnissen eine geringere toxische Wirkung zu besitzen. Im Vordergrund der Cadmium-Toxizität steht dessen chronische Wirkung. Nach langfristiger inhalativer Exposition gegenüber Cadmium sind insbesondere Schädigungen der Lunge, d. h. speziell respirationstoxische Effekte, zu beobachten. Von besonderer Bedeutung sind zudem die möglichen nierenschädigenden Wirkungen. Ferner wirkt Cadmium toxisch auf Leber, Schilddrüse, Pankreas und Speicheldrüsen. Von entscheidender Bedeutung hinsichtlich der gesundheitsschädigenden Wirkungen ist aber die kanzerogene Wirkung von Cadmium und seinen Verbindungen. Aus verschiedenen epidemiologischen Studien an Personen, die beruflich einer inhalativen Cadmiumbelastung ausgesetzt waren, ergab sich ein erhöhtes Risiko für das Auftreten von Lungentumoren. Dabei waren diese Personen verschiedenen Cadmiumverbindungen, wie Cadmiumoxidstaub und -rauch, Cadmiumsulfid und metallischem Cadmium ausgesetzt. In Tierversuchen mit Ratten konnte für mehrere Cadmiumverbindungen eindeutig eine krebserzeugende Wirkung festgestellt werden. Die Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe der Deutschen Forschungsgemeinschaft stuft Cadmium und seine anorganischen Verbindungen als einen Stoff ein, der beim Menschen Krebs erzeugt und bei dem davon auszugehen ist, dass er einen nennenswerten Beitrag zum Krebsrisiko leistet (Krebserzeugende Kategorie 1). Bei der kurzfristigen inhalativen Aufnahme von Cadmium und Verbindungen ist die Lungentoxizität als kritische Wirkung anzusehen. Auch fanden sich in Tierversuchen Hinweise auf fetotoxische und immuntoxische Effekte. Bewertungsmaßstäbe Zur Bewertung der möglichen gesundheitlichen Wirkungen nach langfristiger inhalativer Exposition gegenüber Cadmium ist im Rahmen der Luftreinhalteplanung der Zielwert der 22. BImSchV von 5 ng/m³ maßgebend. Ein Zielwert ist nach 39. BImSchV „ ... ein Wert, der mit dem Ziel festgelegt wird, schädliche Auswirkungen auf die menschliche Gesundheit oder die Umwelt insgesamt zu vermeiden, zu verhindern oder zu verringern, und der nach Möglichkeit innerhalb eines bestimmten Zeitraums eingehalten werden muss.“ Der Zielwert der 39. BImSchV basiert auf dem Zielwert der "Richtlinie 2004/107/EG des europäischen Parlaments und des Rates vom 15. Dezember 2004 über Arsen, Cadmium, Quecksilber, Nickel und polyzyklische aromatische Kohlenwasserstoffe in der Luft". Diese EU-Richtlinie inklusive des Zielwertes für Kadmium wurde durch die 39. BImSchV in bundesdeutsches Recht umgesetzt. Der Länderausschuss für Immissionsschutz 1 (LAI) empfiehlt in seinem Bericht „ Bewertung von Schadstoffen , für die keine Immissionswerte festgelegt sind“ vom September 2004 zur Bewertung von Cadmium-Immissionen den Orientierungswert von 5 ng/m 3 im Rahmen der Sonderfallprüfung nach Nr. 4.8 TA Luft heranzuziehen. Nach Erlass des Ministeriums für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen (MUNLV) vom 18.03.2005 kann dieser LAI-Bericht als Erkenntnisquelle genutzt werden. Der LAI hatte sich bei Ableitung des Orientierungswertes für Kadmium an dem Zielwert der „Richtlinie 2004/107/EG des europäischen Parlaments und des Rates vom 15. Dezember 2004 über Arsen, Cadmium, Quecksilber, Nickel und polyzyklische aromatische Kohlenwasserstoffe in der Luft" orientiert. (Stand: Januar 2022) 1 jetzt Bund/Länder-Arbeitsgemeinschaft Immissionsschutz
Der Unfall von Tschornobyl ( russ. : Tschernobyl) Am 26. April 1986 kam es in Block 4 des Kernkraftwerks Tschornobyl in der Ukraine zu einem schweren Unfall. Dabei wurden erhebliche Mengen radioaktiver Substanzen freigesetzt, die aufgrund hoher Temperaturen des brennenden Reaktors in große Höhen gelangten und sich mit Wind und Wetter über weite Teile Europas verteilten. In der Folge wurden die in einem Umkreis von etwa 30 Kilometern um den havarierten Reaktor lebenden Menschen evakuiert oder zogen aus eigenem Antrieb fort. Messung der Ortsdosisleistung mit einem Handmessgerät am Reaktor von Tschornobyl im Rahmen einer Messübung im Jahr 2016. Zum Zeitpunkt des Unglücks waren die Messwerte weit höher. Am 26. April 1986 ereignete sich im Block 4 des Kernkraftwerks Tschornobyl ( russ. : Tschernobyl) in der Ukraine der bisher schwerste Reaktorunfall in der Geschichte. Die weitreichenden und langwierigen ökologischen, gesundheitlichen – auch psychischen – und wirtschaftlichen Folgen dieses Unfalls stellten die damalige Sowjetunion und später Russland, Belarus und insbesondere die Ukraine vor große Herausforderungen – auch heute noch. Unfallhergang Das Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) gehörte zu einem Reaktortyp, der ausschließlich in der ehemaligen Sowjetunion gebaut wurde. Wesentliche Unterschiede dieses Reaktortyps zu westlichen Reaktoren liegen darin, dass sie Graphit nutzen, um die Geschwindigkeit von Neutronen in der Kernspaltungsreaktion zu reduzieren, und keine druckdichte Beton- und Stahl-Sicherheitshülle um den Reaktorkern, das so genannte Containment, besitzen. Während eines planmäßigen langsamen Abschaltens und eines gleichzeitigen Versuchsprogramms zur Überprüfung verschiedener Sicherheitseigenschaften der Anlage, kam es zu einer unkontrollierten atomaren Kettenreaktion. Dies führte zu einer Explosion des Reaktors, die das rund 1.000 Tonnen schwere Dach des Reaktorbehälters anhob. Mangels Containment lag der Reaktorkern infolge der heftigen Explosion frei, so dass radioaktive Stoffe aus dem Reaktor ungehindert in die Atmosphäre gelangten. Das im Reaktor verwendete Graphit brannte. Bei den Lösch- und Aufräumarbeiten wurden viele Beschäftigte des Reaktors, Feuerwehrleute sowie als "Liquidatoren" bekannte Rettungs- und Aufräumkräfte einer extrem hohen Strahlenbelastung ausgesetzt. Bei 134 von ihnen kam es zu akuten Strahlensyndromen . Die gesundheitlichen – auch psychischen – Folgen des Reaktorunfalls werden bis heute untersucht. Die Freisetzungen radioaktiver Stoffe konnten erst nach 10 Tagen durch den Abwurf von ca. 5.000 Tonnen Sand, Lehm, Blei und Bor aus Militärhubschraubern auf die Reaktoranlage und das Einblasen von Stickstoff zur Kühlung des geschmolzenen Kernbereichs beendet werden. In den Jahren 1986 und 1987 waren über 240.000 Personen als Liquidatoren innerhalb einer 30-Kilometer-Sperrzone rund um den havarierten Reaktor eingesetzt. Weitere Aufräumarbeiten wurden bis etwa 1990 durchgeführt. Insgesamt waren etwa 600.000 Liquidatoren für den Einsatz registriert. Über den Unfallhergang und langfristige Planungen zum Rückbau der Anlage informiert das Bundesamt für Sicherheit in der nuklearen Entsorgung ( BASE ) auf seiner Webseite. Freisetzung von Radioaktivität in die Umwelt Aufgrund des Unfalls gelangten vom 26. April bis zum 6. Mai 1986 in erheblichem Maße radioaktive Stoffe in die Umwelt . Durch den 10 Tage anhaltenden Reaktorbrand entstand eine enorme Hitze. Mit dem thermischen Auftrieb gelangten tagelang große Mengen radioaktiver Stoffe durch das zerstörte Dach der Reaktorhalle in Höhen von vielen Tausenden Metern. Verschiedene Luftströmungen (Winde) verteilten die radioaktiven Stoffe über weite Teile Europas. Sie kontaminierten mehr als 200.000 Quadratkilometer, davon rund 146.000 Quadratkilometer im europäischen Teil der ehemaligen Sowjetunion. Ein Schild warnt im Sperrgebiet vor dem "Roten Wald", einem Gebiet, das nach dem Unfall in Tschornobyl (russ.--russisch: Tschernobyl) am höchsten kontaminiert wurde. Freigesetzt wurden unter anderem radioaktive Edelgase wie etwa Xenon-133, leicht flüchtige Stoffe wie radioaktives Jod, Tellur und radioaktives Cäsium, die sich mit dem Wind weit über die Nordhalbkugel, insbesondere über Europa, verteilten und schwer flüchtige radioaktive Nuklide wie Strontium und Plutonium , die sich vor allem in einem Umkreis von etwa 100 Kilometern um den Unfallreaktor in der Ukraine und in den angrenzenden Gebieten von Belarus ablagerten. Aufgrund ihrer vergleichsweise kurzen Halbwertszeiten waren radioaktives Jod und Xenon-133 drei Monate nach dem Unfall praktisch aus der Umwelt verschwunden. Cäsium-137 und Strontium-90 haben dagegen eine Halbwertszeit von rund 30 Jahren und kontaminieren die Umwelt deutlich länger: 30 Jahre nach dem Unfall in Tschernobyl hat sich die Aktivität dieser radioaktiven Stoffe etwa halbiert. Plutonium -239 und Plutonium -240 haben mehrere Tausend Jahre Halbwertszeit – diese in der näheren Umgebung des Unfallreaktors vorzufindenden radioaktiven Stoffe sind bis heute praktisch nicht zerfallen, ihre Aktivitäten sind etwa so hoch wie 1986. Ende April/Anfang Mai 1986 trafen die radioaktiven Luftmassen des Reaktorunfalls von Tschornobyl ( russ. : Tschernobyl) in Deutschland ein. Aufgrund heftiger lokaler Niederschläge im Süden Deutschlands wurde Süddeutschland deutlich höher belastet als Norddeutschland. Die radioaktiven Stoffe lagerten sich unter anderem in Wäldern, auf Feldern und Wiesen ab – auch auf erntereifem Gemüse und Weideflächen. Über die Folgen für die Umwelt in der näheren Umgebung des Reaktors sowie in Deutschland informiert der Artikel " Umweltkontaminationen und weitere Folgen des Reaktorunfalls von Tschornobyl ". Frühe Schutzmaßnahmen Der Unfall im Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) hatte nicht nur Folgen für die Umwelt , sondern auch massive Auswirkungen auf die Gesundheit und das Leben der Bevölkerung in den am stärksten betroffenen Gebieten in der nördlichen Ukraine, in Belarus und im Westen Russlands. Am 1. Mai 1986 sollte ein Vergnügungspark in Prypjat eröffnet werden. Die Stadt wurde am 27. April 1986 evakuiert; das Riesenrad steht seitdem. Evakuierungen Am Tag nach dem Unfall wurde die Stadt Prypjat evakuiert, sie ist bis heute nicht bewohnt. Das Gebiet in einem Radius von 30 Kilometern rund um das Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) wurde anschließend zum Schutz der Bevölkerung vor hoher Strahlung zur Sperrzone. Die Orte innerhalb der Sperrzone wurden evakuiert und aufgegeben – betroffen davon waren 1986 neben Prypjat auch Tschornobyl, Kopatschi und weitere Ortschaften. Die Sperrzone wurde später anhand der Höhe der Kontamination räumlich angepasst. Insgesamt wurden mehrere 100.000 Personen umgesiedelt (zwangsweise oder aus eigenem Antrieb). Schutz vor radioaktivem Jod Die Zahl der Schilddrüsenkrebserkrankungen stieg nach 1986 in der Bevölkerung von Weißrussland, der Ukraine und den vier am stärksten betroffenen Regionen Russlands deutlich an. Dies ist zum größten Teil auf die Belastung mit radioaktivem Jod innerhalb der ersten Monate nach dem Unfall zurückzuführen. Das radioaktive Jod wurde vor allem durch den Verzehr von Milch von Kühen aufgenommen, die zuvor kontaminiertes Weidegras gefressen hatten. Dies gilt als Hauptursache für die hohe Rate an Schilddrüsenkrebs bei Kindern. Radioaktives Jod wurde außerdem durch weitere kontaminierte Nahrung sowie durch Inhalation mit der Luft aufgenommen. Nach Aufnahme in den Körper reichert es sich in der Schilddrüse an. Wird genau zum richtigen Zeitpunkt nicht-radioaktives Jod in Form einer hochdosierten Tablette aufgenommen, kann verhindert werden, dass sich radioaktives Jod in der Schilddrüse anreichert (sogenannte Jodblockade ). Entsprechende Informationen der zuständigen Behörden gab es in den betroffenen Staaten der ehemaligen Sowjet-Union für die Bevölkerung, insbesondere in ländlichen Gebieten, jedoch nicht – auch nicht darüber, dass potenziell betroffene Lebensmittel, insbesondere Milch, nicht oder nur eingeschränkt verzehrt werden sollte. Dazu kam, dass die betroffene Bevölkerung oft keine Alternativprodukte zur Nahrungsaufnahme zur Verfügung hatte. Schutzhülle am Reaktor Schutzhülle (New Safe Confinement) über dem havarierten Reaktor von Tschernobyl Quelle: SvedOliver/Stock.adobe.com Um die im zerstörten Reaktorblock befindlichen radioaktiven Stoffe sicher einzuschließen und weitere Freisetzungen radioaktiver Stoffe in die Umgebung zu begrenzen, wurde von Mai bis Oktober 1986 eine als "Sarkophag" bekannte Konstruktion aus Beton und Stahl um den zerstörten Reaktor errichtet. Wegen der Dringlichkeit blieb keine Zeit für eine detaillierte Planung. 2016 wurde mit internationaler Unterstützung eine etwa 110 Meter hohe Schutzhülle - das "New Safe Confinement" - über den ursprünglichen Sarkophag geschoben und 2019 betriebsbereit in die Verantwortung der Ukraine übergeben. Die Schutzhülle ist rund 165 Meter lang und besitzt eine Spannweite von ungefähr 260 Metern; ihre projektierte Lebensdauer beträgt 100 Jahre. Der Rückbau des alten Sarkophags sowie die Bergung und sichere Endlagerung des darin enthaltenen radioaktiven Materials stehen als nächste Herausforderung an. Konsequenzen für den Notfallschutz in Deutschland Über die Folgen des Reaktorunfalls von Tschornobyl ( russ. : Tschernobyl) für die Organisation und Umsetzung des radiologischen Notfallschutzes in Deutschland informiert der Artikel " Entwicklung des Notfallschutzes in Deutschland " Medien zum Thema Mehr aus der Mediathek Tschornobyl (russ. Tschernobyl) Was geschah beim Reaktorunfall 1986 in Tschornobyl? In Videos berichten Zeitzeugen. Broschüren und Bilder zeigen die weitere Entwicklung. Stand: 15.01.2025
Einnahme und Wirkung von Jodtabletten Bei einem nuklearen Unfall kann radioaktives Jod freigesetzt werden. Um zu verhindern, dass es sich in der Schilddrüse anreichert, sollte zum richtigen Zeitpunkt nicht-radioaktives Jod in Form einer hochdosierten Tablette aufgenommen werden (sogenannte Jodblockade). Die Einnahme von hochdosierten Jodtabletten schützt ausschließlich vor der Aufnahme von radioaktivem Jod in die Schilddrüse, nicht vor der Wirkung anderer radioaktiver Stoffe. Große Mengen Jod sind auch mit gesundheitlichen Risiken verbunden. Hochdosierte Jodtabletten (auch: "Kaliumjodidtabletten" ) zur Schilddrüsenblockade sollten nur nach ausdrücklicher Aufforderung durch die zuständigen Behörden eingenommen werden. Bei einem Unfall in einem Kernkraftwerk kann es zur Freisetzung radioaktiver Stoffe – darunter auch radioaktivem Jod – kommen. Wird radioaktives Jod eingeatmet oder gelangt über Nahrung bzw. Getränke in den Körper, kann es sich in der Schilddrüse anreichern und die Entwicklung von Schilddrüsenkrebs befördern. Wenn Betroffene zum richtigen Zeitpunkt nicht-radioaktives Jod in Form von hochdosierten Jodtabletten (auch: "Kaliumjodidtabletten" ) einnehmen, können sie verhindern, dass sich radioaktives Jod in ihrer Schilddrüse anreichert: Die Schilddrüse wird mithilfe der Tabletten mit nicht-radioaktivem Jod gesättigt, so dass radioaktives Jod von der Schilddrüse zu einem späteren Zeitpunkt nicht mehr aufgenommen werden kann. Man spricht dabei von einer Jodblockade . Jodtabletten nur nach ausdrücklicher Aufforderung einnehmen Hochdosierte Jodtabletten sollten nur nach ausdrücklicher Aufforderung durch die Katastrophenschutzbehörden eingenommen werden - und nur in der von den Behörden genannten Dosis . Da die Einnahme der hochdosierten Jodtabletten zu Nebenwirkungen führen kann, wird von einer Eigenmedikation dringend abgeraten. Grundsätzlich ist die einmalige Einnahme ausreichend. Weitere Tabletten sollten nur eingenommen werden, wenn die Katastrophenschutzbehörde dies empfiehlt. Der richtige Zeitpunkt ist entscheidend Die gewünschte Wirkung wird nur erreicht, wenn die Tabletten zum richtigen Zeitpunkt eingenommen werden. Werden Jodtabletten zu früh eingenommen, kann das nicht-radioaktive Jod schon wieder abgebaut sein, wenn radioaktives Jod aufgenommen wird. Der Schutz bestünde dann zu früh und wäre nicht ausreichend. Werden Jodtabletten zu spät eingenommen, kann radioaktives Jod zuvor bereits von der Schilddrüse aufgenommen worden sein. Der Schutz käme dann zu spät. Idealerweise werden Jodtabletten etwa eine Stunde vor dem Kontakt mit Luftmassen, die radioaktives Jod enthalten, eingenommen. Der richtige Zeitpunkt der Einnahme wird in einem Notfall von den Katastrophenschutzbehörden über die Medien bekannt gegeben. Regionale Empfehlungen zur Einnahme Ob in einer Region nach einem nuklearen Unfall dazu aufgefordert wird, hochdosierte Jodtabletten einzunehmen, hängt davon ab, ob radioaktives Jod mit der Luft in diese Region gelangen kann. Das ist wiederum davon abhängig, wieviel radioaktives Jod freigesetzt wird, wie weit der Unfallort entfernt liegt und wie die Wind- und Wetterverhältnisse sind. Beispielsweise werden im Umkreis von Kernkraftwerken im Fall eines nuklearen Unfalls hochdosierte Jodtabletten verteilt. Wie groß der Umkreis ist, richtet sich nach der Schwere eines Unfalls. Bei einem Unfall mit erheblicher Freisetzung von radioaktivem Jod kann es sein, dass für Erwachsene die Einnahme von Jodtabletten bis zu einer Entfernung von 100 Kilometern und für Kinder in ganz Deutschland empfohlen wird. Jodtabletten für Personen bis 45 Jahre sinnvoll, auch Schwangere und Kinder Grundsätzlich sollten nach ausdrücklicher Aufforderung durch die Katastrophenschutzbehörden in den betroffenen Gebieten alle Personen bis 45 Jahre hochdosierte Jodtabletten einnehmen, die Dosierung hängt vom Alter ab. Da die Schilddrüse insbesondere bei Kindern und Jugendlichen bis 18 Jahre besonders empfindlich ist, ist für Kinder und Jugendliche die Einnahme von Jodtabletten besonders wichtig. Bei Schwangeren dient die Einnahme von Jodtabletten insbesondere dem Schutz des ungeborenen Kindes. Personen über 45 Jahre wird von einer Einnahme von Jodtabletten zur Schilddrüsenblockade abgeraten. Für sie überwiegen die Risiken von Nebenwirkungen den Nutzen der Vermeidung eines erhöhten Risikos für Schilddrüsenkrebs. Jodtabletten riskant bei Schilddrüsenerkrankungen Die Einnahme der hochdosierten Jodtabletten ist auch mit gesundheitlichen Risiken verbunden. In Deutschland leidet ein nennenswerter Anteil der Erwachsenen an einer latenten Hyperthyreose, das heißt, an einer Überfunktion der Schilddrüse ohne Krankheitszeichen. Diese latente Hyperthyreose kann durch Einnahme hoher Dosen von Kaliumjodid in eine Hyperthyreose mit Krankheitszeichen übergehen. Die Krankheitszeichen können bis hin zu akutem Herz-Kreislauf-Versagen reichen. Weitere Nebenwirkungen, wie eine Überempfindlichkeit gegen Jod, sind bekannt. Personen, bei denen eine Schilddrüsenerkrankung bekannt ist, sollten Jodtabletten erst nach Rücksprache mit dem behandelnden Arzt einnehmen. Wo gibt es Jodtabletten? Für die Lagerung und Verteilung von hochdosierten Jodtabletten sind in Deutschland die Bundesländer zuständig. In der direkten Umgebung eines Kernkraftwerkes sind hochdosierte Jodtabletten je nach Bundesland entweder direkt an alle Haushalte vorverteilt oder sind zum Beispiel in Rathäusern oder Feuerwehrhäusern lokal gelagert. Darüber hinaus werden mehr als 180 Millionen hochdosierte Jodtabletten an verschiedenen Standorten im Land gelagert. Im Ereignisfall werden sie an Feuerwehrwachen, Rathäusern, Apotheken oder bekannten Wahllokalen an die Bevölkerung abgegeben. Die Bürger werden rechtzeitig durch Aufruf in den Medien aufgefordert, ihre Tabletten in diesen Ausgabestellen abzuholen. Über die Organisation und die geplanten Abläufe informieren Sie sich bitte bei Ihrer Katastrophenschutzbehörde . Medien zum Thema Mehr aus der Mediathek Strahlenschutz im Notfall Auch nach dem Ausstieg Deutschlands aus der Kernkraft brauchen wir einen starken Notfallschutz. Wie das funktioniert, erklärt das BfS in der Mediathek. Stand: 14.02.2024
Warum werden bei einem nuklearen Notfall Jodtabletten verteilt? Wird bei einem nuklearen Unfall radioaktives Jod freigesetzt, kann dieses eingeatmet werden oder über Nahrung bzw. Getränke in den Körper gelangen. Jod ist ein lebensnotwendiges Spurenelement. Die Schilddrüse benötigt Jod für die Herstellung von Schilddrüsenhormonen. Lagert die Schilddrüse allerdings radioaktives Jod ein, begünstigt dies eventuell die Entwicklung von Schilddrüsenkrebs. Nehmen Betroffene rechtzeitig stabiles Jod in Form von hochdosierten Jodtabletten ein, können sie eine Erkrankung verhindern: Die mit nicht-radioaktivem Jod gesättigte Schilddrüse nimmt das radioaktive Jod dann nicht mehr auf und wird so wesentlich weniger mit Strahlung belastet. Man spricht dabei von einer Jodblockade. Dies ist insbesondere für Kinder und Jugendliche bis 18 Jahren wichtig, da deren Schilddrüse empfindlicher ist als die von Erwachsenen. Bei Schwangeren dient die Einnahme von Jodtabletten insbesondere dem Schutz des ungeborenen Kindes. Die Einnahme von Jodtabletten sollte aufgrund der damit verbundenen Risiken (Nebenwirkungen) nur nach ausdrücklicher Aufforderung durch die zuständigen Katastrophenschutzbehörden erfolgen.
Was geschieht, wenn bei einem Störfall Radioaktivität austritt oder auszutreten droht? Gelangen radioaktive Stoffe in die Umgebung, können sie von Menschen eingeatmet oder mit der Nahrung aufgenommen werden. Darüber hinaus senden sie beim Zerfall ionisierende Strahlung aus, die Körperzellen zerstören oder verändern kann. Der behördliche Katastrophenschutz beinhaltet schadenbegrenzende Maßnahmen wie etwa die Empfehlung zum Aufenthalt in geschlossenen Räumen, die Empfehlung zum Verlassen des voraussichtlichen Gefährdungsgebiets, die Einnahme von hochdosierten Jodtabletten, damit gefährdete Bevölkerungsgruppen kein radioaktives Jod in die Schilddrüse aufnehmen, oder andere Maßnahmen, wie zum Beispiel die Empfehlung, keine radioaktiv kontaminierten Nahrungsmittel zu sich zu nehmen.
Notfallschutz Textfassung des Videos " Notfallschutz " "Auch sechs Jahre nach dem schweren Reaktorunfall ist die Umgebung von Fukushima unbewohnbar." Was ist, wenn auch im nahegelegenen Kernkraftwerk ein Unfall passiert, fragt sich Anna. Ihr Vater Ernst ist bei der freiwilligen Feuerwehr und kennt sich aus. Was machen die Behörden im Notfall ? Der Plan sieht so aus. "Im Kernkraftwerk Langenheim ist es zu einem schwerwiegenden Unfall gekommen. Lassen Sie Radio- und Fernsehgeräte eingeschaltet. Wenn eine Freisetzung von radioaktiven Stoffen droht, werden Sie sofort informiert. Alle Mitarbeiter von Feuerwehr, Polizei und Rettungskräften haben sich zu den Sammelplätzen zu begeben." Die Bundesregierung aktiviert das Radiologische Lagezentrum, zu dem auch das Bundesamt für Strahlenschutz gehört. Vor Ort bilden die Landesbehörden einen Katastrophenschutzstab. Wenn die Gesundheit der Bevölkerung gefährdet ist, wird Katastrophenalarm ausgelöst. Je nach Abstand zum Kernkraftwerk und den Auswirkungen des Unfalls sind verschiedene Maßnahmen vorgesehen. In unserem Beispiel treibt ein schwacher Wind große Mengen an radioaktiven Stoffen in östliche Richtung. In der Kernzone bis 5 km Entfernung zum Kraftwerk wird die Bevölkerung so schnell wie möglich evakuiert. Anna wohnt etwa 20 km südöstlich vom Kraftwerk. Dieser Bereich liegt in der sogenannten Mittelzone und momentan außerhalb der Ausbreitungsrichtung der radioaktiven Stoffe. Dort werden jetzt vorsorglich Jodtabletten ausgegeben. "Bleiben Sie in Ihren Häusern, schließen Sie Fenster und Türen. Informieren Sie sich über Radio, Fernsehen und Internet." Zur gleichen Zeit im Radiologischen Lagezentrum des Bundes. Es gibt neue Informationen. Die Situation im Kernkraftwerk hat sich verschlechtert. Das bedeutet: Mehr radioaktive Stoffe gelangen in die Umwelt. Außerdem soll am Nachmittag der Wind drehen. Mit den neuen Daten aktualisiert das Bundesamt für Strahlenschutz die Prognosen für das radiologische Lagebild. Die Länder passen ihre Maßnahmen an. "Vermeiden Sie weiterhin einen Aufenthalt im Freien. Nehmen Sie jetzt Ihre Jodtabletten ein." Warum sind die Jodtabletten wichtig? Zu den Stoffen, die freigesetzt werden, gehört auch radioaktives Jod. Die Schilddrüse kann dieses radioaktive Jod aufnehmen. Dort kann es den Körper schädigen. Die Jodtabletten versorgen die Schilddrüse mit soviel normalem Jod, dass sie kein radioaktives Jod mehr aufnehmen kann. Der Katastrophenschutzstab entscheidet vorsorglich weitere Orte zu evakuieren. In einer Notfallstation werden die Menschen untersucht und ärztlich betreut. Was geschieht in den übrigen Landesteilen? Das Bundesamt für Strahlenschutz betreibt ein bundesweites Messnetz aus Sonden, die rund um die Uhr die radioaktive Belastung am Boden messen. Ihre Daten werden unmittelbar ausgewertet und bei einem Unfall durch Messungen aus Hubschraubern und aus Fahrzeugen ergänzt. Auch noch lange nach einem Unfall werden frische Lebensmittel, insbesondere Milch und Blattgemüse, auf radioaktive Kontamination überprüft. Belastete Lebensmittel müssen entsorgt werden, eventuell auch Teile des Bodens. Es wird noch solange gemessen, bis die Radioaktivität auf einen normalen Wert gesunken ist. Soweit der Katastrophenschutzplan. Für Anna bedeutet das: Falls es wirklich einen Unfall im Kernkraftwerk geben sollte, wird schnell reagiert. Die Maßnahmen im Katastrophenschutz greifen ineinander und die Behörden sind vorbereitet. Stand: 12.12.2019
Origin | Count |
---|---|
Bund | 58 |
Land | 3 |
Type | Count |
---|---|
Förderprogramm | 39 |
Gesetzestext | 2 |
Text | 5 |
unbekannt | 15 |
License | Count |
---|---|
geschlossen | 18 |
offen | 43 |
Language | Count |
---|---|
Deutsch | 61 |
Englisch | 6 |
Resource type | Count |
---|---|
Dokument | 4 |
Keine | 44 |
Webseite | 14 |
Topic | Count |
---|---|
Boden | 27 |
Lebewesen & Lebensräume | 61 |
Luft | 27 |
Mensch & Umwelt | 60 |
Wasser | 29 |
Weitere | 59 |