API src

Found 732 results.

Related terms

Optimierung einer 2-stufigen Klaeranlage einer Kartoffelstaerkefabrik

Ein Schwerpunkt bei der Loesung der abwassertechnischen Probleme einer Kartoffelstaerkefabrik war die Ertuechtigung der zweistufigen Klaeranlage der Fabrik. Das Abwasserbehandlungskonzept der Fabrik wurde mehrmals geaendert, ausgehend von der Verregnung von Kartoffelrestfruchtwasser, der Abwasserbehandlung in Teichen und spaeter auch einer zweistufigen Anlage bis zu internen Massnahmen zur Reduktion der Schmutzfrachten wie Eindampfung des Kartoffelrestfruchtwassers. Die sehr strengen Ablaufanforderungen (NH4-N kleiner 3 mg/l, NO3-N kleiner 8 mg/l, ges. P kleiner 1 mg/l) und die Tatsache, dass die extrem knapp ausgelegte zweistufige Klaeranlage nur einstrassig ausgefuehrt ist, verlangen eine sehr intensive Betreuung und Ueberwachung der Anlage. Aufgrund des sehr niedrigen N/CSB-Verhaeltnisses im Zulauf waehrend der Kampagne, jedoch des N-Ueberhanges bei gleichzeitiger geringer Temperatur im Belebungsbecken nach dem Ende bzw. ausserhalb der Kampagne wird waehrend der Kampagne Stickstoff fuer das Wachstum der Nitrifikanten zudosiert. Mit Hilfe von Sauerstoffverbrauchsmessungen im Betriebslabor wird die Nitrifikationskapazitaet des Schlammes bestimmt. Die Abwasserteiche stehen als Puffer bzw. bei Betriebsschwierigkeiten zur Verfuegung.

Entwickung von Lamellen zur Feststoffvorabtrennung im Belebungsbecken und erstmalige Installation und Erprobung auf der Kläranlage Wuppertal-Buchenhofen

Untersuchung zur biologischen Entfernung von Phosphor aus Abwasser

Durch geeignete Kombination von anaeroben und aeroben Bedingungen, denen Belebtschlamm ausgesetzt wird, gelingt es, P weitgehend durch biologische Aufnahmen aus dem Abwasser zu entfernen. Die beeinflussenden Faktoren fuer die biologische P-Entfernung sowie die Kombination mit der chemischen Faellung wurden auf verschiedenen Klaeranlagen untersucht.

Schlammindexvorhersage mittels künstlicher Intelligenz zum effizienteren Ressourceneinsatz in der Abwasserbeseitigung

Mit der Abwasserbehandlung auf Kläranlagen gehen eine Vielzahl von chemischen und biologischen Prozessen simultan einher. Diese sich gegenseitig beeinflussenden Prozesse, deren Auswirkungen, wenn sich bestimmte Parameter im Prozess ändern und wie Veränderungen vorhergesagt werden können, stellt die Betreiber der Anlagen zum Teil vor große Herausforderungen. Die meisten Einflüsse auf den Prozess bei sich ändernden Umständen sind bereits bekannt, lassen sich aber nur mit großem Aufwand darstellen. Im laufenden Betrieb fällt eine große Anzahl an Messparametern mit entsprechenden Daten an, die zentral abgespeichert werden. Hierbei handelt es sich zum einen um fest eingestellte Betriebswerte, zum anderen aber auch um Daten zu Verbräuchen und sich in Abhängigkeit der Prozesse ergebende Daten. Diese Daten stehen dabei meistens direkt bzw. indirekt in Beziehung zueinander. Bedingt durch die sehr großen Mengen an Daten war es bisher nur sehr schwer möglich, alle anfallenden Messwerte hinsichtlich eines Zielparameters auszuwerten. Eine Möglichkeit zur Analyse, die in den letzten Jahren mehr Beachtung gewinnt, besteht über die Nutzung von künstliche Intelligenz (KI), die durch tausende Rechenoperationen pro Sekunde Muster aufdecken kann. Über die Auswertung historischer Daten kann mit Nutzung der KI ein mathematischer Zusammenhang hergestellt werden. Dieser Zusammenhang soll für die Erstellung zukünftiger Prognosemodelle verwendet werden. Das zum Einsatz kommende Prognosemodell beruht dabei auf einem Digitalen Zwilling der Kläranlage, welcher, verbunden über die Sensoren der Kläranlage, diese virtuell abbildet und in Echtzeit mit seinem wirklichen Vorbild vernetzt ist. Diesem Vorgehen liegt der pragmatische Annahme zugrunde, dass der genaue Einfluss eines bestimmten Parameters zunächst nicht bekannt sein muss, sofern er mathematisch beschrieben werden kann. Das erstellte Modell kann dann beliebig auf Zielparameter eingestellt werden. Im Zuge des Forschungsvorhabens soll dieser Ansatz für die Anwendbarkeit einer möglichen Prognose der Absetzbarkeit des Belebtschlamms vorgenommen werden, explizit der Schlammindexvorhersage (ISV) im Belebtschlammverfahren.

Automation biologischer Klaeranlagen

Mit dem Instrumentarium der Systemanalyse werden die Moeglichkeiten zur Automation des Belebtschlammverfahrens untersucht. Es werden mathematische Modelle fuer das Belebungsbecken und das Nachklaerbecken entwickelt und an Messwerten geeicht. Auf der Basis dieser Modelle werden Strategien zur automatischen Steuerung berechnet und auf der Klaeranlage Donaueschingen erprobt.

Wirkung von Fällmitteln auf Sedimentation, Biozönose und Physiologie von Belebtschlämmen

Optimierte Rührwerke für Biogasfermenter und Anlagen zur biologischen Abwasser- und Reststoffbehandlung, Teilvorhaben: Bewertung der Misch- und Strömungseigenschaften mittels Prozess-Tomographie

Ziel des skizzierten Projekts ist die Definition neuartiger Kriterien für den Rührerfolg in Abwasser- und Abfallbehandlungsanlagen basierend auf messbaren Prozessparametern und die Entwicklung von Technologien, die die energetische Optimierung in diesen Anlagen über den Stand der Technik hinaus ermöglichen. Die zu entwickelnden technologischen Komponenten umfassen ein qualifiziertes, multiparametrisches Messwerkzeug zur räumlichen Charakterisierung von Rührvorgängen in Großanlagen ein auf die Prozessverhältnisse im Behälter angepasstes und strömungstechnisch optimiertes Rührwerkspropeller, ein webbasiertes Auslegungs- und Optimierungswerkzeug für Biogas- und Faulbehälter. Weiteres Projektziel ist die Vorbereitung technischer Richtlinien für einen verfahrenstechnisch und energetisch optimierten Betrieb in biologischen Abwasser- und Reststoffbehandlungsanlagen. Drei spezifische Anwendungsfelder sollen untersucht werden, nämlich Belebungsbecken, Biogasreaktoren und Faulbehälter. Im Ergebnis des Projektes wird eine Minimierung des zur Durchmischung bei der Abwasserbehandlung und Bioabfallverwertung erforderlichen Energieaufwandes um circa 20 % angestrebt.

Mikrobielle Granula und Biofilm-Aggregate als Medien zur Übertragung spezieller metabolischer Eigenschaften in heterogene Mischkulturen

Bakterien mit speziellen strukturbildenden oder metabolischen Fähigkeiten (z.B. Flockenbildner, Nitrifikanten, CKW-Abbauer) werden in Bioaggregaten (Granula, Biofilme) angereichert und dann in Reaktoren zur biologischen Abwasserreinigung eingemischt. Durch Übertragung der neuen Fähigkeiten in die autochtone Lebensgemeinschaft (Bioaugmentation) soll die Einarbeitung des biologischen Systems und dessen Anpassung an geänderte Prozessbedingungn beschleunigt werden. Bedeutungsvoll ist ein solcher steuernder Eingriff dann, wenn die benötigten Bakterienarten sich nur sehr langsam vermehren (z.B. Nitrifikanten; Bio-P Bakterien), beim Anfahren einer Belebungs- oder Biofilmanlage, bei Regeneration der Anlage nach einem Unfall, wenn Abwässer mit ungewöhnlicher Zusammensetzung zu reinigen sind (z.B. spezielle Prozessabwässer aus der Industrie) oder Abwässer mit stark wechselnder Fracht und Zusammensetzung (z.B. Abwasser aus Firmen mit Kampagnenbetrieb, Abwasser aus touristischen Objekten). Es wird zunächst darum gehen, spezielle Anreicherungskulturen in Granula-Form heranzuzüchten. Nach Zudosieren der Granula in eine Modell-Belebungsanlage soll beobachtet werden, wie sich die Granula im System verhalten, ob sich die mit den Granula importierten Arten in der Mischkultur verbreiten, bzw. ob es durch Gentransfer zu einer Verbreitung der speziellen Fähigkeiten kommt.

Oekologische Untersuchungen an Modelltropfkoerpern und Modellbelebtschlammanlagen

Artenzusammensetzung im Verlauf des Fliessweges und in Abhaengigkeit der Naehrstoffsituation; Leistungsfaehigkeit des biologischen Bewuchses.

Einfluss von Temperaturbedingungen auf das Wachstum von Legionellenarten in komplexen biologischen Systemen der Abwasserbehandlung

Pathogene Legionellenarten, wie Legionella pneumophila, können die Legionärskrankheit, eine schwere Lungeninfektion mit einer Sterblichkeit von 5-10 %, verursachen. Sie werden durch das Einatmen von Legionellen-kontaminierten Aerosolen aus künstlichen Wassersystemen, wie zum Beispiel Kühltürme, Trinkwassernetzwerke und Kläranlagen, übertragen. Die Legionärskrankheit hat in Europa in der Zeit von 2015 bis 2019 um 65 % zugenommen. Es ist davon auszugehen, dass die Legionärskrankheitsfälle, die aus Kläranlagen entspringen, aufgrund der zunehmenden Wiederverwendung von Abwasser und wegen des Klimawandels weiter steigen werden. Das Letztere wird sich insbesondere auf die Abwassertemperaturen und die mikrobielle Zusammensetzung von Abwässern auswirken. Eine Lösung zur Verhinderung der Legionellenvermehrung in Kläranlagen mit warmen Abwassertemperaturen (>23 °C) steht mangels Grundlagenforschung nach unserem Kenntnisstand nicht zur Verfügung. Das Ziel dieses Antrages ist es, die Temperaturbedingungen zu definieren, die das Wachstum von pathogenen Legionella spp. aus Kläranlagen begünstigen, unter Berücksichtigung konstanter und dynamischer Temperaturverhältnisse. Dafür sollen Isolate aus behandeltem Abwasser oder Belebtschlamm von fünf verschiedenen Kläranlagen, die warme Abwässer behandeln, bei fünf verschiedenen Temperaturen zwischen 20 °C und 40 °C kultiviert werden. Um die Wirkung dynamischer Temperaturbedingung zu untersuchen, soll die Temperatur in der Mitte der exponentiellen Wachstumsphase um 5 °C innerhalb einer kurzen Zeitspanne erhöht werden. Die Wachstumsparameter der getesteten Legionellenarten sollen vor und nach der Störung verglichen werden. Aufgrund unserer Erfahrungen bei vergangenen Überwachungsprojekten von Legionella spp. in Kläranlagen wurde ein schneller Temperaturanstieg von 5 °C ausgewählt. Die isolierten Legionellenarten sollen anhand der Kultivierungsmethode aus der biologischen Behandlungsstufe gewonnen werden. Die Arten der Isolate und die Legionellendiversität in der biologischen Stufe soll durch eine gattungsspezifische Next-Generation-Sequencing identifiziert werden. Für das Temperaturexperiment werden Isolate ausgewählt, die sowohl die Kerngemeinschaft der Legionellen, die in allen fünf Kläranlagen vorhanden ist, als auch die einzigartigen Stammtypen, die nur in bestimmten Kläranlagen vorkommen, abdecken. Die Integration der Ergebnisse der Abwasser-/Kläranlagencharakterisierung, der Legionellendiversität und des temperaturabhängigen Wachstums von den Legionellenisolate wird unser Verständnis über die Rolle von Kläranlagen als ökologische Nische für das Legionellenwachstum verbessern. Unsere Erkenntnisse können verwendet werden, um die Überwachung von Legionellen in Kläranlagen zu verbessern und sie sollen die Entwicklung von Strategien zum Umgang mit plötzlichen Temperaturänderungen in Kläranlagen und Abwasserwiederverwendungsanlagen unterstützen.

1 2 3 4 572 73 74