API src

Found 66 results.

Betriebsstabile Deammonifikation mit Swinging Redox

Seit dem Jahr 2009 werden an der Technischen Universität München, vom Lehrstuhl für Siedlungswasserwirtschaft, Untersuchungen zur Deammonifikation im SBR durchgeführt, bei der mittels Intervallsteuerung und spezieller Regelstrategie das gleichmäßige Schwingen des Redoxpotentials (ORP) im Fokus steht. Postuliert wird bei dieser Methode die Unterstützung eines enzymgebundenen Ladungsaustauschs zur Regeneration der Biozönose im wechselnden Milieu von Oxidation und Reduktion. Die ORP-Amplituden zeigen während der aeroben und anoxischen Phasen typische Signale, die mit den Stickstoff-Konzentrationen korrelieren. Als Resümee ist herauszustellen, dass der Prozess mit Kläranlagen-Belebtschlamm und deammonifizierendem Schlamm aus vorangegangenen Untersuchungen angefahren werden kann. Gesamtstickstoff-Abbaugrade von 90 % werden bei einer Betriebs-Temperatur von 30 °C und Belastung von mehr als 380 gN/(m3 d) erreicht. Nach zwei Jahren Betriebserfahrung mit der Behandlung von KA-Zentraten aus Garching und Ingolstadt in mehreren 150 l SBR-Technikumsanlagen wurde von 2010 bis 2012 im Klärwerk Landsberg an einer Pilotanlage mit 20 m3 SBR eine automatische Steuerung entwickelt, die eine betriebsstabile Prozessführung ermöglicht. Seitdem sind im Rahmen von Master- und Studienarbeiten die optimalen Betriebsbereiche zur Deammonifikation im Technikum präzisiert worden. Um Substrat-Hemmung sowie Nitrat-Akkumulation zu vermeiden, ist bei der Prozessregelung strickt auf Konzentrationsgradienten und ORP-Amplituden-Grenzwerte zu achten. Für die Einfahrphase hat sich die Zugabe von einem Viertel Kläranlagen-Zulauf zum Zentrat bewährt, um besonders im Teillastbereich ein ausreichendes Reduktionspotential vorzugeben. Weitere Additive sind im Regelbetrieb nicht erforderlich. Die jüngsten Ergebnisse zeigen, dass bei Voll-Last, das heißt bei einer Abbauleistung von mehr als 360 gN/(m3 d) und Zulaufkonzentrationen von 1.400 mg/l NH4-N, auch die Nitrat-Konzentration im Ablauf auf weniger als 5 % reduziert werden kann. Mit der Online-Messung von ORP, LF und pH ist der Prozess stabil zu führen. Ammonium, Nitrat und TS werden zwei bis dreimal pro Woche gemessen.

IWaTec - Integrated Water Technologies

Egypt passed a revolution and changed its political system, but many problems are still lacking a solution. Especially in the field of water the North African country has to face many challenges. Most urgent are strategies to manage the limited water resources. About 80% of the available water resources are consumed for agriculture and the rest are for domestic and industrial activities. The management of these resources is inefficient and a huge amount of fresh water is discarded. The shortage of water supply will definitely influence the economic and cultural development of Egypt. In 2010, Egypt was ranked number 8 out of 165 nations reviewed in the so-called Water Security Risk Index published by Maplecroft. The ranking of each country in the index depends mainly on four key factors, i.e. access to improved drinking water and sanitation, the availability of renewable water and the reliance on external supplies, the relationship between available water and supply demands, and the water dependency of each countrys economy. Based on this study, the situation of water in Egypt was identified as extremely risky. A number of programs and developed strategies aiming to efficiently manage the usage of water resources have been carried out in the last few years by the Egyptian Government. But all these activities, however, require the availability of trained and well-educated individuals in water technology fields. Unfortunately, the number of water science graduates are decreasing and also there are few teaching and training courses for water science offered in Egypt. However, there is still a demand for several well-structured and international programs to fill the gap and provide the Egyptian fresh graduates with the adequate and up-to-date theoretical and practical knowledge available for water technology. IWaTec is designed to fill parts of this gap.

Verbesserung der Klaerschlamm-Konditionierung

Produktion der Zukunft, ReNOx 2.0: Simultane Rückgewinnung von Nährstoffen (NH4+ & PO43-) aus biogenen Roh- und Abwässern

Biogene Roh- und Abwässer enthalten große Mengen gelöster Nährstoffe (NH4+ & PO43-), welche derzeit unter hohem Energie- und Kosteneinsatz, z.B. in Kläranlagen, entfernt werden müssen. Im Projekt 'ReNOx 2.0' werden die Möglichkeiten zur simultanen Rückgewinnung und industriellen Verwertung von NH4+ und PO43- erforscht. Dafür wird ein zeolithbasiertes, hybrides Verfahren ('Ionentauscher-Loop-Stripping'; kurz 'ILS') genutzt, welches im Vorgängerprojekt 'ReNOx' entwickelt und bereits erfolgreich an kommunalen Kläranlagen zur NH4+-Rückgewinnung aus Trübwasser eingesetzt wurde. In 'ReNOx 2.0' wird dieses Verfahren zur gleichzeitigen Phosphorrückgewinnung weiterentwickelt und zusätzlich auf neue Anwendungsfeldern ausgeweitet (Gärreste, Gülle, Deponiesickerwasser, industrielle Abwässer). Im Vorgängerprojekt zeigte sich, dass die komplexen Wechsel-wirkungen konkurrierender Ionen in Abwässern eine Weiterentwicklung des Ionentauschermaterials Zeolith und die zugehörige Anpassung des Verfahrens erfordern, um auf die Anforderungen neuer Medien reagieren zu können. Die Ziele des Projektes 'ReNOx 2.0' sind daher 1.) die Erweiterung der Einsatzbereiche des ILS-Verfahrens, 2.) die Steigerung der NH4+-Rückgewinnung durch gezielte Optimierung des eingesetzten Zeoliths, 3.) die Erforschung der Fixierung und energieschonenden, nasschemischen Rückgewinnung von gelöstem Phosphor mit Hilfe des gezielt modifizierten Zeoliths und 4.) die Prozessintensivierung durch simultane Abscheidung und selektive Rückgewinnung von NH4+ und PO43- innerhalb eines einzigen, prozesstechnisch optimierten Verfahrens (=ILSplus-Verfahren). Dazu wird optimierter Zeolith nach einem neu zu entwickelnden Prozess im Labormaßstab hergestellt und zur simultanen NH4+/PO43--Rückgewinnung aus realen Medien erprobt. Anschließend wird eine bestehende, mobile Pilotanlage im Containermaßstab gezielt adaptiert und die N&P-Rückgewinnung an unterschiedlichen Standorten in Einsatzumgebung erprobt. Begleitet werden die Versuche von einer umfassenden Modellierung des Gesamtprozesses inklusive einer Bewertung der industriellen Umsetzbarkeit des Verfahrens. Die erzeugten Produkte werden im Sinne einer biobasierten 'circular economy' auf ihre Verwendbarkeit als industrielle N-P-Dünger bzw. in anderen, zu erarbeitenden Anwendungsfeldern hin untersucht und eine Analyse der Auswirkungen auf branchenspezifische und nationale Stoffkreisläufe und Wertschöpfung vorgenommen. Das international zusammengesetzte Konsortium des Projekts 'ReNOx 2.0' besteht aus Forschungseinrichtungen, Anlagenbauunternehmen, Rohstofflieferanten sowie potentiellen Anwendern des Verfahrens und Nutzern der Produkte, wodurch die gesamte Prozesskette abgebildet und interdisziplinär beforscht wird. Nach Abschluss von 'ReNOx 2.0' soll die zukünftige Vermarktung von kompakten Nachrüstanlagen zur wirtschaftlichen Rückgewinnung von überschüssigem NH4+ und PO43- aus bisher nicht genutzten Quellen durch den Anlagenbaupartner möglich sein (Text gekürzt)

Technologische Weiterentwicklung des Verfahrens zur Rückgewinnung von Phosphor aus Klärschlamm mittels CO2-Extraktion (Budenheim ExtraPhos®-Verfahren)

Zielsetzung und Anlass des Vorhabens: Die Chemische Fabrik Budenheim hat in Zusammenarbeit mit dem Frauenhofer Institut und der Frauenhofer Projektgruppe für Wertstoffkreisläufe und Ressourcenstrategie ein Verfahren zur Rückgewinnung von Phosphor aus Klärschlamm entwickelt und im Labor und Technikumsmaßstab getestet. Rotaria wurde als Anlagenbauer mit der Errichtung der Pilotanlage betreut. Eine damit vergleichbare Anlage existiert bisher nicht. Daher ergaben sich im Rahmen der Umsetzung Fragen zur anlagen- und maschinentechnischen Weiterentwicklung. Im Rahmen der Umsetzung wurden eigene Ideen zur Optimierung des Verfahrens sowie zur Anlagentechnik entwickelt, mit dem Ziel das Verfahren insbesondere Richtung Energiebedarf und Phosphorausbeute zu verbessern. Hier besteht noch Forschungs- und Entwicklungsbedarf. Gegenstand des Projektes ist die anlagentechnische Weiterentwicklung der CO2-Einbringung und Extraktion, der optimale Einsatz von Fällungs- und Flockungsmitteln, sowie der Trennung von Schlamm und Trübwasser und der letztendlich erfolgreichen Abscheidung des durch Kalkmilch gefällten Dicalciumphosphats.

WavE - HypoWave: Einsatz hydroponischer Systeme zur ressourceneffizienten landwirtschaftlichen Wasserwiederverwendung, Teilprojekt 6

In HypoWave wird erstmals ein hydroponisches System zur Pflanzenproduktion untersucht, das mit speziell für den Einsatz in diesem System aufbereitetem kommunalem Abwasser betrieben wird und ohne ein Substrat zur Verankerung der Pflanze auskommt. Ziel ist es, ausgehend von einer Pilotierung in Wolfsburg und unter Berücksichtigung der nötigen Governance ein hydroponisches System zu entwickeln, bei dem eine optimale Nährstoffaufnahme der Pflanzen bei gleichzeitiger Minimierung von Schadstoffen wie Schwermetallen, organischen Spurenstoffen oder pathogenen Keimen im Produkt gewährleistet ist. Zugleich erlaubt dieses System durch die Wiederverwendung eine Verbesserung der Wasserverfügbarkeit. Mittels Fallstudien und einer Wirkungsabschätzung wird untersucht, wie sich die Anforderungen verschiedener Standorte unterscheiden und wo sich Einsatzmöglichkeiten und Marktsegmente für das hydroponische System abzeichnen. Das AVB-Teilvorhaben konzentriert sich auf die Schnittstelle zwischen Forschung und Praxis. AVB besitzt langjähriges Wissen im Bereich der Abwasserverwertung in der Landwirtschaft. Dieses Wissen stellt er in Form von Beratung und Unterstützung zur Verfügung. AVB begleitet die Pilotierung und übernimmt die Schwermetallanalytik. Zudem liefert AVB Stoffströme für das Nährstoffmanagement (AP2): AVB baut eine Nährstoffrückgewinnungsanlage (MAP-Fällung & Ammonium-Strippung) zur Entfrachtung des Zentrates aus der Schlammentwässerung; auch wird in einer neu errichteten Schule Urin separiert. Zusätzlich bringt AVB sein Wissen und seine Kontakte in den Stakeholderdialog und die Ergebnisverwertung ein.

Teilprojekt H^CLIENT China: SINOWATER: Good Water Governance, Management und innovative Technologien zur Verbesserung der Wasserqualität in zwei bedeutsamen chinesischen Gewässern^Teilprojekt J^Teilprojekt I, Teilprojekt G

A novel tool to trace fire-derived organic matter deposition in a high-resolution sedimentary record of the past 250 years

Black carbon (BC) residues from the incomplete combustion of vegetation and fossil fuels are ubiquitous in soil, sediment and water. Due to its stability, BC is an important component of the slow cycling global carbon pool. Analysis of BC in environmental matrices such as soils and sediments is complicated by its diverse nature. Sediments are the quantitatively most important sink in the global black carbon cycle and represent archives of BC deposition on local and regional scales, but the identification and apportionment of the BC sources (fossil fuel combustion versus vegetation fires) remain unclear to date. Benzene polycarboxylic acids (BPCA) are molecular markers specific for BC and are used to measure quantity and quality of BC. The method provides information about the degree of condensation and allows characterization of different forms of BC (e.g. charcoal, soot). Recent advances in BPCA analysis improved the method in terms of sample preparation and made analyses faster and more accurate. Compound specific radiocarbon (14C) dating is a powerful tool in geochemistry and archaeological sciences to trace the fate of specific molecules in soils and sediments. Up to now, 14C measurements are inaccurate for BC, as established methods measure 14C contents of oxidation resistant bulk carbon. In the proposed research project, I will follow a novel approach for BPCA separation with subsequent determination of its 14C contents. This technique will allow to precisely estimate the apportionment of sources of BC found in sediments and the age of black carbon in soils. In this project I will take advantage of an existing set of well-dated lake sediment samples. These sediment cores feature undisturbed lamination, thus providing a high-resolution record of BC depositions over more than two centuries. Analyzing this unique sample set, the qualitative and quantitative information yielded by the BPCA method and the novel approach for radiocarbon dating of BC molecular markers will be used to construct a historical record of black carbon emissions. The data will be used to apportion the measured BC concentrations to either fossil fuel or biomass burning since pre-industrial times and to identify the type of BC being preferentially preserved in aquatic sediments. The outcome of the project will help to elucidate the environmental fate of BC and will be an important contribution to the accurate calculation of a global BC budget.

Themenbereich: Klimamodellierung^SASSCAL: Southern African Science Service Centre for Climate Change and Adaptive Land Management, SASSCAL: Southern African Science Service Centre for Climate Change and Adaptive Land Management; Topic: Water-related vulnerabilities and risks in southern Africa (water use)

The current processes of global change are an enormous challenge for societies worldwide. The SASSCAL is a joint initiative of Angola, Botswana, Namibia, South Africa, Zambia, and Germany, responding to the challenges of global change. Aim and Scope: SASSCAL will improve the capacities to provide sound science-based solutions for current problems and future risks in the region, in particular regarding climate change and the associated demands concerning land management practices of local players. To this end, the centre will contribute to strengthening existing and developing new capacities for application-oriented scientific research and science-policy consultations on climate change, adapted land-use and sustainable development in the region. SASSCAL will support national, regional and local institutions and service providers to develop relevant advisory and implementation skills. It will have a regional scope and the work of the Centre will be defined in partnership with the respective scientific communities, the users of science products, policy-makers, and decision-makers. Research: SASSCAL intends to cover a variety of research issues in state-of-the-art climate change and land management research, responding to the regional definition of needs and demands. The task of the ISOE project team is to analyse to what extent water-related vulnerabilities and risks for the population and ecosystems are developing within the context of global change and how these might conceivably be reduced. Research approach: Many natural and social processes mutually influence water resources in the southern part of Africa. Climate change and changes in land use, as well as population and economic growth act as localised forms of global change on the current and future state of the resource and as such influence peoples living conditions. The project team is developing a vulnerability and risk analysis for the catchment area of the Cuvelai-Basin in northern Namibia and southern Angola. First the 'status quo and expected trends in patterns of water demand are being studied, differentiated according to spatial and social characteristics and with the help of social-empirical surveys, consultations with experts and mapping. Using this as a starting point, researchers calculate water demand and availability in order to discover the water supplys vulnerabilities and risks for the population and ecosystems. The aim is to identify areas of relevance for decision-makers which are particularly threatened by supply gaps and their consequences (hot spot areas). Next the researchers will be developing supportive measures for an adapted and integrated management of water resources. usw.

How Do Extreme Climate Events Affect Plant/Soil Interactions in Agroecosystems?

A very high percentage of the agronomically used area in Switzerland is covered by grasslands. This land use type is present at various altitudes (up to alpine regions), where environmental conditions, community structure, nutrient dynamics and productivity vary in a wide range. Results obtained during phase 1 of the NCCR Climate, but also by other research groups globally, lead to the conclusion that - besides an increase in mean temperature - temperature variability will increase considerably in Central Europe (Schär et al. 2004). However, the response of entire grassland systems to drought and heat remains unclear. Many earlier studies focused only on soil or vegetation (often only above-ground; e.g. Pfisterer and Schmid 2002), but did not consider the entire ecosystem with its interactions between different ecosystem components (e.g., Kahmen et al. 2004). We know that heat affects photosynthesis and - as a consequence - net carbon fluxes and plant productivity, as reported for example for oak (NCCR Phase 1; Haldimann and Feller 2004). How climatic factors affect above- and below-ground processes in temperate grasslands and how to implement safe management strategies to mitigate changes is less known. We will focus on drought and heat effects on managed grasslands. In grasslands, much of the biological activity and resource turnover happens below-ground; here carbon stocks can be as large as the annual above-ground harvested biomass. However, harvest and grazing typically take place above a certain height (typically 3 - 7 cm above ground), leaving behind large quantities of organic carbon as stubble (standing living and dead biomass) and litter. While the plant biomass above the cutting/grazing height is important for agricultural purposes (yield), biomass below this height is relevant for regrowth after cutting/grazing, for the development and maintenance of the root system and therefore resource use, for the transfer but also loss of carbon, nitrogen and other nutrients to the soil, and for soil carbon sequestration (Avice et al. 1996). The quantities and contributions of these various components to the total ecosystem depend on the allocation of assimilates and nutrients in the plants, on the metabolic activities and on the redistribution during senescence (Avice et al. 1996, Jeuffroy et al. 2002) as well as on microbial activities in the soil. The so far poorly quantified transfer rate for carbon from above-ground litter to below-ground organic matter is a key issue in this context (Lal 2004). In addition, all these processes are influenced by climatic and environmental conditions. For example, Palta and Gregory (1997) reported that wheat allocated relatively more assimilates to the roots under limited water conditions compared to adequate soil water. Kahmen et al. (2004) found stable above-ground productivity but increased below-ground productivity under drought conditions in grasslands of varying species richness. (abbrevia

1 2 3 4 5 6 7