API src

Found 981 results.

Related terms

Messstelle ESSLINGEN SCHLEUSE UP, NECKAR

Messstelle betrieben von STANDORT STUTTGART.

Bebauungsplan Wilhelmsburg 65 Hamburg

Der Bebauungsplan Wilhelmsburg 65 für den Geltungsbereich Reiherstieg-Hauptdeich - über die Flurstücke 6250, 6719, 6718, 6719, 6717, 1074, 1075, 5840, 1409, 1078 (Reiherstieger Wettern) und 1420 der Gemarkung Wilhelmsburg - Industriestraße - Ostgrenzen der Flurstücke 1429 und 1434 der Gemarkung Wilhelmsburg - Alte Schleuse - über das Flurstück 1418, Westgrenze des Flurstücks 1078, über die Flurstücke 1410, 1409, 1407, 6088, 1400 und 1401, Südgrenze des Flurstücks 5843 der Gemarkung Wilhelmsburg (Bezirk Harburg, Ortsteil 712) wird festgestellt.

Messstelle DEIZISAU SCHLEUSE UP, NECKAR

Messstelle betrieben von STANDORT STUTTGART.

Digitales Schrägluftbild Hamburg

Schrägluftbilder: 2018 wurde erstmals für ganz Hamburg ein Bildflug durchgeführt, bei dem hochaufgelöste Oblique-Luftbilder entstanden. Die eingesetzte Kamera nimmt zeitgleich sowohl Senkrechtbilder als auch Schrägbilder nach allen 4 Seiten auf. Der aktuelle Datensatz ist aus dem Frühjahr 2022 (März). Die Schrägbilder dienen als Quelle für die Analyse von städtebaulichen Situationen innerhalb des gesamten Stadtgebietes. Sie werden als Dienst in den Geoportalen im LGV bereitgestellt.

Resiliente Abfluss- und Stauregelung der Wasserstraßen bei extremen Niederschlagsereignissen

Abflussprognosen zur Bewältigung von Extremwetterlagen Um das Transportaufkommen in Deutschland auch unter schwierigen Bedingungen zu bewältigen und dies aufrecht zu erhalten bzw. zu steigern, sind verkehrsträgerübergreifende Lösungsansätze notwendig. Ziel dieses Projekt ist es, die Resilienz und die Verfügbarkeit des Verkehrsträgers Wasserstraße bei extremen Wetterereignissen zu erhöhen. Aufgabenstellung und Ziel Etwa 3.000 km der Bundeswasserstraßen sind mit Staustufen ausgebaut, die meist aus einem beweglichen Wehr, einer Schleuse und einem Laufwasserkraftwerk bestehen. Durch das Ändern des Abflusses über das Kraftwerk und über das Wehr hält ein lokaler Regler den gewünschten Oberwasserstand innerhalb der vorgegebenen Stauzieltoleranz. Die Abfluss- und Stauregelung soll dabei mehrere, mitunter gegensätzliche Ziele erfüllen: Einhaltung des Stauziels innerhalb der festgelegten Toleranz, Verminderung von Abflussschwankungen, optimale Nutzung der Wasserkraft und Minimierung des Verschleißes der Wehrverschlüsse. Im Zuge des Klimawandels ist mit einer Zunahme extremer Wetterereignisse zu rechnen. Die Abfluss- und Stauregelung steht gerade in Niedrigwasserperioden vor wachsenden Herausforderungen. Schwankungen des Abflusses sind in diesen Phasen schwierig auszugleichen und Über- bzw. Unterschreitungen der Stauzieltoleranz sind nicht auszuschließen. Dadurch entsteht eine Gefahr für die Schifffahrt. Ziel des vorgestellten Vorhabens ist es, anhand einer fundierten Datenanalyse und der Methode des maschinellen Lernens Zusammenhänge zwischen Niederschlagsereignissen und Abflussschwankungen vertieft zu untersuchen. Zusätzlich sollen Abflussprognosen erstellt werden, welche die Abfluss- und Stauregelung unterstützen. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Die Verwendung maschinellen Lernens für Abflussvorhersagen auf der Basis von Niederschlags- und Zuflussdaten stellt ein vielversprechendes Werkzeug für die WSV dar. Prognosen schaffen einen vorausschauenden Handlungsspielraum für die Abfluss- und Stauregelung, sodass starke Wasserstandsund Abflussschwankungen minimiert und damit die Sicherheit und Leichtigkeit der Schifffahrt erhöht werden. Die Resilienz der Wasserstraße wird dadurch auch unter den zunehmenden Auswirkungen des Klimawandels gesteigert. Untersuchungsmethoden Das Verfahren wird exemplarisch an einer Stauhaltung der Mosel getestet. Die Niederschlagsdaten des Einzugsgebiets der Stauhaltung werden vom Deutschen Wetterdienst im Rahmen der Zusammenarbeit im BMDV-Expertennetzwerk bereitgestellt. Die Pegeldaten der oberliegenden Stauhaltung sowie die der untersuchten Stauhaltung selbst werden von der WSV zur Verfügung gestellt. In einem ersten Schritt werden die Pegeldaten untersucht. Anhand einer Kreuzkorrelation können Abhängigkeiten zwischen dem oberliegenden Pegel und dem Pegel in der untersuchten Stauhaltung aufgezeigt werden. In einem weiteren Schritt werden ebenfalls die Niederschlags- und Wehrdaten betrachtet und deren Zusammenhang mit den Pegeldaten untersucht. Zusätzlich wird eine Methode erarbeitet, um Wasserstandsschwankungen so zu filtern, dass die Werte möglichst unbeeinflusst von Schleusungen und Schifffahrt sind. Im Anschluss an die Aufbereitung der Daten wird nach einer geeigneten Methode des Maschinellen Lernens (ML) gesucht. Dabei werden unterschiedliche ML-Modelle in Python implementiert und trainiert. Der vielversprechendste Modelltyp soll weiter genutzt und mit unterschiedlichen Parametrierungen getestet werden. Hierbei wird immer auf einen Prognosezeitraum von drei Stunden hingearbeitet. Für die Abfluss- und Stauregelung ist eine dreistündige Prognose wünschenswert, um Schwankungen des Abflusses effektiv zu bewältigen.

Entwicklung von Verfahrensweisen zur Simulation bewegter Objekte mit OpenFOAM

3D-numerische Simulation von Starrkörperbewegungen Es ist heute möglich strömungsmechanische Berechnungen mit vertretbarem Zeitaufwand durchzuführen. Gleiches soll für die Simulation bewegter Objekte gelten. Im Rahmen des FuE-Projekts sollen Verfahrensweisen entwickelt werden, mit denen anfallende Fragestellungen zur Simulation bewegter Objekte mit OpenFOAM bearbeitet werden können. Aufgabenstellung und Ziel Die dreidimensionale numerische Simulation ist ein wertvolles Werkzeug, das detaillierte Einblicke in Strömungsvorgänge im Bauwerksnahfeld ermöglicht. Im Rahmen der Projektarbeit treten immer wieder Fragestellungen auf, bei denen bewegte Objekte eine wesentliche Rolle spielen und Einfluss auf das Simulationsergebnis haben. Die Simulation der Schleusung eines Schiffes ist ein Beispiel, das stellvertretend für die Schwierigkeiten bei der Modellierung bewegter Objekte steht. Der große Bewegungsumfang des schwimmenden Schiffes bei gleichzeitig sehr geringem Abstand zu statischen Umrandungen und die Querschnittsfreigabe an Verschlüssen erweisen sich als Herausforderungen für den Modellierungsprozess. Ein weiteres Beispiel ist die Modellierung von größeren, sich durch das Simulationsgebiet bewegenden Partikeln, wobei die Interaktion zwischen Partikeln und Strömungsfeld sowie die auf die Partikel wirkenden Kräfte korrekt abzubilden sind. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Beim Entwurf von Schleusen werden kurze Schleusungszeiten bei gleichzeitig geringen hydraulischen Krafteinwirkungen auf das zu schleusende Schiff durch eine optimierte Füllstrategie erreicht. Bislang wurden Schützfahrpläne sowie die Schiffskräfte meist mit gegenständlichen Modellen ermittelt. Die Entwicklung numerischer Methoden soll mittelfristig ermöglichen, derartige Problemstellungen auch mit numerischen Modellen zu bearbeiten. Der Aufwand für den Aufbau der Modelle ist gegenüber gegenständlichen Modellen gering, während die Simulation vergleichsweise viel Zeit in Anspruch nimmt. Ein Vorteil numerischer Modelle besteht in der leichten Auswertbarkeit der Strömungsdaten an beliebigen Stellen des Modells. Numerische und gegenständliche Modelle können dann entweder zeitgleich, z. B. für hybride Modellierungsansätze, oder unabhängig voneinander genutzt werden. Die Auftragsbearbeitenden werden in die Lage versetzt, für jede Fragestellung und zu jedem Zeitpunkt die geeignetste Untersuchungsmethode zu wählen, wodurch Effizienz und Qualität der Gesamtbearbeitung für die WSV gesteigert werden. Untersuchungsmethoden Die Bundesanstalt für Wasserbau (BAW) verwendet das Verfahren OpenFOAM® für die dreidimensionale numerische Strömungssimulation. Zur Berücksichtigung von Starrkörperbewegungen existieren unterschiedliche Methoden, die sich einerseits in Bezug auf die Komplexität, andererseits hinsichtlich des realisierbaren Bewegungsumfangs unterscheiden und jeweils individuelle Vor- und Nachteile aufweisen. Für die Modellierung eines Schleusungsprozesses wurde in diesem Vorhaben zunächst die Deforming-Mesh-Methode herangezogen. Weiterhin werden auch konkurrierende Ansätze wie die Overset-Mesh- und die ImmersedBoundary-Methode betrachtet. Diese ermöglichen hinsichtlich der Objektbewegung eine größere Flexibilität, weisen jedoch Einschränkungen in der Genauigkeit und Robustheit auf. Zur Modellierung von partikelauflösendem Sedimenttransport wird eine Methode betrachtet, die an der Hochschule Emden/Leer entwickelt wird. Dabei werden größere Partikel, ähnlich wie bei der Immersed-Boundary-Methode, durch das Gitter bewegt. Das Volumen der durch einzelne Partikel belegten Zellen wird dabei entsprechend korrigiert.

Bau- und bauwerksbedingte Emissionen / Immission in Wasser, Boden und Luft

Veranlassung Für umweltverträgliches und nachhaltiges Bauen ist die Kenntnis der Freisetzung von (Schad-)Stoffen über den gesamten Lebenszyklus der Bauwerke von besonderer Bedeutung. Bisher ist allerdings nicht ausreichend bekannt, welche Substanzen beim Einbau, Rückbau und während der Nutzung der Bauwerke freigesetzt werden und inwieweit diese Stoffe die Qualität von Wasser, Boden oder Luft negativ beeinflussen. Zur Untersuchung der Umweltverträglichkeit werden deshalb in diesem Vorhaben systematische Auslaugversuche mit verschiedenen Bauprodukten durchgeführt. Die freigesetzten Stoffe werden durch eine Kombination von chemischen und biologischen Analysen detektiert, identifiziert und hinsichtlich ihrer ökotoxikologischen Effekte untersucht. Auf der Basis dieser Ergebnisse werden unter Berücksichtigung von Expositionsszenarien zudem praxisfähige Prüf- und Bewertungsverfahren für Bauprodukte entwickelt. Ziele - Analyse und ökotoxikologische Bewertung stofflicher Emissionen aus Materialien wie Beton, Geokunststoffe, Elastomere und Korrosionsschutzanwendungen im Stahlbau in Wasser und Boden - Untersuchung des Einflusses verschiedener Witterungseinflüsse auf die Bildung von Transformationsprodukten und die Stofffreisetzung - Aufstellen von Freisetzungsszenarien für Stoffe aus Bauprodukten - Entwicklung von Konzepten für die Bewertung der Umweltverträglichkeit von Bauprodukten - Aufbau einer Rechercheplattform für die Auswahl umweltfreundlicher Baustoffe/Baumaterialien Für die Errichtung von Verkehrsbauwerken wie z.B. Brücken, Schleusentore, Ufersicherungen oder Offshore-Windenergieanlagen werden verschiedenste Baustoffe verwendet. Dabei handelt es sich meist um komplexe, teils reaktive Formulierungen mit Zusatzmitteln und Prozesschemikalien. Für alle Verkehrsträger (Straße, Schiene und Wasserstraße) gilt, dass viele Substanzen beim Bau, Ausbau, Betrieb und Rückbau in die Umwelt gelangen können. Die genaue chemische Zusammensetzung der Baustoffe ist allerdings oftmals nicht bekannt. Durch Verwitterungsprozesse (UV, Regen) können zudem auch unbekannte Transformationsprodukte gebildet und freigesetzt werden. Das Schwerpunktthema 204 des BMDV-Expertennetzwerks entwickelt Konzepte zur Untersuchung und Bewertung der Umweltverträglichkeit von Baustoffen hinsichtlich der Freisetzung von Substanzen und deren ökotoxikologischer Relevanz.

FP4-NNE-THERMIE C, Matrixturbine (Schleusenturbine) im Donaukraftwerk Freudenau - Pilotversuch und Demonstration

Matrixturbine (Schleusenturbine) im Donaukraftwerk Freudenau: Bei Wasserkraftwerken an schiffbaren Fluessen entstehen durch Schleusungen erhebliche Energieverluste, welche sich fuer die bestehenden Donaukraftwerke mit rund 110 GWh/a abschaetzen lassen. Daher werden seit geraumer Zeit wirtschaftliche Moeglichkeiten gesucht, um die den Schleusungsvorgaengen innewohnende mechanische Energie zur Stromerzeugung zu nutzen. Im Falle des Kraftwerkes Freudenau ergibt sich nun die Chance, im Rahmen eines von der Europaeischen Union gefoerderten Projektes, ein neuartiges, gemeinsam von Verbund, der VoestAlpine MCE und Bouvier Hydro (Frankreich) entwickeltes Konzept in einem Pilotversuch zu erproben. Eine Matrixturbine besteht aus mehreren, gleich aufgebauten, kleinen Rohrturbinen und Generatoren, die mittels eines Rahmens zu einer Einheit zusammengefasst sind. Die Turbinen werden sowohl beim Fuellen, als auch beim Entleeren, dabei aber in umgekehrter Richtung, durchflossen. Den einzelnen Matrixeinheiten sind Absperrklappen in Form von Jalousien vorgeschaltet, welche den Wasserstrom freigeben und unterbinden koennen. Die Asynchrongeneratoren werden von den Propellerturbinen (starre Laufschaufeln) angetrieben. Das Laufrad ist so geformt, dass es in beiden Stroemungsrichtungen des Triebwassers akzeptable Wirkungsgrade erreicht. Zum Pilotversuch im Kraftwerk Freudenau wird die Matrixturbine in den Dammbalkenschlitz des Fuell- und Entleerkanals einer Schleusenkammer eingesetzt. Die Matrix besteht aus 5 x 5, also 25 Einzelmaschinensaetzen, mit je 1 m 2 Querschnittsflaeche. Die Generatoren sind schaltungsmaessig in drei Gruppen (maximale Gesamtdauerleistung 5000 kW) zusammengefasst. Nach Transformation der Generatorspannung auf die Spannungsebene der Hauptgeneratoren (10,5 kV) wird die elektrische Energie direkt auf der Unterspannungsseite der Blocktransformatoren eingespeist. Die gesamte Matrix kann bei Stoerungen rasch wieder ausgebaut werden. Die Anforderungen an eine Schleusenturbine sind dadurch gekennzeichnet, dass die Turbinen beidseitig anstroembar ausgefuehrt werden muessen und dass die Fallhoehe im Laufe der Schleusung kontinuierlich abnimmt. Unter der Annahme, dass pro Jahr 6500 Fuellvorgaenge bzw Entleerungsvorgaenge der mit der Matrixturbine ausgeruesteten Schleuse des Kraftwerkes Freudenau vorgenommen werden und dass ab Erreichen der maximalen durch die Turbinen verarbeitbaren Wassermenge diese Schleuse auch zur staendigen Wasserabfuhr herangezogen wird, kann jaehrlich elektrische Energie im Ausmass von rund 3,7 GWh erzeugt werden; das entspricht etwa dem Energiebedarf von 800 Haushalten. Bei diesem Pilotprojekt bietet sich die Moeglichkeit, das Konzept der Matrixturbine in seiner allgemeinsten Form, sowohl im Schleusungsbetrieb bei beiderseitiger Anstroemung, variabler Fallhoehe und Verwendung von Jalousieklappen, als auch im Dauerbetrieb (z. B.: bei Hochwasser) praktisch zu erproben. ... Hauptauftragnehmer: Österreichische Donaukraftwerke AG; Wien;

INSPIRE Download Service (predefined ATOM) für Datensatz INSPIRE SL Hydro – Physische Gewässer ATKIS Basis-DLM

Beschreibung des INSPIRE Download Service (predefined Atom): Dieser INSPIRE Datensatz beinhaltet das Gewässernetz des Saarlandes. Die Transformation erfolgte gemäß den INSPIRE Richtlinien Hydrographie in der Version 4.0. Folgende Anwendnungsschemen werden derzeit zu diesem Thema bereitgestellt: * Hydrographie Physical Waters * Hydrographie Networks Das Schema Hydrographie Physical Waters Das Anwendungsschema von Physical Waters dient hauptsächlich zum Erstellen von Basiskarten für die Hydrographie. Die Auswahl von Feature-Klassen in diesem Paket basiert sowohl auf den Anforderungen zum Zuordnen bestimmter Objekte als auch auf der Notwendigkeit, bestimmte Objekte nach einem Modellierungsaspekt zu unterscheiden. Infolgedessen werden bestimmte Merkmale der "realen Welt" in einer einzigen Klasse zusammengefasst, wenn festgestellt wurde, dass sie weder aus Sicht der Kartierung noch aus Sicht der Modellierung unterschieden werden müssen. Folgende Gruppen von Objekten können unterschieden werden: * Natürliche Wasserobjekte, die Teil des hydrologischen Netzwerks sind, wie Wasserläufe, stehendes Wasser, Feuchtgebiete usw. * Objekte, die die physikalischen Wasserobjekte beschreiben (Ufer, Uferlinien) * Gebiete, in denen das Wasser aufgefangen wird (Flussbecken / Entwässerungsbecken) * Hydrographische Interessenspunkte. Punkte, die den Wasserfluss im Gewässernetz beeinflussen und auf Karten erscheinen, aber keine künstlichen Objekte sind (z. B. Stürze, Quellen und Sickerungen usw.). * Künstliche Objekte. Alle Objekte, die auf der Karte angegeben werden müssen und eine Beziehung zum Wassernetz haben (z.B. Böschungen, Kanäle, Schleusen, Dämme und Wehre). Das Schema Hydrographie Networks Für die Modellierung werden zusätzliche Informationen (z. B. geschlossenes Netzwerk, bestimmte Attribute) benötigt, die nicht unbedingt für eine Hintergrundkarte benötigt werden. Diese zusätzliche Information sowie das Netzwerkmodell selbst sind daher in einem separaten Anwendungsschema enthalten, das als Erweiterung der physikalischen Gewässer angesehen werden kann. Wenn nur ein Netzwerkmodell beim Datenbereitsteller verfügbar ist, ist es möglich, das Netzwerk zu beschreiben, ohne direkt auf physische Objekte zu verweisen. Aus diesem Grund enthalten räumliche Objekte sowohl im Netzwerkmodell als auch in den physikalischen Hydrographie-Schemen ihre eigenen Geometrien. - Der/die Link(s) für das Herunterladen der Datensätze wird/werden dynamisch aus GetFeature Anfragen an einen WFS 1.1.0+ generiert

Querbauwerke

Für die Erfüllung der Berichtspflichten nach der EG-WRRL als auch für die Gewässerbewirtschaftung bildet die Kenntnis über Querbauwerke in den Fließgewässern eine wesentliche Grundlage. Unter Querbauwerken werden hier sämtliche künstlich in das Gewässer eingebrachten, quer durch das Gewässerbett verlaufenden baulichen Strukturen verstanden, die die natürlichen Strömungsverhältnisse und damit auch die Sohl- und Uferstruktur des Gewässers beeinflussen.Zur Bauwerkskategorie „Künstliche Objekte im Flussbett“ gehören Sohlschwellen, Sohlgleiten, Abstürze sowie Messbauwerke und Auslauf/Entnahmebauwerke.Zur Bauwerkskategorie „Dämme und Wehre“ gehören feste Wehre und Dämme, bewegliche Wehre sowie Mühlen und Wasserkraftanlagen.Zur Bauwerkskategorie „Siele, Schöpfwerke und temporäre Sperren“ gehören Siele, Schöpf- und Pumpwerke sowie Sperrwerke und Verlaate.Zur Bauwerkskategorie „Schleusen“ gehören Schleusen und Schiffshebewerke.Zur Bauwerkskategorie „Durchgängigkeitsbauwerke“ gehören verschiedene Formen von Fischaufstiegsanlagen (FAA), Umgehungsgerinne und Fischabstiegsanlagen zur Verbesserung der ökologischen Durchgängigkeit.Zur Bauwerkskategorie „Kreuzungsbauwerke“ gehören Brücken, Durchlässe und Verrohrungen sowie Düker und Furten.Der Datenbestand bildet die Grundlage für die Bestandsaufnahme nach Artikel 5 der EG-WRRL, die alle 6 Jahre zu aktualisieren ist, für die Bewertung der Durchgängigkeit als Qualitätskomponente des ökologischen Zustands bzw. Potentials von Fließgewässern sowie für die Ableitung des Maßnahmenbedarfs.Diese Daten sind auch im INSPIRE Datenmodell „Annex 1: Gewässernetz“ erhältlich. Die Bereitstellung erfolgt über die Bundesanstalt für Gewässerkunde (BfG) per Darstellungs- und Downloaddienst, deren URLs in den Transferoptionen angegeben sind.

1 2 3 4 597 98 99