API src

Found 810 results.

Related terms

Öle und Fette

Pflanzliche Öle werden als energiereiche Reservestoffe in Speicherorgane von Pflanzen eingelagert. Sie sind chemisch gesehen Ester aus Glycerin und drei Fettsäuren. In Deutschland konzentriert sich der Ölsaatenanbau auf Raps, Sonnenblume und Lein. Im Freistaat Sachsen dominiert auf Grund der Standortbedingungen und vor allem der Wirtschaftlichkeit eindeutig der Raps. Der maximal mögliche Anbauumfang von Raps liegt aus anbautechnischer Sicht bei 25 % der Ackerfläche und ist noch nicht ausgeschöpft (Sachsen 2004: 17 %). Für den landwirtschaftlichen Anbau kommen eine Reihe weiterer ölliefernder Pflanzenarten oder spezieller Sorten in Betracht. Interessant sind sie aus der Sicht der Verwertung insbesondere, wenn sie hohe Gehalte einzelner spezieller Fettsäuren aufweisen. Bei der Verarbeitung können dann aufwändige Aufbereitungs- und Trennprozesse eingespart und die Synthesevorleistung der Natur optimal genutzt werden. Der Anbauumfang ist jedoch meist noch sehr gering. Beispiele sind Nachtkerze und Iberischer Drachenkopf, aber auch Erucaraps und ölsäurereiche Sonnenblumensorten. a) stoffliche Verwertung In der stofflichen Verwertung reichen die Einsatzfelder pflanzlicher Öle von biologisch schnell abbaubaren Schmierstoffen, Lacken und Farben, über Tenside, Kosmetika, Wachse bis zu Grundchemikalien, aber auch Bitumen. b) energetische Verwertung Desweiteren können Pflanzenöle in Fahrzeugen, stationären oder mobilen Anlagen energetisch verwertet werden. Für den breiten Einsatz ist derzeit vor allem Biodiesel geeignet. Dieser kommt als reiner Kraftstoff zum Einsatz, seit 2004 auch in Beimischung zu Dieselkraftstoff. Eine weitere Möglichkeit eröffnet sich durch die Verwendung von reinem Rapsöl.

Untersuchungen zum Einsatz von Druckluft als umweltschonendes Kuehlmittel beim Einlippen- und Zweilippenbohren

Das Projekt "Untersuchungen zum Einsatz von Druckluft als umweltschonendes Kuehlmittel beim Einlippen- und Zweilippenbohren" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Dortmund, Institut für Spanende Fertigung.Durch Einlippentiefbohren (ELB) koennen tiefe Bohrungen mit kleineren Durchmessern hergestellt werden. Der Durchmesserbereich betraegt zZt 0,9 bis 40 mm. Die Bohrtiefe kann ca das 50 bis 100-fache des Bohrungsdurchmessers erreichen. Zur Kuehlung und Schmierung der Schneiden und Stuetzleisten eines ELB-Werkzeuges wird durch den Werkzeugschaft ueblicherweise ein fluessiger Kuehlschmierstoff gefoerdert, der mit Spaenen vermischt aussen in einer Sicke des Schaftes abfliesst und so einen kontinuierlichen Bohrvorgang ermoeglicht. Aufgrund der hohen Kosten fuer die Kuehlschmierstoffanlage und fuer die Beschaffung, Pflege und Entsorgung von konventionellen Kuehlschmierstoffen sowie der Behandlung der Werkstuecke und Spaene besteht in der Industrie die Forderung, ohne Tiefbohroele oder -emulsionen tiefzubohren. Hinzu kommt neben der Forderung nach einer Erhoehung der Wirtschaftlichkeit auch der Wunsch nach gesteigerter Umweltvertraeglichkeit der Fertigung sowie die modifizierte Umweltschutzgesetzgebung. Aus diesen Gruenden wird am Institut fuer Spanende Fertigung versucht, die bisher verwendeten Mineraloele mit den teilweise toxischen Additiven - Chlor-, Phosphor- und Schwefelverbindungen - zu substituieren, um die weitere Verbreitung umweltfeindlicher Fertigungshilfstoffe zu verhindern. Dazu koennen entweder konsequentes Trockenbohren, ein Minimalmengenkonzept oder biologisch abbaubare Kuehlschmierstoffe eingesetzt werden. In den bisher durchgefuehrten Untersuchungen konnte nachgewiesen werden, dass Einlippentiefbohren von Grauguss mit Druckluft als Kuehlmittel moeglich ist. Eine Verbesserung der Verschleissbestaendigkeit wird jedoch durch eine zusaetzliche...

Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz, Teilvorhaben: Auswahl der geeigneten Verdichteröle und Weiter- und Neuentwicklung, Ölsensor kalibrieren - Öldaten

Das Projekt "Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz, Teilvorhaben: Auswahl der geeigneten Verdichteröle und Weiter- und Neuentwicklung, Ölsensor kalibrieren - Öldaten" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Klüber Lubrication München GmbH & Co. KG.Sowohl die Energieeffizienz von Kälteanlagen (KA) und Wärmepumpen (WP) als auch der Einsatz alternativer Kältemittel (KM) sind beeinflusst durch die Wahl des Schmierstoffes und der Schmierstoffmenge in den jeweiligen Anlagen. Das Öl, welches zur Schmierung des Verdichters benötigt wird, gelangt in den KM-Kreislauf und verschlechtert in den meisten Fällen die Kälte- bzw. Wärmeleistung der Anlage. Zudem können Schaumbildung und Öllöslichkeit im KM zur Viskositätsminderung und folglich zu Mangelschmierung oder Komplettausfällen des Verdichters führen, wodurch wiederum die Energieeffizienz, Lebensdauer und Einsatzgrenzen des Verdichters beeinträchtigt werden. Im Vergleich zu den derzeit üblicherweise verwendeten (fluorierten) Kältemitteln treten insbesondere bei Kohlenwasserstoffen (KW) wie Propan (R290) vermehrt Probleme mit der Verdichter-Mangelschmierung auf. Die Frage nach dem 'richtigen' Öl und KM-Öl-Gemisch (KMÖG) ist derzeit noch nicht ausreichend untersucht als auch in der Praxis erprobt und stellt neben der Kältemittel Brennbarkeit ein weiteres Hemmnis für den flächendeckenden Einsatz von R290 in Kälte- und Wärmepumpenanlagen dar. Ziel des Vorhabens ist es, die betriebssichere Öl-KM Kombination für ein effizientes Supermarkt Kälte-/Wärmepumpensystem mit R290 zu ermitteln und dadurch die zwei größten Hemmnisse für die Einführung von R290 in der stationären Kältetechnik abzubauen. Eine ganzheitliche, modellhafte Betrachtung des Kältekreislaufes mit den kältetechnischen Komponenten, als auch KM in Kombination mit den Schmierstoffen (Öl) ist daher notwendig. Im Laufe des Projektes müssen zunächst die fehlenden Stoffdaten von KMÖG ermittelt werden. Um die dynamische Kältekreislauf-Simulationssoftware (Modelle, Stoffwerte, KMÖG, Komponenten) validieren als auch den energetischen und Langzeiteinfluss des KMÖG auf Komponenten, speziell Verdichter und System in der Anwendung ermitteln zu können ist der Aufbau einer realen Anlage unter Laborbedingungen notwendig.

Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz

Das Projekt "Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz" wird/wurde ausgeführt durch: Institut für Luft- und Kältetechnik gemeinnützige Gesellschaft mbH.Sowohl die Energieeffizienz von Kälteanlagen (KA) und Wärmepumpen (WP) als auch der Einsatz alternativer Kältemittel (KM) sind beeinflusst durch die Wahl des Schmierstoffes und der Schmierstoffmenge in den jeweiligen Anlagen. Das Öl, welches zur Schmierung des Verdichters benötigt wird, gelangt in den KM-Kreislauf und verschlechtert in den meisten Fällen die Kälte- bzw. Wärmeleistung der Anlage. Zudem können Schaumbildung und Öllöslichkeit im KM zur Viskositätsminderung und folglich zu Mangelschmierung oder Komplettausfällen des Verdichters führen, wodurch wiederum die Energieeffizienz, Lebensdauer und Einsatzgrenzen des Verdichters beeinträchtigt werden. Im Vergleich zu den derzeit üblicherweise verwendeten (fluorierten) Kältemitteln treten insbesondere bei Kohlenwasserstoffen (KW) wie Propan (R290) vermehrt Probleme durch Verdichter-Mangelschmierung auf. Die Frage nach dem 'richtigen' Öl und KM-Öl-Gemisch (KMÖG) ist derzeit noch nicht ausreichend untersucht als auch in der Praxis erprobt und stellt neben der Kältemittel-Brennbarkeit ein weiteres Hemmnis für den flächendeckenden Einsatz von R290 in Kälte- und Wärmepumpenanlagen dar. Ziel des Vorhabens ist es, eine optimale, betriebssichere KM-Öl-Kombination für ein effizientes Supermarkt-Kälte-/Wärmepumpen-System mit R290 zu ermitteln und dadurch die zwei größten Hemmnisse für die Einführung von R290 in der stationären Kältetechnik abzubauen. Eine ganzheitliche, modellhafte Betrachtung des Kältekreislaufes inklusive kältetechnischer Komponenten und des KM in Kombination mit den Schmierstoffen (Öl) ist daher notwendig. Im Laufe des Projektes müssen zunächst die fehlenden Stoffdaten von KMÖG ermittelt werden. Um die dynamische Kältekreislauf-Simulationssoftware (Modelle, Stoffwerte, KMÖG, Komponenten) validieren sowie den energetischen und Langzeiteinfluss des KMÖG auf Komponenten, speziell Verdichter und System in der Anwendung ermitteln zu können, ist der Aufbau einer realen Anlage unter Laborbedingungen notwendig.

Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz, Teilvorhaben: Modellierung und Messungen

Das Projekt "Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz, Teilvorhaben: Modellierung und Messungen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Hochschule Ruhr West, Campus Bottrop, Institut Energiesysteme und Energiewirtschaft.Sowohl die Energieeffizienz von Kälteanlagen (KA) und Wärmepumpen (WP) als auch der Einsatz alternativer Kältemittel (KM) sind beeinflusst durch die Wahl des Schmierstoffes und der Schmierstoffmenge in den jeweiligen Anlagen. Das Öl, welches zur Schmierung des Verdichters benötigt wird, gelangt in den KM-Kreislauf und verschlechtert in den meisten Fällen die Kälte- bzw. Wärmeleistung der Anlage. Zudem können Schaumbildung und Öllöslichkeit im KM zur Viskositätsminderung und folglich zu Mangelschmierung oder Komplettausfällen des Verdichters führen, wodurch wiederum die Energieeffizienz, Lebensdauer und Einsatzgrenzen des Verdichters beeinträchtigt werden. Im Vergleich zu den derzeit üblicherweise verwendeten (fluorierten) Kältemitteln treten insbesondere bei Kohlenwasserstoffen (KW) wie Propan (R290) vermehrt Probleme mit der Verdichter-Mangelschmierung auf. Die Frage nach dem 'richtigen' Öl und KM-Öl-Gemisch (KMÖG) ist derzeit noch nicht ausreichend untersucht als auch in der Praxis erprobt und stellt neben der Kältemittel Brennbarkeit ein weiteres Hemmnis für den flächendeckenden Einsatz von R290 in Kälte- und Wärmepumpenanlagen dar. Ziel des Vorhabens ist es, die betriebssichere Öl-KM Kombination für ein effizientes Supermarkt Kälte-/Wärmepumpensystem mit R290 zu ermitteln und dadurch die zwei größten Hemmnisse für die Einführung von R290 in der stationären Kältetechnik abzubauen. Eine ganzheitliche, modellhafte Betrachtung des Kältekreislaufes mit den kältetechnischen Komponenten, als auch KM in Kombination mit den Schmierstoffen (Öl) ist daher notwendig. Im Laufe des Projektes müssen zunächst die fehlenden Stoffdaten von KMÖG ermittelt werden. Um die dynamische Kältekreislauf-Simulationssoftware (Modelle, Stoffwerte, KMÖG, Komponenten) validieren als auch den energetischen und Langzeiteinfluss des KMÖG auf Komponenten, speziell Verdichter und System in der Anwendung ermitteln zu können ist der Aufbau einer realen Anlage unter Laborbedingungen notwendig.

Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz, Teilvorhaben: Öl-Sensor Entwicklung, Test-Kälteanlage, Verdichter-Dauerlaufprüfstand

Das Projekt "Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz, Teilvorhaben: Öl-Sensor Entwicklung, Test-Kälteanlage, Verdichter-Dauerlaufprüfstand" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Cool Expert Entwicklungs GmbH.Sowohl die Energieeffizienz von Kälteanlagen (KA) und Wärmepumpen (WP) als auch der Einsatz alternativer Kältemittel (KM) sind beeinflusst durch die Wahl des Schmierstoffes und der Schmierstoffmenge in den jeweiligen Anlagen. Das Öl, welches zur Schmierung des Verdichters benötigt wird, gelangt in den KM-Kreislauf und verschlechtert in den meisten Fällen die Kälte- bzw. Wärmeleistung der Anlage. Zudem können Schaumbildung und Öllöslichkeit im KM zur Viskositätsminderung und folglich zu Mangelschmierung oder Komplettausfällen des Verdichters führen, wodurch wiederum die Energieeffizienz, Lebensdauer und Einsatzgrenzen des Verdichters beeinträchtigt werden. Im Vergleich zu den derzeit üblicherweise verwendeten (fluorierten) Kältemitteln treten insbesondere bei Kohlenwasserstoffen (KW) wie Propan (R290) vermehrt Probleme mit der Verdichter-Mangelschmierung auf. Die Frage nach dem 'richtigen' Öl und KM-Öl-Gemisch (KMÖG) ist derzeit noch nicht ausreichend untersucht als auch in der Praxis erprobt und stellt neben der Kältemittel Brennbarkeit ein weiteres Hemmnis für den flächendeckenden Einsatz von R290 in Kälte- und Wärmepumpenanlagen dar. Ziel des Vorhabens ist es, die betriebssichere Öl-KM Kombination für ein effizientes Supermarkt Kälte-/Wärmepumpensystem mit R290 zu ermitteln und dadurch die zwei größten Hemmnisse für die Einführung von R290 in der stationären Kältetechnik abzubauen. Eine ganzheitliche, modellhafte Betrachtung des Kältekreislaufes mit den kältetechnischen Komponenten, als auch KM in Kombination mit den Schmierstoffen (Öl) ist daher notwendig. Im Laufe des Projektes müssen zunächst die fehlenden Stoffdaten von KMÖG ermittelt werden. Um die dynamische Kältekreislauf-Simulationssoftware (Modelle, Stoffwerte, KMÖG, Komponenten) validieren als auch den energetischen und Langzeiteinfluss des KMÖG auf Komponenten, speziell Verdichter und System in der Anwendung ermitteln zu können ist der Aufbau einer realen Anlage unter Laborbedingungen notwendig.

Technologielösungen für hocheffiziente zero-emission H2-Motoren für KWK-Anwendungen, Teilvorhaben: Keramische Kolbenringe

Das Projekt "Technologielösungen für hocheffiziente zero-emission H2-Motoren für KWK-Anwendungen, Teilvorhaben: Keramische Kolbenringe" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: CVT GmbH & Co. KG.Ziel des Vorhabens ist die Entwicklung von Kolbenringen für den Einsatz in wasserstoffbetriebenen Gasmotoren von KWK-Energieerzeugungsanlagen basierend auf dem keramischen Verbundwerkstoff C/C-SiC. Vor dem Hintergrund der Klimaneutralität soll der Betrieb von stationären BHKW-Gasmotoren zunehmend von fossilen Brennstoffen auf Wasserstoff umgestellt werden. Die Verbrennung von Wasserstoff verläuft gegenüber Erdgas jedoch schärfer und ist schwerer kontrollierbar. Die erhöhte thermische Belastung führt bei etablierten Materialien zu erhöhtem Verschleiß, was zu unerwünschten Blow-By-Effekten führt. Die Motoren können daher derzeit nicht dauerhaft und auch nicht am optimalen Betriebspunkt betrieben werden. Dem soll durch die Entwicklung von Kolbenringen auf Basis des faserkeramischen Werkstoffs C/C-SiC begegnet werden. Das Material verspricht eine deutlich höhere Verschleißbeständigkeit bei guten Gleiteigenschaften. Dies ermöglicht eine bessere Brennraumabdichtung und reduzierten Blow-By. Durch Schmiermittel bedingte Emissionen können dadurch ebenfalls reduziert werden. Die C/C-SiC-Kolbenringe werden nach einem neuen Ansatz erzeugt, bei dem zwei bewährte CMC-Herstellprozesse (r-CVI, LSI) vorteilhaft miteinander kombiniert werden. Erwartete Vorteile der C/C-SiC-Kolbenringe: - Hohe Verschleißbeständigkeit und verlängerte Lebensdauer - Verbesserte Abdichtung des Brennraums und reduzierter Blow-By - Reduzierte Belastungen für Schmiermittel, geringere Emissionen - Selbstschmierung des Materials verbessert Notlaufeigenschaften.

FH-Kooperativ 2-2022: Entwicklung und Erprobung nachhaltiger Schmierstoffe für elektromechanische Antriebe (ElAnOil)

Das Projekt "FH-Kooperativ 2-2022: Entwicklung und Erprobung nachhaltiger Schmierstoffe für elektromechanische Antriebe (ElAnOil)" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Hochschule Aalen - Hochschule für Technik und Wirtschaft, Forschungsinstitut für Innovative Oberflächen (FINO), Arbeitsgruppe Weber.

Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz, Teilvorhaben ILK: Entwicklung thermodynamische Messverfahren, Stoffwertbestimmung und Leistungsdaten

Das Projekt "Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz, Teilvorhaben ILK: Entwicklung thermodynamische Messverfahren, Stoffwertbestimmung und Leistungsdaten" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Institut für Luft- und Kältetechnik gemeinnützige Gesellschaft mbH.Sowohl die Energieeffizienz von Kälteanlagen (KA) und Wärmepumpen (WP) als auch der Einsatz alternativer Kältemittel (KM) sind beeinflusst durch die Wahl des Schmierstoffes und der Schmierstoffmenge in den jeweiligen Anlagen. Das Öl, welches zur Schmierung des Verdichters benötigt wird, gelangt in den KM-Kreislauf und verschlechtert in den meisten Fällen die Kälte- bzw. Wärmeleistung der Anlage. Zudem können Schaumbildung und Öllöslichkeit im KM zur Viskositätsminderung und folglich zu Mangelschmierung oder Komplettausfällen des Verdichters führen, wodurch wiederum die Energieeffizienz, Lebensdauer und Einsatzgrenzen des Verdichters beeinträchtigt werden. Im Vergleich zu den derzeit üblicherweise verwendeten (fluorierten) Kältemitteln treten insbesondere bei Kohlenwasserstoffen (KW) wie Propan (R290) vermehrt Probleme durch Verdichter-Mangelschmierung auf. Die Frage nach dem 'richtigen' Öl und KM-Öl-Gemisch (KMÖG) ist derzeit noch nicht ausreichend untersucht als auch in der Praxis erprobt und stellt neben der Kältemittel-Brennbarkeit ein weiteres Hemmnis für den flächendeckenden Einsatz von R290 in Kälte- und Wärmepumpenanlagen dar. Ziel des Vorhabens ist es, eine optimale, betriebssichere KM-Öl-Kombination für ein effizientes Supermarkt-Kälte-/Wärmepumpen-System mit R290 zu ermitteln und dadurch die zwei größten Hemmnisse für die Einführung von R290 in der stationären Kältetechnik abzubauen. Eine ganzheitliche, modellhafte Betrachtung des Kältekreislaufes inklusive kältetechnischer Komponenten und des KM in Kombination mit den Schmierstoffen (Öl) ist daher notwendig. Im Laufe des Projektes müssen zunächst die fehlenden Stoffdaten von KMÖG ermittelt werden. Um die dynamische Kältekreislauf-Simulationssoftware (Modelle, Stoffwerte, KMÖG, Komponenten) validieren sowie den energetischen und Langzeiteinfluss des KMÖG auf Komponenten, speziell Verdichter und System in der Anwendung ermitteln zu können, ist der Aufbau einer realen Anlage unter Laborbedingungen notwendig.

Implementierung der Elektroimpulsbehandlung von Hefen zum Upcycling agroindustrieller Reststoffe zu Bioschmierstoffen, Teilvorhaben 2: Biomasseproduktion auf Reststoffen

Das Projekt "Implementierung der Elektroimpulsbehandlung von Hefen zum Upcycling agroindustrieller Reststoffe zu Bioschmierstoffen, Teilvorhaben 2: Biomasseproduktion auf Reststoffen" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Bio- und Lebensmitteltechnik, Bereich II: Technische Biologie.Ziel des Vorhabens ist es, die Elektroimpulsbehandlung (EIB), ein innovatives und energieeffizientes Aufschlussverfahren für mikrobielle Biomasse, erstmals auf ölproduzierende Hefen anzuwenden. Als primäres Produkt sollen intrazellulär gespeicherte Lipide gewonnen werden und auf ihre Einsatzfähigkeit als Bioschmierstoff geprüft werden. Als Alleinstellungsmerkmal bietet die EIB die Möglichkeit einer echten Kaskadenprozessierung, der sequenziellen Gewinnung mehrerer Inhaltsstoffe aus mikrobieller Biomasse. Diese Eigenschaft soll genutzt werden, um Lipide und Proteine abzutrennen. Die Proteinfraktion soll auf Einsatzfähigkeit als Futtermittelzusatz geprüft werden. Um die Produktion der oleogenen Hefen kosteneffizient zu halten, sollen Reststoffe aus der Landwirtschaft, wie Melasse und C5/C6-Zuckermischfraktionen z.B. aus Weizenstroh oder Rohglycerin aus der Biodieselherstellung, als Substratquellen eingesetzt werden. An vier Hefestämmen soll der Substrateinfluss auf die Produktbildung, d.h. auf Produktmenge und -qualität, und auf die Prozessierbarkeit mittel EIB, d.h. auf erzielbare Ausbeute und auf Qualität des Extrakts, untersucht und optimiert werden. Ein weiterer Fokus der Prozessentwicklung liegt auf der Identifikation nachhaltiger Lösemittel Extraktionssysteme und der ökonomischen Lösemittel Rückgewinnung. Ausgewählte Hefe/Substrat-Paarungen sollen dann unter den gefundenen Prozessbedingungen bis in den Pilotmaßstab kultiviert und verarbeitet werden, um eine detailliertere Analyse der Produkteigenschaften durchzuführen. Auf der Basis der gewonnenen Ergebnisse wird eine techno-ökonomische Bewertung der EIB-unterstützten Gewinnung von Lipiden und Proteinen aus oleogenen Hefen vorgenommen. Im Stakeholderdialog werden abschließend Randbedingungen für eine Markteinführung von Schmierstoffen und Futtermittelzusätzen aus oleogenen Hefen erarbeitet, um im Projektanschluss diese Wertschöpfungskette möglichst industrienah einführen zu können.

1 2 3 4 579 80 81