API src

Found 3641 results.

Related terms

Spurenelemente

Fuer die Bestimmung von Spurenelementen in natuerlichen Waessern und in silikatischen Proben werden folgende Analysenverfahren eingesetzt: Neutronenaktivierung, Roentgenfluoreszenz und Atomabsorption. Fuer die Bestimmung von Spurenelementen in natuerlichen Waessern (einschliesslich Meerwasser) werden verschiedene Methoden der Voranreicherung verwendet (Gefriertrocknung, Adsorption an Aktivkohle und Zusatz von Komplexbildnern, chelatbildende Austauscher). Die energiedispersive Roentgenfluoreszenzanalyse wird mit Roehrenanregung (Sekundaergets) und mit Radionuklidanregung durchgefuehrt; silikatische Proben werden als Pulverschuettenproben gemessen, die Ergebnisse werden nach einem in Darmstadt entwickelten Verfahren ausgewertet. Ein wichtiges Teilgebiet der Spurenelementchemie in natuerlichen Waessern, das in Darmstadt bearbeitet wird, ist die Bestimmung des chemischen Zustandes der Spurenelemente in natuerlichen Waessern, ihre Konzentration in Schwebstoffen sowie die Untersuchung der Austauschvorgaenge von Spurenelementen zwischen Loesung, Schwebstoffen und Sedimenten.

Fließgewässermessstelle Schönach, Große Laber

Die Messstelle Schönach (Messstellen-Nr: 15408000) befindet sich im Gewässer Große Laber in Bayern. Die Messstelle dient der Überwachung des Durchflusses, von Schwebstoffen, des Wasserstands.

Fließgewässermessstelle Arzberg, Röslau

Die Messstelle Arzberg (Messstellen-Nr: 53216808) befindet sich im Gewässer Röslau in Bayern. Die Messstelle dient der Überwachung des Durchflusses, von Schwebstoffen, des Wasserstands.

Fließgewässermessstelle Aunkofen, Abens

Die Messstelle Aunkofen (Messstellen-Nr: 13322005) befindet sich im Gewässer Abens in Bayern. Die Messstelle dient der Überwachung des Durchflusses, von Schwebstoffen, des Wasserstands, der Wassertemperatur.

Fließgewässermessstelle Rosenheim o.d. Mangfallmündung, Inn

Die Messstelle Rosenheim o.d. Mangfallmündung (Messstellen-Nr: 18001508) befindet sich im Gewässer Inn in Bayern. Die Messstelle dient der Überwachung des Durchflusses, von Schwebstoffen, des Wasserstands, der Wassertemperatur.

Fließgewässermessstelle Laufen Siegerstetter Keller, Salzach

Die Messstelle Laufen Siegerstetter Keller (Messstellen-Nr: 18602009) befindet sich im Gewässer Salzach in Bayern. Die Messstelle dient der Überwachung des Durchflusses, von Schwebstoffen, des Wasserstands, der Wassertemperatur.

Räumliche Variabilität der Sediment- und Tidedynamik im Emsästuar

Das Projekt VARSTIDE untersucht die räumliche Variabilität der Wechselwirkungen von Sediment- und Hydrodynamik im Emsästuar. Durch die Analyse von Messdaten aus vergangenen Messkampagnen liefert das Projekt einen wesentlichen Beitrag zum Verständnis von Ursachen und Auswirkungen der Verschlickung und Bildung von Flüssigschlickschichten in Ästuaren. Aufgabenstellung und Ziel Die Entwicklung des Emsästuars ist durch eine starke Zunahme von Tidehüben und Schwebstoffkonzentrationen bis hin zur Ausbildung einer mächtigen Flüssigschlickschicht geprägt. Diese Veränderungen wurden insbesondere durch vergangene Eingriffe zur Änderung der Geometrie (Vertiefungen und Begradigungen) ausgelöst (Winterwerp und Wang 2013, van Maren et al. 2015). Untersuchungen zur Hydro- und Sedimentdynamik des Emsästuars in den vergangenen FuE-Projekten MudEstuary (B3955.03.04.70235) und MudEms (B3955.03.04.70241) haben deutlich gezeigt, dass die Prozesse, die zu einem Anstieg der Sedimentkonzentrationen und zur Verschlickung (und Ausbildung von Flüssigschlick) führten, von hoher Komplexität geprägt sind. Zudem variieren sie auf verschiedenen zeitlichen und räumlichen Skalen. In den Messkampagnen EDoM (August 2018, Januar 2019) und MudMeas (September 2021) wurde dies unter anderem individuell betrachtet. Um die verschiedenen Prozesse im Emsästuar auch in Modellen weiterhin abbilden zu können, ist es notwendig, diese umfangreichen Datensätze systematisch hinsichtlich der räumlichen Variabilität der Tidecharakteristika und Schwebstoffdynamik zu untersuchen. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Die Konzentrationen und Ausdehnung (vertikal und horizontal) der Schwebstoffe beeinflussen maßgeblich die lokale Hydrodynamik, somit auch die Ausbreitung von salzreichem Wasser und daraus resultierende Strömungsgeschwindigkeiten. Das Verständnis der vorherrschenden Prozesse beeinflusst demnach auch die Schifffahrt. Ein verbessertes Systemverständnis der Sedimentdynamik ermöglicht zusätzlich die Optimierung des Sedimentmanagements. Um auch in Zukunft zuverlässige Aussagen zur Hydrodynamik in (hyper-) turbiden Ästuaren treffen zu können, ist es notwendig, die verwendeten Methoden stets fachlich zu erweitern und abzusichern. Diese Erkenntnisse fließen unmittelbar in die behördliche Gutachtertätigkeit der BAW im Emsästuar ein. Untersuchungsmethoden Die Auswertungen in VarSTiDE erfolgen für Datensätze verschiedener Messtypen. Die Analysen der Dauermessungen, bereitgestellt durch WSA Ems-Nordsee und NLWKN, bilden das Arbeitspaket 1 (AP1). AP1 beinhaltet die Untersuchung von Saisonalität und langfristiger Entwicklung von Tidekennwerten, Tideasymmetrie, Salzgehalt und Schwebstoffkonzentrationen. Diese Ergebnisse liefern Kenntnisse über die zu erwartenden Unterschiede, die aufgrund der verschiedenen Messzeiträume in den Untersuchungsparametern Schwebstoffkonzentration, Salzgehalt und anderen Tidekennwerten entstehen. Der wissenschaftliche Austausch mit weiteren Partnern aus Forschung und Praxis ist ein Bestandteil des Forschungsvorhabens. Es bestehen Kooperationen, u. a. mit der Christian-Albrechts-Universität zu Kiel.

Implementierung und Auswirkungsanalyse einer Unsicherheitsbetrachtung entlang der Durchflussmess- und Modellierungskette

Veranlassung Dass alle Messdaten mit statistischen und systematischen Unsicherheiten behaftet sind, ist eine Trivialität. Gleiches gilt auch für die Unsicherheitsfortpflanzung bei der Verschneidung von verschiedenen Datensätzen. Seit frühen Messungen ist in der Gewässerkunde bekannt, dass diesen Unsicherheiten auch eine kritische Bedeutung beim Systemverständnis und bei der Bewertung von Systemzuständen zukommt. Für viele gewässerkundliche Parameter ist eine Berechnungsart für Unsicherheiten bekannt, bzw. es liegt sogar eine Auswahl an Möglichkeiten zu ihrer Bestimmung vor. Auch maßgebende gewässerkundliche Regelwerke (DIN-Normen, Handbuch der LAWA) betonen die Notwendigkeit der Unsicherheitsbeschreibung, allerdings ohne konkrete, praxisnahe Umsetzungsschritte aufzuzeigen. Für dieses Portfolio an wissenschaftlich begründeten Notwendigkeiten, Lösungsansätzen und praxisnahen Handlungsempfehlungen findet sich in der operationellen Umsetzung bislang - mit Ausnahme der modellbasierten Vorhersage- und Projektionsprodukte - keine Entsprechung. So werden die gewässerkundlichen Mess- und Modelldaten wie Durchfluss, Wasserstand, Transportzeiten, Schwebstoffkonzentrationen und -frachten oder Wassergütedaten wie die IKSR-Zahlentafeln ohne Angabe der Unsicherheiten veröffentlicht. Mehr noch - diese werden größtenteils auch intern nicht berechnet. Nachfolgende Analysen, Berechnungen und Modellierungen beachten die datenimmanenten Unsicherheiten häufig ebenfalls nicht. Dadurch können Optimierungsalgorithmen und Analysen basierend auf Absolutwerten fehlgeleitet sein. Die Diskrepanz zwischen wissenschaftlicher Notwendigkeit und theoretisch-fachlichem Mehrwert von Unsicherheiten auf der einen und fehlender operationeller Umsetzung auf der anderen Seite ist kein rein nationales, WSV- oder BfG-internes Defizit, sondern zeigt sich auch international. Verschiedene Studien weisen auf den inhaltlichen und ökonomischen Mehrwert davon hin, zum Beispiel Abflusswertunsicherheiten zu nutzen, und empfehlen ausdrücklich, diese auch mit pragmatischen Lösungen zu adressieren. Der Grund dafür, Unsicherheiten in der Praxis nicht zu betrachten oder zu kommunizieren, liegt selten in der wissenschaftlichen Herausforderung bei ihrer Bestimmung. Vielmehr ist diese Unterlassung im Aufwand der operationellen Erfassung und Analyse der Unsicherheiten sowie in dem scheinbar geringen Ertrag, d. h. der mangelnden Akzeptanz ihres Anwendungsnutzens, begründet. So werden Unsicherheiten in der Anwendung selten als Erkenntniszugewinn betrachtet, sondern vielmehr als Ungenauigkeit und Makel fehlinterpretiert. Die Nichtbeachtung von Unsicherheiten wider besseres Wissen hat sich in der Praxis verfestigt. Mit dieser „Tradition“ schrittweise zu brechen, ist ein Ziel von IMANUEL. Dazu zeigt das Projekt die Auswirkung einer Unsicherheitsintegration exemplarisch auf, verifiziert oder falsifiziert die fachliche Notwendigkeit und Anwendungsrelevanz und entwickelt mögliche Kommunikationswege, um den Kontrast zwischen Wissenschaft und Anwendung zu überwinden. Ziele 1. Quantifizierung der Unsicherheiten für exemplarische Einzel- und Gesamtunsicherheiten entlang der Abflussmess- und -Modellierungskette. 2. Quantifizierung der Auswirkung dieser Unsicherheiten auf die verschiedenen, teils aufeinander aufbauenden Datenprodukte. 3. Entwicklung eines Konzepts, das beschreibt, wie Unsicherheiten als Mehrwert kommuniziert werden können.

Organischer Kohlenstoff in Flüssen - Charakterisierung, Herkunft und Abbaubarkeit

Veranlassung Der gelöste und der partikuläre organische Kohlenstoff (dissolved organic carbon, DOC und particulate organic carbon, POC) sind zentrale Komponenten im Naturhaushalt von Gewässern. Die Akkumulation von organischem Kohlenstoff - beziehungsweise die damit verbundene hohe Sauerstoffzehrung - ist insbesondere in den Ästuaren ein wichtiger Belastungsfaktor für den Sauerstoffhaushalt und trägt damit zu deren schlechtem ökologischem Zustand bei. Die Bewertung der zu erwartenden Sauerstoffzehrung kann aber nur mit umfassender Kenntnis der Qualität der organischen Kohlenstoffgehalte in gelöster Form oder als Bestandteil der Schwebstoffe erreicht werden. Des Weiteren spielt die Zusammensetzung des organischen Materials eine wichtige Rolle bei der Sorption und dem Transport von Schadstoffen, sodass eine umfassende Beschreibung des organischen Kohlenstoffs auch die Vorhersage der Ausbreitung von Schadstoffen ermöglicht. Im Projekt OrgCarbon soll eine umfassende Charakterisierung des organischen Kohlenstoffs jenseits der traditionell erfassten Parameter (TOC, DOC und POC) stattfinden, da bekannt ist, dass sowohl POC als auch DOC eine komplexe, bisher wenig erforschte Vielzahl unterschiedlicher Stoffklassen beinhaltet. In einem ersten Schritt erfolgt eine Fraktionierung von partikulärem und gelöstem organischem Material, basierend auf der chemischen Zusammensetzung und mikrobiellen Abbaubarkeit. Wichtige Parameter wie Sauerstoffverbrauch, mikrobielle Atmung, chemische Zusammensetzung und die Herkunft des organischen Materials werden für jede Kohlenstofffraktion bestimmt. Durch die daraus resultierende Verbesserung des Verständnisses bezüglich organischem Kohlenstoff in Ästuaren und Flüssen zielt das OrgCarbon-Projekt darauf ab, zu besseren Umweltmanagement- und Naturschutzstrategien für die Bundeswasserstraßen beizutragen. Ziele Ein zentrales Ziel des OrgCarbon-Projekts ist es, eine Vielzahl interdisziplinärer Methoden zu testen, um die vielfältigen Eigenschaften des Kohlenstoffes zu erfassen. Es werden verschiedene chemisch-analytische Verfahren mit Messungen zur biologischen Aktivität und Abbaubarkeit des Kohlenstoffs sowie mit mineralogischen Untersuchungen kombiniert. Dadurch lässt sich ein Set an Methoden identifizieren, das zukünftig auch mit weniger Aufwand eine detaillierte Charakterisierung des Kohlenstoffs ermöglicht. Als Ergebnis von OrgCarbon angestrebt ist die Entwicklung eines standardisierten Protokolls, das den gesamten Prozess von der Probenahme über die Kohlenstofffraktionierung bis hin zur Analyse und Datenauswertung umfasst. Dieses ermöglicht es, die Qualität des organischen Kohlenstoffs sowie dessen Eigenschaften und Abbaubarkeit in Zukunft besser abzuschätzen und gemeinsam zu interpretieren. Dieses Protokoll soll in bestehende Messprogramme der BfG integriert werden, um regelmäßig die Herkunft, das Sorptionspotenzial für Schadstoffe sowie die Abbaubarkeit und die Sauerstoffzehrung von organischem Kohlenstoff zu bestimmen. Organischer Kohlenstoff spielt eine entscheidende Rolle in Ästuaren und Flüssen. Seine Zusammensetzung beeinflusst Prozesse wie die (mikro)biologische Produktivität, den Sauerstoffverbrauch, den Schadstofftransport und die Agglomeration von Schwebstoffen. Die Bestimmung erfolgt routinemäßig nur als Summenparameter (total organic carbon, TOC) weshalb über die Zusammensetzung des organischen Materials, dessen Abbauverhalten und Quellen meist wenig bekannt ist. Darüber hinaus reicht die Betrachtung des Gesamtkohlenstoffgehalts in vielen Fällen nicht aus, um eine Vergleichbarkeit von Schwebstoffen aus unterschiedlichen Quellen zu gewährleisten. Das OrgCarbon-Projekt widmet sich darum einer umfassenden Analyse des organischen Kohlenstoffs in Feldproben aus Ästuaren und Flüssen mit unterschiedlichen Kohlenstoffgehalten und Zusammensetzungen, wie der Tide-Ems und der Tide-Elbe. (Text gekürzt)

Nachhaltige Entwicklung der Bundeswasserstraßen, Aufbau eines flächendeckenden Sedimentkatasters

Die WSV (inkl. der Oberbehörden BfG und BAW) hat im Rahmen ihrer Hoheitsaufgaben einen ständigen Bedarf an Daten und Informationen über Menge und Qualität der Sedimente in den verwalteten Gewässern und führt deshalb gewässerkundliche Messungen selbst durch oder beauftragt Dritte damit. Erhoben werden Daten über die physikalischen Randbedingungen sowie chemische und biologische Daten. Im Forschungskonzept der BfG wird die Bedeutung der Sammlung und Bereitstellung umfassender Kenntnisse über Sedimente als Voraussetzung eines tiefen System- und Prozeßverständnisses - und somit als Basis eines integralen Sedimentmanagements betont. Bisher liegen die in der WSV, der BfG und der BAW verfügbaren Daten über die Menge und Beschaffenheit von Sedimenten, Schwebstoffen und Böden in bzw. an Bundeswasserstraßen in sektoralen, maßnahmenbezogenen Datensammlungen unterschiedlichster Form vor. Mit dem Sediment- und Bodenkataster der WSV wird ein gewässerkundliches Fachinformationssystem zur Dokumentation, Recherche, Interpretation, Analyse und Bewertung der quantitativen, qualitativen und biologischen Eigenschaften der Sedimente / Böden in bzw. an Bundeswasserstraßen aufgebaut.

1 2 3 4 5363 364 365