API src

Found 397 results.

Related terms

Environmental impacts of exhaust gas cleaning systems for reduction of SOx on ships - analysis of status quo

In den letzten Jahren hat die Anzahl von auf Schiffen installierten Abgasreinigungssystemen (EGCS) stetig zugenommen. Diese Entwicklung ist auf internationale Bestimmungen zur Beschränkung des Schwefelgehalts in Schiffskraftstoffen zurückzuführen. EGCS reduzieren Schwefeloxidemissionen, indem die Abgase gereinigt werden, leiten aber stattdessen verunreinigtes saures Wasser in die Meeresumwelt ein. Der vorliegende Bericht gibt einen Gesamtüberblick über EGCS, mit besonderem Fokus auf die Abwasser-Problematik. Hierfür wurden umfassende Informationen aus der vorhandenen Literatur zusammengetragen. Der vorliegende Bericht beinhaltet technische Aspekte und eine Marktanalyse und behandelt rechtliche Rahmenbedingungen und Forschungsaktivitäten zu diesem Thema. Die Marktanalyse zeigt, dass derzeit mehr als 3.000 Schiffe mit EGCS ausgerüstet sind, was über 16,8% der weltweiten Tragfähigkeit (DWT) entspricht. Die zukünftige Entwicklung des EGCS-Marktes kann durch Fluktuationen der Kraftstoffpreise, Ungewissheiten bei der Kraftstoffnachfrage und -verfügbarkeit, Änderungen der rechtlichen Rahmenbedingungen und die Entwicklungen neuer Technologien beeinflusst werden. Mehrere Defizite wurden bei den in den EGCS-Richtlinien der Internationalen Seeschifffahrtsorganisation (IMO) festgelegten Qualitätskriterien für Abwässer festgestellt. Bisherige Untersuchungen zeigten einen sauren pH-Wert und das Vorkommen mehrerer Schadstoffe wie Schwermetalle, polyzyklische aromatische Kohlenwasserstoffe (PAK), Ölrückstände und Nitrat in relevanten Konzentrationen im EGCS-Abwasser. Darüber hinaus wiesen ökotoxikologische Tests auf Toxizitätseffekte hin und dass der Single-Pollutant-Ansatz allein für die Umweltrisikobewertung von EGCS-Abwasser nicht geeignet ist. Daher bestehen trotz der derzeitigen Regelung weiterhin Bedenken hinsichtlich der Auswirkungen auf die Meeresumwelt durch diese Emissionen. In Anbetracht dessen sollten gegenwärtige und zukünftige Studien einen wertvollen Beitrag zum Prozess einer angemessenen Regulierung leisten. Quelle: Forschungsbericht

Umweltbundesamt: Der Himmel über der Ruhr ist wieder blau!

Nicht aus der Luft gegriffen: Willy Brandt fordert 1961 blauen Himmel über dem Ruhrgebiet „Der Himmel über dem Ruhrgebiet muss wieder blau werden.“ Willy Brandts Forderung während seiner Rede am 28. April 1961 in der Bonner Beethovenhalle kann zu Recht als der Beginn umweltpolitischen Denkens in Deutschland gelten. Damit rückte Brandt - lange bevor es die Begriffe Umweltschutz oder Umweltpolitik gab - ein regionales und bis dahin vernachlässigtes Problem ins Blickfeld gesellschaftspolitischer Debatten. Er machte aufmerksam auf die Schattenseiten des deutschen Wirtschaftswunders: Zwar waren die rauchenden Schornsteine ein Garant für Wohlstand, die ungefilterten Industrieabgase belasteten jedoch zunehmend die Gesundheit und das Wohlbefinden vieler Menschen im Ruhrgebiet. „Mit seiner Forderung nach klarer Luft, sauberem Wasser und weniger Lärm für die Bürgerinnen und Bürger des Ruhrgebiets machte Willy Brandt deutlich, dass Umweltschutz eine nicht zu vernachlässigende Gemeinschaftsaufgabe ist. Und diese Aufgabe wurde von den 1970er Jahren an erfolgreich angegangen“, sagte der Präsident des Umweltbundesamtes (⁠ UBA ⁠), Jochen Flasbarth. „Heute kennen wir Phänomene wie den Smog im Winter nicht mehr“, so Flasbarth. Anfang der 1960er Jahre war die Luftverschmutzung im Revier förmlich sichtbar: Millionen Tonnen von Staub, Asche und Ruß aus Hochöfen, Stahlkonvertern und Kokereien sanken alljährlich auf Stadtteile hernieder. Die Folgen waren eine Zunahme der Atemwegserkrankungen, vor allem von Lungenkrebs, bei Kindern wurden auch häufiger Symptome von Rachitis und Bindehautentzündungen festgestellt. Hohe Schwefeldioxid-Konzentrationen (SO 2 ) führten zu einem Absterben von Bäumen und mittelfristig zur ⁠ Versauerung ⁠ von Böden und Gewässern. Seit den 1970er Jahren sorgen eine Reihe von Gesetzen wie das Benzin-Blei-Gesetz, das Bundes-Immissionsschutzgesetz oder Verwaltungsvorschriften wie die Technische Anleitung Luft und die Großfeuerungsanlagen-Verordnung dafür, die Umweltbelastungen durch technische Lösungen zu verringern oder zu beseitigen. So führten die Rauchgasentschwefelung in Kraftwerken, die Reduktion des Schwefelgehalts in Kraftstoffen wie auch der Rückgang der Kohleheizungen in Privathaushalten dazu, dass sich die Luftqualität in Deutschland deutlich verbesserte. Nach Angaben des Umweltministeriums von Nordrhein-Westfalen konnte die Belastung an Rhein und Ruhr durch SO 2 um 97 Prozent gemindert werden: von 206 Mikrogramm pro Kubikmeter Luft (µg/m 3 ) im Jahr 1964 auf 8 µg/m 3 in 2007. Für die Schwebstaubbelastung (Partikel mit einer maximalen Größe von 30 bis 50 µm) zeigt sich im Zeitraum von 1968 bis 2002 eine ähnliche Entwicklung. Heute stehen wir in der Luftreinhaltung vor neuen Aufgaben: In deutschen Ballungsräumen werden die seit 2005 geltenden Grenzwerte für Feinstaub (PM 10 ) und für Stickstoffdioxid (NO 2 , diese gelten von 2010 an) an zahlreichen Hauptverkehrsstraßen überschritten. Als Hauptverursacher ist das wachsende ⁠ Verkehrsaufkommen ⁠ anzusehen. Epidemiologischen Studien zufolge bedeutet eine ⁠ Exposition ⁠ gegenüber NO 2 eine erhöhte Infektionsanfälligkeit und Beeinträchtigung der Lungenfunktion, während ein Zusammenhang zwischen einer Feinstaub-Exposition und Atemwegs- sowie Herz-Kreislauf-Erkrankungen nachgewiesen wurde. Mit der vermehrten Verbrennung von ⁠ Biomasse ⁠ vor allem in kleinen Feuerungsanlangen bleibt jedoch eine Quelle für Feinstaubbelastungen, die es aufmerksam zu verfolgen gilt. Jochen Flasbarth: „Mit der Einrichtung von Umweltzonen ist ein wichtiger Schritt in Richtung bessere Luftqualität in Ballungsräumen getan. Wir müssen aber dafür sorgen, dass eine dezentrale Energieversorgung unter Einsatz von Biomasse diese Bemühungen nicht konterkariert.“ „Das Anliegen Willy Brandts nach mehr Umweltschutz hat auch bewirkt, dass Deutschland, 50 Jahre nach seiner Rede in vielen ‚grünen‘ Zukunftsmärkten Marktführer geworden ist. Schon heute arbeiten rund 1,8 Millionen Menschen in der Umweltwirtschaft“, sagte Jochen Flasbarth. 27.04.2011

Weltschifffahrtsorganisation IMO beschließt weltweites Schwefellimit in Kraftstoffen ab 2020

Die Internationale Seeschifffahrts-Organisation (IMO) will die Schwefeloxid-Emissionen durch Schiffskraftstoffe deutlich verringern. Der Beschluss der 70. Sitzung des Umweltausschusses der IMO (das Marine Environment Protection Committee - MEPC), sieht vor, den maximal zulässigen globalen Schwefelgrenzwert für Schiffskraftstoffe im Jahr 2020 auf 0,5% zu senken. Dadurch sollen die gesundheits- und umweltgefährdenden Auswirkungen von Schiffen verringert werden. Schweröle, die von Schiffen verwendet werden, können derzeit einen Schwefelgehalt von 3,5% aufweisen. Wäre die Absenkung weiter auf 2025 verzögert worden, hätte es zu mehr als 570.000 zusätzlichen vorzeitigen Todesfällen im Vergleich zum dem jetzt beschlossenen früheren Inkrafttreten von 2020 kommen können. Die Entscheidung geht auf eine Maßnahme im MARPOL-Übereinkommen zur stufenweisen Begrenzung des Schwefelgehaltes durch die IMO im Jahre 2008 zurück. Sie gilt für alle Schiffstypen.

Steine-Erden\CaO-Drehrohr-DE-2005

Brennen von Kalk (Drehrohröfen). Unter dem Prozess des Kalkbrennens versteht man die Zersetzungsreaktion des Kalksteins durch die Zufuhr thermischer Energie: CaCO3 => CaO + CO2. In der Technik wird die Zersetzung bei 900-1100°C durchgeführt. Das Brennen des Kalks kann in verschiedenen Formen von Öfen erfolgen. Dabei gibt es vier Haupttypen, deren Anteile nach einer Umfrage des Bundesverbandes der deutschen Kalkindustrie folgendermaßen anzunehmen sind: Tab.: Ungefährer Anteil einzelner Ofentypen zur Branntkalkherstellung (BdK 1995). Ofentyp Mengenanteil in % Schachtofen 30 Ringschachtofen 30 Gleichstrom-Gegenstrom-Regenerativofen (GGR-Ofen) 25 Drehrohrofen 15 Die in dieser Bilanz genutzten Daten beziehen sich auf den Brennprozess in einem Drehrohrofen. Im Vergleich zu den meisten Schachtöfen zeichnet sich der Drehrohrofen durch einen höheren Energieverbrauch aus. Ein Drehrohrofen kann prinzipiell mit Gas, Öl und festen Brennstoffen befeuert werden. Je nach Brennstoff variiert der Energiebedarf der Drehrohröfen von 8400 MJ/t Branntkalk für die einfachsten gasbefeuerten Öfen bis zu 5050 MJ/t Branntkalk für die komplexeren kohle-befeuerten Einheiten (Ullmann 1990). Im Vergleich zu den Schachtöfen ist es einfacher - auch bei hohem Schwefelgehalt der Brennstoffs (Kohle) - einen Kalk mit geringerem Schwefelgehalt herzustellen, wie er zum Beispiel für die Stahlindustrie gebraucht wird, wo er unter anderem dazu eingesetzt wird, um das Eisen zu entschwefeln, bevor es in den Hochofen gelangt. In GEMIS wird ein Drehrohrofen bilanziert, der nach #1 einen Energiebedarf von 5200 MJ/t Branntkalk hat. Die Quelle in #1 ist eine amerikanische Studie aus dem Jahre 1987, wobei angenommen wird, daß der Wert örtlich wie zeitlich übertragbar ist. In dieser Studie wird angesetzt, daß der bilanzierte Drehrohrofen mit Steinkohle befeuert wird. Massenbilanz: Pro Tonne stückigen Branntkalks müssen 1755 kg Ofenstein in den Brennprozess eingebracht werden (Scholz 1994).Weitere Hifs- oder Betriebsstoffe werden nicht benötigt. Der enorme Massenverlust kommt dadurch zustande, daß gemäß der oberen Reaktionsgleichung ein Teil des Kalksteins als CO2 den Prozeß über den Gaspfad verläßt. Energiebedarf: Für das Brennen einer Tonne Kalks im bilanzierten Drehrohrofen werden 5200 MJ/t benötigt (#1). Als Brennstoff wird Steinkohle verwendet. Diese Annahmen decken sich mit denen von Merten für einen Drehrohrofen (#2). Neben dem Brennstoffbedarf besteht für den Betrieb des Ofens noch ein Strombedarf von ca. 130 MJ/t Branntkalk (#2). Prozessbedingte Luftemissionen: Als prozessbedingte Luftemissionen sind im Prozeß des Kalkbrennens die CO2-Emissionen zu bilanzieren, die bei der sog. Entsäuerung des Kalks auftreten. Die Ofensteinmasse enthält 767 kg gebundenes Kohlendioxid von denen während des Brennprozesses 755 kg/t Branntkalk freigesetzt werden (Scholz 1994). Die Differenz verbleibt weiterhin gebunden im Branntkalk. Der Wert von Scholz stimmt exakt mit dem Wert überein, den das UBA als materialbedingte Prozeßemissionen angibt. Das UBA gibt weiterhin einen Wert für Staub an, den es mit 0,17 kg/t Branntkalk quantifiziert (UBA 1996). Auch dieser Wert wird in GEMIS bernommen. Die brennstoffbedingten Prozessemissionen lassen sich nicht einfach über eine Verbrennungsrechnung zur Bereitstellung einer bestimmten Prozesswärme berechnen. Vielmehr sind die spezifischen Bedingungen der Verbrennung bei der Branntkalkherstellung wichtig. Das UBA gibt für verschiedene Brennstoffe Emissionskennziffern an. Diese sind für Steinkohle in der folgenden Tabelle wiedergegeben: Tab.: Brennstoffbedingte Prozeßemissionen bei der Branntkalkherstellung in steinkohlebefeuerten Schachtöfen (UBA 1996). Schadstoff Emissionen in kg/TJ Emissionen in kg/t Branntkalk CO2 94000 479,4 CO 6000 30,6 CH4 15 0,0765 NMVOC 15 0,0765 NOx 155 0,7905 N2O 4,0 0,0204 SO2 33 0,1683 Staub 0 0 Die gesamten Emissionsfaktoren ergeben sich durch Addition der materialbedingten und brenstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme: Direkt im Prozess des Kalkbrennens wird kein Wasser in Anspruch genommen. Abwasserinhaltsstoffe: In dem beschriebenen Prozess wird kein belastetes Abwasser bilanziert. Reststoffe: Es fallen keine Reststofe an, die nicht wieder innerhalb der Systemgrenzen verwertet werden können. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 57% Produkt: Baustoffe

Steine-Erden\CaO-Drehrohr-DE-2050

Brennen von Kalk (Drehrohröfen). Unter dem Prozess des Kalkbrennens versteht man die Zersetzungsreaktion des Kalksteins durch die Zufuhr thermischer Energie: CaCO3 => CaO + CO2. In der Technik wird die Zersetzung bei 900-1100°C durchgeführt. Das Brennen des Kalks kann in verschiedenen Formen von Öfen erfolgen. Dabei gibt es vier Haupttypen, deren Anteile nach einer Umfrage des Bundesverbandes der deutschen Kalkindustrie folgendermaßen anzunehmen sind: Tab.: Ungefährer Anteil einzelner Ofentypen zur Branntkalkherstellung (BdK 1995). Ofentyp Mengenanteil in % Schachtofen 30 Ringschachtofen 30 Gleichstrom-Gegenstrom-Regenerativofen (GGR-Ofen) 25 Drehrohrofen 15 Die in dieser Bilanz genutzten Daten beziehen sich auf den Brennprozess in einem Drehrohrofen. Im Vergleich zu den meisten Schachtöfen zeichnet sich der Drehrohrofen durch einen höheren Energieverbrauch aus. Ein Drehrohrofen kann prinzipiell mit Gas, Öl und festen Brennstoffen befeuert werden. Je nach Brennstoff variiert der Energiebedarf der Drehrohröfen von 8400 MJ/t Branntkalk für die einfachsten gasbefeuerten Öfen bis zu 5050 MJ/t Branntkalk für die komplexeren kohle-befeuerten Einheiten (Ullmann 1990). Im Vergleich zu den Schachtöfen ist es einfacher - auch bei hohem Schwefelgehalt der Brennstoffs (Kohle) - einen Kalk mit geringerem Schwefelgehalt herzustellen, wie er zum Beispiel für die Stahlindustrie gebraucht wird, wo er unter anderem dazu eingesetzt wird, um das Eisen zu entschwefeln, bevor es in den Hochofen gelangt. In GEMIS wird ein Drehrohrofen bilanziert, der nach #1 einen Energiebedarf von 5200 MJ/t Branntkalk hat. Die Quelle in #1 ist eine amerikanische Studie aus dem Jahre 1987, wobei angenommen wird, daß der Wert örtlich wie zeitlich übertragbar ist. In dieser Studie wird angesetzt, daß der bilanzierte Drehrohrofen mit Steinkohle befeuert wird. Massenbilanz: Pro Tonne stückigen Branntkalks müssen 1755 kg Ofenstein in den Brennprozess eingebracht werden (Scholz 1994).Weitere Hifs- oder Betriebsstoffe werden nicht benötigt. Der enorme Massenverlust kommt dadurch zustande, daß gemäß der oberen Reaktionsgleichung ein Teil des Kalksteins als CO2 den Prozeß über den Gaspfad verläßt. Energiebedarf: Für das Brennen einer Tonne Kalks im bilanzierten Drehrohrofen werden 5200 MJ/t benötigt (#1). Als Brennstoff wird Steinkohle verwendet. Diese Annahmen decken sich mit denen von Merten für einen Drehrohrofen (#2). Neben dem Brennstoffbedarf besteht für den Betrieb des Ofens noch ein Strombedarf von ca. 130 MJ/t Branntkalk (#2). Prozessbedingte Luftemissionen: Als prozessbedingte Luftemissionen sind im Prozeß des Kalkbrennens die CO2-Emissionen zu bilanzieren, die bei der sog. Entsäuerung des Kalks auftreten. Die Ofensteinmasse enthält 767 kg gebundenes Kohlendioxid von denen während des Brennprozesses 755 kg/t Branntkalk freigesetzt werden (Scholz 1994). Die Differenz verbleibt weiterhin gebunden im Branntkalk. Der Wert von Scholz stimmt exakt mit dem Wert überein, den das UBA als materialbedingte Prozeßemissionen angibt. Das UBA gibt weiterhin einen Wert für Staub an, den es mit 0,17 kg/t Branntkalk quantifiziert (UBA 1996). Auch dieser Wert wird in GEMIS bernommen. Die brennstoffbedingten Prozessemissionen lassen sich nicht einfach über eine Verbrennungsrechnung zur Bereitstellung einer bestimmten Prozesswärme berechnen. Vielmehr sind die spezifischen Bedingungen der Verbrennung bei der Branntkalkherstellung wichtig. Das UBA gibt für verschiedene Brennstoffe Emissionskennziffern an. Diese sind für Steinkohle in der folgenden Tabelle wiedergegeben: Tab.: Brennstoffbedingte Prozeßemissionen bei der Branntkalkherstellung in steinkohlebefeuerten Schachtöfen (UBA 1996). Schadstoff Emissionen in kg/TJ Emissionen in kg/t Branntkalk CO2 94000 479,4 CO 6000 30,6 CH4 15 0,0765 NMVOC 15 0,0765 NOx 155 0,7905 N2O 4,0 0,0204 SO2 33 0,1683 Staub 0 0 Die gesamten Emissionsfaktoren ergeben sich durch Addition der materialbedingten und brenstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme: Direkt im Prozess des Kalkbrennens wird kein Wasser in Anspruch genommen. Abwasserinhaltsstoffe: In dem beschriebenen Prozess wird kein belastetes Abwasser bilanziert. Reststoffe: Es fallen keine Reststofe an, die nicht wieder innerhalb der Systemgrenzen verwertet werden können. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2050 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 57% Produkt: Baustoffe

Steine-Erden\CaO-Drehrohr-DE-2020

Brennen von Kalk (Drehrohröfen). Unter dem Prozess des Kalkbrennens versteht man die Zersetzungsreaktion des Kalksteins durch die Zufuhr thermischer Energie: CaCO3 => CaO + CO2. In der Technik wird die Zersetzung bei 900-1100°C durchgeführt. Das Brennen des Kalks kann in verschiedenen Formen von Öfen erfolgen. Dabei gibt es vier Haupttypen, deren Anteile nach einer Umfrage des Bundesverbandes der deutschen Kalkindustrie folgendermaßen anzunehmen sind: Tab.: Ungefährer Anteil einzelner Ofentypen zur Branntkalkherstellung (BdK 1995). Ofentyp Mengenanteil in % Schachtofen 30 Ringschachtofen 30 Gleichstrom-Gegenstrom-Regenerativofen (GGR-Ofen) 25 Drehrohrofen 15 Die in dieser Bilanz genutzten Daten beziehen sich auf den Brennprozess in einem Drehrohrofen. Im Vergleich zu den meisten Schachtöfen zeichnet sich der Drehrohrofen durch einen höheren Energieverbrauch aus. Ein Drehrohrofen kann prinzipiell mit Gas, Öl und festen Brennstoffen befeuert werden. Je nach Brennstoff variiert der Energiebedarf der Drehrohröfen von 8400 MJ/t Branntkalk für die einfachsten gasbefeuerten Öfen bis zu 5050 MJ/t Branntkalk für die komplexeren kohle-befeuerten Einheiten (Ullmann 1990). Im Vergleich zu den Schachtöfen ist es einfacher - auch bei hohem Schwefelgehalt der Brennstoffs (Kohle) - einen Kalk mit geringerem Schwefelgehalt herzustellen, wie er zum Beispiel für die Stahlindustrie gebraucht wird, wo er unter anderem dazu eingesetzt wird, um das Eisen zu entschwefeln, bevor es in den Hochofen gelangt. In GEMIS wird ein Drehrohrofen bilanziert, der nach #1 einen Energiebedarf von 5200 MJ/t Branntkalk hat. Die Quelle in #1 ist eine amerikanische Studie aus dem Jahre 1987, wobei angenommen wird, daß der Wert örtlich wie zeitlich übertragbar ist. In dieser Studie wird angesetzt, daß der bilanzierte Drehrohrofen mit Steinkohle befeuert wird. Massenbilanz: Pro Tonne stückigen Branntkalks müssen 1755 kg Ofenstein in den Brennprozess eingebracht werden (Scholz 1994).Weitere Hifs- oder Betriebsstoffe werden nicht benötigt. Der enorme Massenverlust kommt dadurch zustande, daß gemäß der oberen Reaktionsgleichung ein Teil des Kalksteins als CO2 den Prozeß über den Gaspfad verläßt. Energiebedarf: Für das Brennen einer Tonne Kalks im bilanzierten Drehrohrofen werden 5200 MJ/t benötigt (#1). Als Brennstoff wird Steinkohle verwendet. Diese Annahmen decken sich mit denen von Merten für einen Drehrohrofen (#2). Neben dem Brennstoffbedarf besteht für den Betrieb des Ofens noch ein Strombedarf von ca. 130 MJ/t Branntkalk (#2). Prozessbedingte Luftemissionen: Als prozessbedingte Luftemissionen sind im Prozeß des Kalkbrennens die CO2-Emissionen zu bilanzieren, die bei der sog. Entsäuerung des Kalks auftreten. Die Ofensteinmasse enthält 767 kg gebundenes Kohlendioxid von denen während des Brennprozesses 755 kg/t Branntkalk freigesetzt werden (Scholz 1994). Die Differenz verbleibt weiterhin gebunden im Branntkalk. Der Wert von Scholz stimmt exakt mit dem Wert überein, den das UBA als materialbedingte Prozeßemissionen angibt. Das UBA gibt weiterhin einen Wert für Staub an, den es mit 0,17 kg/t Branntkalk quantifiziert (UBA 1996). Auch dieser Wert wird in GEMIS bernommen. Die brennstoffbedingten Prozessemissionen lassen sich nicht einfach über eine Verbrennungsrechnung zur Bereitstellung einer bestimmten Prozesswärme berechnen. Vielmehr sind die spezifischen Bedingungen der Verbrennung bei der Branntkalkherstellung wichtig. Das UBA gibt für verschiedene Brennstoffe Emissionskennziffern an. Diese sind für Steinkohle in der folgenden Tabelle wiedergegeben: Tab.: Brennstoffbedingte Prozeßemissionen bei der Branntkalkherstellung in steinkohlebefeuerten Schachtöfen (UBA 1996). Schadstoff Emissionen in kg/TJ Emissionen in kg/t Branntkalk CO2 94000 479,4 CO 6000 30,6 CH4 15 0,0765 NMVOC 15 0,0765 NOx 155 0,7905 N2O 4,0 0,0204 SO2 33 0,1683 Staub 0 0 Die gesamten Emissionsfaktoren ergeben sich durch Addition der materialbedingten und brenstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme: Direkt im Prozess des Kalkbrennens wird kein Wasser in Anspruch genommen. Abwasserinhaltsstoffe: In dem beschriebenen Prozess wird kein belastetes Abwasser bilanziert. Reststoffe: Es fallen keine Reststofe an, die nicht wieder innerhalb der Systemgrenzen verwertet werden können. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 57% Produkt: Baustoffe

Steine-Erden\CaO-Drehrohr-DE-2015

Brennen von Kalk (Drehrohröfen). Unter dem Prozess des Kalkbrennens versteht man die Zersetzungsreaktion des Kalksteins durch die Zufuhr thermischer Energie: CaCO3 => CaO + CO2. In der Technik wird die Zersetzung bei 900-1100°C durchgeführt. Das Brennen des Kalks kann in verschiedenen Formen von Öfen erfolgen. Dabei gibt es vier Haupttypen, deren Anteile nach einer Umfrage des Bundesverbandes der deutschen Kalkindustrie folgendermaßen anzunehmen sind: Tab.: Ungefährer Anteil einzelner Ofentypen zur Branntkalkherstellung (BdK 1995). Ofentyp Mengenanteil in % Schachtofen 30 Ringschachtofen 30 Gleichstrom-Gegenstrom-Regenerativofen (GGR-Ofen) 25 Drehrohrofen 15 Die in dieser Bilanz genutzten Daten beziehen sich auf den Brennprozess in einem Drehrohrofen. Im Vergleich zu den meisten Schachtöfen zeichnet sich der Drehrohrofen durch einen höheren Energieverbrauch aus. Ein Drehrohrofen kann prinzipiell mit Gas, Öl und festen Brennstoffen befeuert werden. Je nach Brennstoff variiert der Energiebedarf der Drehrohröfen von 8400 MJ/t Branntkalk für die einfachsten gasbefeuerten Öfen bis zu 5050 MJ/t Branntkalk für die komplexeren kohle-befeuerten Einheiten (Ullmann 1990). Im Vergleich zu den Schachtöfen ist es einfacher - auch bei hohem Schwefelgehalt der Brennstoffs (Kohle) - einen Kalk mit geringerem Schwefelgehalt herzustellen, wie er zum Beispiel für die Stahlindustrie gebraucht wird, wo er unter anderem dazu eingesetzt wird, um das Eisen zu entschwefeln, bevor es in den Hochofen gelangt. In GEMIS wird ein Drehrohrofen bilanziert, der nach #1 einen Energiebedarf von 5200 MJ/t Branntkalk hat. Die Quelle in #1 ist eine amerikanische Studie aus dem Jahre 1987, wobei angenommen wird, daß der Wert örtlich wie zeitlich übertragbar ist. In dieser Studie wird angesetzt, daß der bilanzierte Drehrohrofen mit Steinkohle befeuert wird. Massenbilanz: Pro Tonne stückigen Branntkalks müssen 1755 kg Ofenstein in den Brennprozess eingebracht werden (Scholz 1994).Weitere Hifs- oder Betriebsstoffe werden nicht benötigt. Der enorme Massenverlust kommt dadurch zustande, daß gemäß der oberen Reaktionsgleichung ein Teil des Kalksteins als CO2 den Prozeß über den Gaspfad verläßt. Energiebedarf: Für das Brennen einer Tonne Kalks im bilanzierten Drehrohrofen werden 5200 MJ/t benötigt (#1). Als Brennstoff wird Steinkohle verwendet. Diese Annahmen decken sich mit denen von Merten für einen Drehrohrofen (#2). Neben dem Brennstoffbedarf besteht für den Betrieb des Ofens noch ein Strombedarf von ca. 130 MJ/t Branntkalk (#2). Prozessbedingte Luftemissionen: Als prozessbedingte Luftemissionen sind im Prozeß des Kalkbrennens die CO2-Emissionen zu bilanzieren, die bei der sog. Entsäuerung des Kalks auftreten. Die Ofensteinmasse enthält 767 kg gebundenes Kohlendioxid von denen während des Brennprozesses 755 kg/t Branntkalk freigesetzt werden (Scholz 1994). Die Differenz verbleibt weiterhin gebunden im Branntkalk. Der Wert von Scholz stimmt exakt mit dem Wert überein, den das UBA als materialbedingte Prozeßemissionen angibt. Das UBA gibt weiterhin einen Wert für Staub an, den es mit 0,17 kg/t Branntkalk quantifiziert (UBA 1996). Auch dieser Wert wird in GEMIS bernommen. Die brennstoffbedingten Prozessemissionen lassen sich nicht einfach über eine Verbrennungsrechnung zur Bereitstellung einer bestimmten Prozesswärme berechnen. Vielmehr sind die spezifischen Bedingungen der Verbrennung bei der Branntkalkherstellung wichtig. Das UBA gibt für verschiedene Brennstoffe Emissionskennziffern an. Diese sind für Steinkohle in der folgenden Tabelle wiedergegeben: Tab.: Brennstoffbedingte Prozeßemissionen bei der Branntkalkherstellung in steinkohlebefeuerten Schachtöfen (UBA 1996). Schadstoff Emissionen in kg/TJ Emissionen in kg/t Branntkalk CO2 94000 479,4 CO 6000 30,6 CH4 15 0,0765 NMVOC 15 0,0765 NOx 155 0,7905 N2O 4,0 0,0204 SO2 33 0,1683 Staub 0 0 Die gesamten Emissionsfaktoren ergeben sich durch Addition der materialbedingten und brenstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme: Direkt im Prozess des Kalkbrennens wird kein Wasser in Anspruch genommen. Abwasserinhaltsstoffe: In dem beschriebenen Prozess wird kein belastetes Abwasser bilanziert. Reststoffe: Es fallen keine Reststofe an, die nicht wieder innerhalb der Systemgrenzen verwertet werden können. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2015 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 57% Produkt: Baustoffe

Steine-Erden\CaO-Drehrohr-DE-2000

Brennen von Kalk (Drehrohröfen). Unter dem Prozeß des Kalkbrennens versteht man die Zersetzungsreaktion des Kalksteins durch die Zufuhr thermischer Energie: CaCO3 => CaO + CO2. In der Technik wird die Zersetzung bei 900-1100°C durchgeführt. Das Brennen des Kalks kann in verschiedenen Formen von Öfen erfolgen. Dabei gibt es vier Haupttypen, deren Anteile nach einer Umfrage des Bundesverbandes der deutschen Kalkindustrie folgendermaßen anzunehmen sind: Tab.: Ungefährer Anteil einzelner Ofentypen zur Branntkalkherstellung (BdK 1995). Ofentyp Mengenanteil in % Schachtofen 30 Ringschachtofen 30 Gleichstrom-Gegenstrom-Regenerativofen (GGR-Ofen) 25 Drehrohrofen 15 Die in dieser Bilanz genutzten Daten beziehen sich auf den Brennprozeß in einem Drehrohrofen. Im Vergleich zu den meisten Schachtöfen zeichnet sich der Drehrohrofen durch einen höheren Energieverbrauch aus. Ein Drehrohrofen kann prinzipiell mit Gas, Öl und festen Brennstoffen befeuert werden. Je nach Brennstoff variiert der Energiebedarf der Drehrohröfen von 8400 MJ/t Branntkalk für die einfachsten gasbefeuerten Öfen bis zu 5050 MJ/t Branntkalk für die komplexeren kohle-befeuerten Einheiten (Ullmann 1990). Im Vergleich zu den Schachtöfen ist es einfacher - auch bei hohem Schwefelgehalt der Brennstoffs (Kohle) - einen Kalk mit geringerem Schwefelgehalt herzustellen, wie er zum Beispiel für die Stahlindustrie gebraucht wird, wo er unter anderem dazu eingesetzt wird, um das Eisen zu entschwefeln, bevor es in den Hochofen gelangt. In GEMIS wird ein Drehrohrofen bilanziert, der nach #1 einen Energiebedarf von 5200 MJ/t Branntkalk hat. Die Quelle in #1 ist eine amerikanische Studie aus dem Jahre 1987, wobei angenommen wird, daß der Wert örtlich wie zeitlich übertragbar ist. In dieser Studie wird angesetzt, daß der bilanzierte Drehrohrofen mit Steinkohle befeuert wird. Genese der Kennziffern Massenbilanz: Pro Tonne stückigen Branntkalks müssen 1755 kg Ofenstein in den Brennprozeß eingebracht werden (Scholz 1994).Weitere Hifs- oder Betriebsstoffe werden nicht benötigt. Der enorme Massenverlust kommt dadurch zustande, daß gemäß der oberen Reaktionsgleichung ein Teil des Kalksteins als CO2 den Prozeß über den Gaspfad verläßt. Energiebedarf: Für das Brennen einer Tonne Kalks im bilanzierten Drehrohrofen werden 5200 MJ/t benötigt (#1). Als Brennstoff wird Steinkohle verwendet. Diese Annahmen decken sich mit denen von Merten für einen Drehrohrofen (#2). Neben dem Brennstoffbedarf besteht für den Betrieb des Ofens noch ein Strombedarf von ca. 130 MJ/t Branntkalk (#2). Prozeßbedingte Luftemissionen: Als prozeßbedingte Luftemissionen sind im Prozeß des Kalkbrennens die CO2-Emissionen zu bilanzieren, die bei der sog. Entsäuerung des Kalks auftreten. Die Ofensteinmasse enthält 767 kg gebundenes Kohlendioxid von denen während des Brennprozesses 755 kg/t Branntkalk freigesetzt werden (Scholz 1994). Die Differenz verbleibt weiterhin gebunden im Branntkalk. Der Wert von Scholz stimmt exakt mit dem Wert überein, den das UBA als materialbedingte Prozeßemissionen angibt. Das UBA gibt weiterhin einen Wert für Staub an, den es mit 0,17 kg/t Branntkalk quantifiziert (UBA 1996). Auch dieser Wert wird in dieser Studie übernommen. Die brennstoffbedingten Prozeßemissionen lassen sich nicht einfach über eine Verbrennungsrechnung zur Bereitstellung einer bestimmten Prozeßwärme berechnen. Vielmehr sind die spezifischen Bedingungen der Verbrennung bei der Branntkalkherstellung wichtig. Das UBA gibt für verschiedene Brennstoffe Emissionskennziffern an. Diese sind für Steinkohle in der folgenden Tabelle wiedergegeben: Tab.: Brennstoffbedingte Prozeßemissionen bei der Branntkalkherstellung in steinkohlebefeuerten Schachtöfen (UBA 1996). Schadstoff Emissionen in kg/TJ Emissionen in kg/t Branntkalk CO2 94000 479,4 CO 6000 30,6 CH4 15 0,0765 NMVOC 15 0,0765 NOx 155 0,7905 N2O 4,0 0,0204 SO2 33 0,1683 Staub 0 0 Die gesamten Emissionsfaktoren ergeben sich durch Addition der materialbedingten und brenstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme: Direkt im Prozeß des Kalkbrennens wird kein Wasser in Anspruch genommen. Abwasserinhaltsstoffe: In dem beschriebenen Prozeß wird kein belastetes Abwasser bilanziert. Reststoffe: Es fallen keine Reststofe an, die nicht wieder innerhalb der Systemgrenzen verwertet werden können. Daher werden in dieser Studie keine Reststoffe bilanziert. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 57% Produkt: Baustoffe

Steine-Erden\CaO-Drehrohr-DE-2010

Brennen von Kalk (Drehrohröfen). Unter dem Prozess des Kalkbrennens versteht man die Zersetzungsreaktion des Kalksteins durch die Zufuhr thermischer Energie: CaCO3 => CaO + CO2. In der Technik wird die Zersetzung bei 900-1100°C durchgeführt. Das Brennen des Kalks kann in verschiedenen Formen von Öfen erfolgen. Dabei gibt es vier Haupttypen, deren Anteile nach einer Umfrage des Bundesverbandes der deutschen Kalkindustrie folgendermaßen anzunehmen sind: Tab.: Ungefährer Anteil einzelner Ofentypen zur Branntkalkherstellung (BdK 1995). Ofentyp Mengenanteil in % Schachtofen 30 Ringschachtofen 30 Gleichstrom-Gegenstrom-Regenerativofen (GGR-Ofen) 25 Drehrohrofen 15 Die in dieser Bilanz genutzten Daten beziehen sich auf den Brennprozess in einem Drehrohrofen. Im Vergleich zu den meisten Schachtöfen zeichnet sich der Drehrohrofen durch einen höheren Energieverbrauch aus. Ein Drehrohrofen kann prinzipiell mit Gas, Öl und festen Brennstoffen befeuert werden. Je nach Brennstoff variiert der Energiebedarf der Drehrohröfen von 8400 MJ/t Branntkalk für die einfachsten gasbefeuerten Öfen bis zu 5050 MJ/t Branntkalk für die komplexeren kohle-befeuerten Einheiten (Ullmann 1990). Im Vergleich zu den Schachtöfen ist es einfacher - auch bei hohem Schwefelgehalt der Brennstoffs (Kohle) - einen Kalk mit geringerem Schwefelgehalt herzustellen, wie er zum Beispiel für die Stahlindustrie gebraucht wird, wo er unter anderem dazu eingesetzt wird, um das Eisen zu entschwefeln, bevor es in den Hochofen gelangt. In GEMIS wird ein Drehrohrofen bilanziert, der nach #1 einen Energiebedarf von 5200 MJ/t Branntkalk hat. Die Quelle in #1 ist eine amerikanische Studie aus dem Jahre 1987, wobei angenommen wird, daß der Wert örtlich wie zeitlich übertragbar ist. In dieser Studie wird angesetzt, daß der bilanzierte Drehrohrofen mit Steinkohle befeuert wird. Massenbilanz: Pro Tonne stückigen Branntkalks müssen 1755 kg Ofenstein in den Brennprozess eingebracht werden (Scholz 1994).Weitere Hifs- oder Betriebsstoffe werden nicht benötigt. Der enorme Massenverlust kommt dadurch zustande, daß gemäß der oberen Reaktionsgleichung ein Teil des Kalksteins als CO2 den Prozeß über den Gaspfad verläßt. Energiebedarf: Für das Brennen einer Tonne Kalks im bilanzierten Drehrohrofen werden 5200 MJ/t benötigt (#1). Als Brennstoff wird Steinkohle verwendet. Diese Annahmen decken sich mit denen von Merten für einen Drehrohrofen (#2). Neben dem Brennstoffbedarf besteht für den Betrieb des Ofens noch ein Strombedarf von ca. 130 MJ/t Branntkalk (#2). Prozessbedingte Luftemissionen: Als prozessbedingte Luftemissionen sind im Prozeß des Kalkbrennens die CO2-Emissionen zu bilanzieren, die bei der sog. Entsäuerung des Kalks auftreten. Die Ofensteinmasse enthält 767 kg gebundenes Kohlendioxid von denen während des Brennprozesses 755 kg/t Branntkalk freigesetzt werden (Scholz 1994). Die Differenz verbleibt weiterhin gebunden im Branntkalk. Der Wert von Scholz stimmt exakt mit dem Wert überein, den das UBA als materialbedingte Prozeßemissionen angibt. Das UBA gibt weiterhin einen Wert für Staub an, den es mit 0,17 kg/t Branntkalk quantifiziert (UBA 1996). Auch dieser Wert wird in GEMIS bernommen. Die brennstoffbedingten Prozessemissionen lassen sich nicht einfach über eine Verbrennungsrechnung zur Bereitstellung einer bestimmten Prozesswärme berechnen. Vielmehr sind die spezifischen Bedingungen der Verbrennung bei der Branntkalkherstellung wichtig. Das UBA gibt für verschiedene Brennstoffe Emissionskennziffern an. Diese sind für Steinkohle in der folgenden Tabelle wiedergegeben: Tab.: Brennstoffbedingte Prozeßemissionen bei der Branntkalkherstellung in steinkohlebefeuerten Schachtöfen (UBA 1996). Schadstoff Emissionen in kg/TJ Emissionen in kg/t Branntkalk CO2 94000 479,4 CO 6000 30,6 CH4 15 0,0765 NMVOC 15 0,0765 NOx 155 0,7905 N2O 4,0 0,0204 SO2 33 0,1683 Staub 0 0 Die gesamten Emissionsfaktoren ergeben sich durch Addition der materialbedingten und brenstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme: Direkt im Prozess des Kalkbrennens wird kein Wasser in Anspruch genommen. Abwasserinhaltsstoffe: In dem beschriebenen Prozess wird kein belastetes Abwasser bilanziert. Reststoffe: Es fallen keine Reststofe an, die nicht wieder innerhalb der Systemgrenzen verwertet werden können. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 57% Produkt: Baustoffe

Steine-Erden\CaO-Drehrohr-DE-2030

Brennen von Kalk (Drehrohröfen). Unter dem Prozess des Kalkbrennens versteht man die Zersetzungsreaktion des Kalksteins durch die Zufuhr thermischer Energie: CaCO3 => CaO + CO2. In der Technik wird die Zersetzung bei 900-1100°C durchgeführt. Das Brennen des Kalks kann in verschiedenen Formen von Öfen erfolgen. Dabei gibt es vier Haupttypen, deren Anteile nach einer Umfrage des Bundesverbandes der deutschen Kalkindustrie folgendermaßen anzunehmen sind: Tab.: Ungefährer Anteil einzelner Ofentypen zur Branntkalkherstellung (BdK 1995). Ofentyp Mengenanteil in % Schachtofen 30 Ringschachtofen 30 Gleichstrom-Gegenstrom-Regenerativofen (GGR-Ofen) 25 Drehrohrofen 15 Die in dieser Bilanz genutzten Daten beziehen sich auf den Brennprozess in einem Drehrohrofen. Im Vergleich zu den meisten Schachtöfen zeichnet sich der Drehrohrofen durch einen höheren Energieverbrauch aus. Ein Drehrohrofen kann prinzipiell mit Gas, Öl und festen Brennstoffen befeuert werden. Je nach Brennstoff variiert der Energiebedarf der Drehrohröfen von 8400 MJ/t Branntkalk für die einfachsten gasbefeuerten Öfen bis zu 5050 MJ/t Branntkalk für die komplexeren kohle-befeuerten Einheiten (Ullmann 1990). Im Vergleich zu den Schachtöfen ist es einfacher - auch bei hohem Schwefelgehalt der Brennstoffs (Kohle) - einen Kalk mit geringerem Schwefelgehalt herzustellen, wie er zum Beispiel für die Stahlindustrie gebraucht wird, wo er unter anderem dazu eingesetzt wird, um das Eisen zu entschwefeln, bevor es in den Hochofen gelangt. In GEMIS wird ein Drehrohrofen bilanziert, der nach #1 einen Energiebedarf von 5200 MJ/t Branntkalk hat. Die Quelle in #1 ist eine amerikanische Studie aus dem Jahre 1987, wobei angenommen wird, daß der Wert örtlich wie zeitlich übertragbar ist. In dieser Studie wird angesetzt, daß der bilanzierte Drehrohrofen mit Steinkohle befeuert wird. Massenbilanz: Pro Tonne stückigen Branntkalks müssen 1755 kg Ofenstein in den Brennprozess eingebracht werden (Scholz 1994).Weitere Hifs- oder Betriebsstoffe werden nicht benötigt. Der enorme Massenverlust kommt dadurch zustande, daß gemäß der oberen Reaktionsgleichung ein Teil des Kalksteins als CO2 den Prozeß über den Gaspfad verläßt. Energiebedarf: Für das Brennen einer Tonne Kalks im bilanzierten Drehrohrofen werden 5200 MJ/t benötigt (#1). Als Brennstoff wird Steinkohle verwendet. Diese Annahmen decken sich mit denen von Merten für einen Drehrohrofen (#2). Neben dem Brennstoffbedarf besteht für den Betrieb des Ofens noch ein Strombedarf von ca. 130 MJ/t Branntkalk (#2). Prozessbedingte Luftemissionen: Als prozessbedingte Luftemissionen sind im Prozeß des Kalkbrennens die CO2-Emissionen zu bilanzieren, die bei der sog. Entsäuerung des Kalks auftreten. Die Ofensteinmasse enthält 767 kg gebundenes Kohlendioxid von denen während des Brennprozesses 755 kg/t Branntkalk freigesetzt werden (Scholz 1994). Die Differenz verbleibt weiterhin gebunden im Branntkalk. Der Wert von Scholz stimmt exakt mit dem Wert überein, den das UBA als materialbedingte Prozeßemissionen angibt. Das UBA gibt weiterhin einen Wert für Staub an, den es mit 0,17 kg/t Branntkalk quantifiziert (UBA 1996). Auch dieser Wert wird in GEMIS bernommen. Die brennstoffbedingten Prozessemissionen lassen sich nicht einfach über eine Verbrennungsrechnung zur Bereitstellung einer bestimmten Prozesswärme berechnen. Vielmehr sind die spezifischen Bedingungen der Verbrennung bei der Branntkalkherstellung wichtig. Das UBA gibt für verschiedene Brennstoffe Emissionskennziffern an. Diese sind für Steinkohle in der folgenden Tabelle wiedergegeben: Tab.: Brennstoffbedingte Prozeßemissionen bei der Branntkalkherstellung in steinkohlebefeuerten Schachtöfen (UBA 1996). Schadstoff Emissionen in kg/TJ Emissionen in kg/t Branntkalk CO2 94000 479,4 CO 6000 30,6 CH4 15 0,0765 NMVOC 15 0,0765 NOx 155 0,7905 N2O 4,0 0,0204 SO2 33 0,1683 Staub 0 0 Die gesamten Emissionsfaktoren ergeben sich durch Addition der materialbedingten und brenstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme: Direkt im Prozess des Kalkbrennens wird kein Wasser in Anspruch genommen. Abwasserinhaltsstoffe: In dem beschriebenen Prozess wird kein belastetes Abwasser bilanziert. Reststoffe: Es fallen keine Reststofe an, die nicht wieder innerhalb der Systemgrenzen verwertet werden können. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 57% Produkt: Baustoffe

1 2 3 4 538 39 40