s/sedimettransport/Sedimenttransport/gi
Suspended sediment and discharge data from the single point monitoring and suspended sediment, flow velocity and discharge data from the multi point monitoring at the River Rhine. Multi-point measurements (MPM) carried out by the respective Waterways and Shipping Administration are conducted from a ship at predefined locations along each cross-section. The sampling protocol encompasses five to six vertical profiles per cross-section with four to five sampling depths per profile. Predefined depths are: surface (approx. 0.3 m below surface), 60% and 80% of the maximum water depth, and bottom (approx. 0.3 m above the channel bed) at each vertical. One additional sample at 90% is taken when the total water depth is > 5 m. Sampling along one cross-section is performed within a single day and takes 5 to 6 hours on average. The individual samples are retrieved by isokinetic pump sampling (pump speed equals flow velocity). At each sampling point a 50 L water sample is taken for the sand fraction and a 5 L water sample for the silt and clay fraction. The samples are filtered through commercial pre-weighed coffee filters at the ship and dried subsequently. Single-point measurements (SPM) within the framework of the WSV monitoring network are taken from the middle of the river. 5 L bucket samples are retrieved from the surface at each workday, thus, excluding weekends or public holidays. Sampling is increased up to three times a day during high discharge events. The water samples are filtered and analysed according to the same protocol as the MPM samples Detailed analyses of the dataset and more information can be found in Slabon, A., Terweh, S., & T. Hoffmann (2025): Vertical and Lateral Variability of Suspended Sediment Transport in the Rhine River. Hydrological Processes.
3D-numerische Simulation von Starrkörperbewegungen Es ist heute möglich strömungsmechanische Berechnungen mit vertretbarem Zeitaufwand durchzuführen. Gleiches soll für die Simulation bewegter Objekte gelten. Im Rahmen des FuE-Projekts sollen Verfahrensweisen entwickelt werden, mit denen anfallende Fragestellungen zur Simulation bewegter Objekte mit OpenFOAM bearbeitet werden können. Aufgabenstellung und Ziel Die dreidimensionale numerische Simulation ist ein wertvolles Werkzeug, das detaillierte Einblicke in Strömungsvorgänge im Bauwerksnahfeld ermöglicht. Im Rahmen der Projektarbeit treten immer wieder Fragestellungen auf, bei denen bewegte Objekte eine wesentliche Rolle spielen und Einfluss auf das Simulationsergebnis haben. Die Simulation der Schleusung eines Schiffes ist ein Beispiel, das stellvertretend für die Schwierigkeiten bei der Modellierung bewegter Objekte steht. Der große Bewegungsumfang des schwimmenden Schiffes bei gleichzeitig sehr geringem Abstand zu statischen Umrandungen und die Querschnittsfreigabe an Verschlüssen erweisen sich als Herausforderungen für den Modellierungsprozess. Ein weiteres Beispiel ist die Modellierung von größeren, sich durch das Simulationsgebiet bewegenden Partikeln, wobei die Interaktion zwischen Partikeln und Strömungsfeld sowie die auf die Partikel wirkenden Kräfte korrekt abzubilden sind. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Beim Entwurf von Schleusen werden kurze Schleusungszeiten bei gleichzeitig geringen hydraulischen Krafteinwirkungen auf das zu schleusende Schiff durch eine optimierte Füllstrategie erreicht. Bislang wurden Schützfahrpläne sowie die Schiffskräfte meist mit gegenständlichen Modellen ermittelt. Die Entwicklung numerischer Methoden soll mittelfristig ermöglichen, derartige Problemstellungen auch mit numerischen Modellen zu bearbeiten. Der Aufwand für den Aufbau der Modelle ist gegenüber gegenständlichen Modellen gering, während die Simulation vergleichsweise viel Zeit in Anspruch nimmt. Ein Vorteil numerischer Modelle besteht in der leichten Auswertbarkeit der Strömungsdaten an beliebigen Stellen des Modells. Numerische und gegenständliche Modelle können dann entweder zeitgleich, z. B. für hybride Modellierungsansätze, oder unabhängig voneinander genutzt werden. Die Auftragsbearbeitenden werden in die Lage versetzt, für jede Fragestellung und zu jedem Zeitpunkt die geeignetste Untersuchungsmethode zu wählen, wodurch Effizienz und Qualität der Gesamtbearbeitung für die WSV gesteigert werden. Untersuchungsmethoden Die Bundesanstalt für Wasserbau (BAW) verwendet das Verfahren OpenFOAM® für die dreidimensionale numerische Strömungssimulation. Zur Berücksichtigung von Starrkörperbewegungen existieren unterschiedliche Methoden, die sich einerseits in Bezug auf die Komplexität, andererseits hinsichtlich des realisierbaren Bewegungsumfangs unterscheiden und jeweils individuelle Vor- und Nachteile aufweisen. Für die Modellierung eines Schleusungsprozesses wurde in diesem Vorhaben zunächst die Deforming-Mesh-Methode herangezogen. Weiterhin werden auch konkurrierende Ansätze wie die Overset-Mesh- und die ImmersedBoundary-Methode betrachtet. Diese ermöglichen hinsichtlich der Objektbewegung eine größere Flexibilität, weisen jedoch Einschränkungen in der Genauigkeit und Robustheit auf. Zur Modellierung von partikelauflösendem Sedimenttransport wird eine Methode betrachtet, die an der Hochschule Emden/Leer entwickelt wird. Dabei werden größere Partikel, ähnlich wie bei der Immersed-Boundary-Methode, durch das Gitter bewegt. Das Volumen der durch einzelne Partikel belegten Zellen wird dabei entsprechend korrigiert.
Die Wechselwirkung zwischen Oberflächenwasser, Porenwasser und Korngerüst bedingen die Lagestabilität bzw. den Bewegungsbeginn von Bodenpartikeln. Dieser Prozess soll numerisch simuliert werden.
Die weltweiten Warentransporte werden zu über 90 Prozent auf dem Seeweg abgewickelt. Die Seehäfen dienen den Warenströmen als Anlaufstelle und haben daher eine besondere Bedeutung für den gesamten Welthandel. Auch die deutsche Volkswirtschaft ist auf eine leistungsfähige Infrastruktur der Seehäfen angewiesen, um das Außenhandelsvolumen von jährlich rund zwei Billionen Euro effizient umsetzen zu können. Um die Wettbewerbsfähigkeit deutscher Seehäfen international zu sichern, wurden sie, wie auch ihre Zufahrten, in der Vergangenheit immer wieder an die Anforderungen der modernen Seeschifffahrt angepasst. So wurden seit dem Ende des 19. Jahrhunderts viele Fahrrinnen verändert, beispielsweise an Ems, Jade, Weser und Elbe. Zusätzlich haben umfangreiche Küstenschutzmaßnahmen, wie etwa Eindeichungen, die ursprünglich natürlichen Tideflusssysteme nachhaltig verändert. Auch heute sind noch weitere Fahrrinnenanpassungen für die Unter- und Außenelbe, die Unter- und Außenweser und die Außenems geplant. Die Pläne werden auf Antrag eines Bundeslandes (überwiegend Niedersachsen, Hamburg, Bremen) von der Wasserstraßen- und Schifffahrtsverwaltung (WSV) des Bundes durchgeführt und der Planfeststellungsbehörde zur Genehmigung vorgelegt. Die BAW ist im Auftrag der WSV als Sonderfachgutachter an den Planungen beteiligt. Da Seehafenzufahrten wie beim Hamburger Hafen leicht 100 Kilometer lang sein können, ergeben sich großflächige zusammenhängende Eingriffsflächen. Die geplanten Fahrrinnenanpassungen zählen entsprechend zu den größten Infrastrukturprojekten Deutschlands, bei denen zahlreiche Nutzungskonflikte beachtet werden müssen. Dazu gehört, dass die Seeschifffahrt auf den Tideflüssen in einem besonders schützenswerten Ökosystem stattfindet. Darüber hinaus schließen sich meist Schutzgebiete von nationaler und europäischer Bedeutung an. Fahrrinnenanpassungen können daher komplexe Auswirkungen auf die biotischen und abiotischen Systemparameter eines Tideflusses haben. Im Rahmen der für die Planungen nach nationaler und europäischer Gesetzgebung erforderlichen Umweltverträglichkeitsprüfung besteht somit eine hohe Verantwortung der Gutachter bei der Ermittlung und Prognose der ausbaubedingten Auswirkungen auf das Ökosystem. Hieraus ergibt sich die besondere Bedeutung der BAW-Gutachten: Die von der BAW prognostizierten Auswirkungen auf die abiotischen Systemparameter sind Grundlage für die ökologische Bewertung. So werden durch einen Ausbau der Wasserstand (z. B. Tidehochwasser, Tideniedrigwasser, Sturmflutscheitelwasserstände), die Strömungen und der Salzgehalt beeinflusst. Auch müssen die Auswirkungen auf den Sedimenttransport und das Gewässerbett (Morphodynamik) der von Gezeiten geprägten Flüsse ermittelt werden. (Text gekürzt)
Das Projekt soll die Mechanismen klären, die die Biogeochemie (Metabolismus und Stickstoffaufnahme der mikrobiellen Gemeinschaft) in verschiedenen Chronologien der Wiederaufnahme des Flusses mit und ohne Sedimenttransport modulieren. Die Wiederaufnahme der Strömung nach der Trocknung wird als biogeochemisches Heißmoment betrachtet, bei dem hohe Metabolismusraten und Stickstoffaufnahme durch die Häufigkeit der vorherigen Trocknung beeinflusst werden. Die Mechanismen, die diesen Heißmoment modulieren, sind wenig bekannt. Bisher waren es vor allem Einzelfaktorstudien in temporären Bach- und Flussökosystemen. Allerdings treten Intermittenz und Wiederaufnahme der Strömung zunehmend auch in mehrjährigen Gewässerökosystemen auf und die Oberflächenströmung impliziert oft Sedimenttransport (z.B. Wanderrippel, Oberstufenebene), insbesondere in sandigen Gewässern. Darüber hinaus kann die Wiederaufnahme der Strömung verschiedenen Chronologien folgen, wie z.B. sofort bei Regen oder langsam bei steigendem Grundwasser, und die Konzentrationen von Nährstoffen und Kohlenstoff, die bei der Wiederaufnahme der Strömung ausgelaugt werden, können auch die biogeochemische Reaktion beeinflussen. Ich schlage ein neues allgemeines Konzept von 'intermittierenden Bachlebensräumen' für alle Bereiche eines Bachbettes vor, die trotz variabler Wechselwirkungen von Faktoren irgendwann trocken sind (z.B. Oberflächenwassermangel). Die hier vorgeschlagene Untersuchung der Mechanismen bei verschiedenen Chronologien der Strömungswiederaufnahme, gekoppeltem Sedimenttransport und in temporären und mehrjährigen Gewässerökosystemen wird zeigen, ob eine solche allgemeine und integrative Sichtweise angewendet werden kann. Die Wechselwirkungen von Strömungswiederaufnahme, Sedimenttransport, Nährstoff- und Kohlenstoffkonzentrationen und Trocknungshäufigkeit werden in Mikrokosmosversuchen mit Sedimentgemeinschaften von intermittierenden Lebensräumen aus mehrjährigen und temporären Strömen untersucht. Die Antwortvariablen unter Beachtung sind: Kohlenstoffstoffwechsel, gemessen an Veränderungen der Sauerstoffkonzentration in der Dunkelheit und im Licht, Netto-Stickstoffaufnahme durch Zugabe des stabilen Isotops 15N (15NH4Cl) und der Struktur und Architektur (z.B. Biofilm) der mikrobiellen Gemeinschaft (nur für gekoppelten Sedimenttransport). Die Ergebnisse werden zu einem vollständigen mechanistischen Bild der Kohlenstoff- und Stickstoffdynamik Gewässerökosystemen beitragen, die zu starken Strömungsschwankungen und Trocknung neigen. Die Ergebnisse werden es ermöglichen, die Wiederaufnahme der Strömung in die aktuellen Konzepte der Strömungsbiogeochemie zu integrieren. Ein solcher konzeptioneller Rahmen ist der Schlüssel für das Management von Ökosystemen im Mittelmeerraum und immer mehr gemäßigten Strömungen, die aufgrund der zunehmenden Wasserentnahme und des Klimawandels trocken werden.
1 Problemdarstellung und Ziel. 1.1 Ingenieurwissenschaftliche Fragestellung und Stand des Wissens: Die Interaktion zwischen Oberflächengewässern und Grundwasser wird neben den hydrogeologischen Randbedingungen maßgeblich durch die Gewässerstruktur, Substratzusammensetzung der Gewässersohle und der Ausbildung des Grundwasserleiters gesteuert. Hierbei ist die Kolmation einer Gewässersohle, d.h. alle Vorgänge, die zu einer Reduktion des Porenvolumens, einer Verfestigung, des Filtermediums und zu einer Durchlässigkeitsabnahme der Gewässersohle führen, als Schlüsselgröße zu sehen. Prinzipiell wird zwischen einer äußeren Kolmation, d.h. einer Ablagerung von Wasserinhaltsstoffen auf der Gewässersohle, einer inneren Kolmation, d.h. der Eintrag und die anschließende Ablagerung von Wasserinhaltstoffen in die Gewässersohle sowie einer biologischen und auch physiko-chemischen Kolmation, d.h. einer Förderung der Kolmationsbildung durch biologische sowie physiko-chemische Prozesse, unterschieden. Dabei wird die Kolmation von Gewässersohlen von zahlreichen, zeitlich und räumlichen variablen Einflussfaktoren beeinflusst (Bild 1). Die maßgebenden Parameter für die Kolmation sind nach SCHÄCHLI, 1992 die Sohlenschubspannung, der hydraulische Gradient zwischen Grundwasser und Oberflächengewässer, die Schwebstoff- und Geschiebehaushalt des Oberflächengewässers und die Kornverteilung der Gewässersohle. Die Verteilung der hydraulischen Durchlässigkeit im angrenzenden Grundwasserleiter hat zudem einen maßgeblichen Einfluss auf die Kolmation. Die Durchlässigkeitsverteilung des Grundwasserleiters ist meist sehr heterogen. Dadurch liegt i.d.R ein heterogenes Strömungsfeld zwischen Oberflächengewässer und Grundwasser vor, so dass die Gewässersohlstruktur entsprechend ausgebildet ist. Zudem werden Gewässersohlstrukturen auch stark durch zeitlich variierende äußere Faktoren (z.B. jahreszeitlichen Unterschiede im Abflussregime und im Sedimenttransport) sowie durch das wasserbaulichen Regelungskonzept geprägt. Insgesamt ergeben sich dadurch sehr komplexe Wirkungszusammenhänge. Die komplexen Wirkungszusammengänge zahlreicher Einflussfaktoren sind durch zahlreiche Forschungsaktivitäten bereits identifiziert und untersucht sowie in der Fachliteratur beschrieben worden. Jedoch sind bisher kaum Untersuchungen durchgeführt worden, die die Randbedingungen, die an Bundeswasserstrassen anzutreffen sind, berücksichtigen. Dadurch ist eine belastbare Prognose von Auswirkungen, die durch wasserbauliche Maßnahmen bedingt sind, auf die Wechselwirkung Oberflächengewässer und Grundwasser im Bereich der Bundeswasserstrassen, nur unzureichend möglich. usw.
Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
Ermittlung des Geschiebetransports in Abhaengigkeit von Abfluss, Fliessgeschwindigkeit, Querschnittsgeometrie, Sohlenbeschaffenheit usw. im Hinblick auf weitere Ausbaumassnahmen. Aufstellung quantitativer Beziehungen zur Berechnung des Geschiebetransportes und der Geschiebefrachten.
Aufgrund der Einengung der Salzach in den letzten zwei Jahrhunderten und dem fehlenden Geschiebenachschub aus den Zuflüssen hat sich die Salzach massiv eingetieft. Die Kombination aus Geschiebedefizit und die unter dem Schotterkörper anstehenden Seetone verschärfen die Problematik. Basierend auf den vorgeschlagenen Varianten in der Wasserwirtschaftlichen Rahmenuntersuchung Salzach (WRS) sind Sanierungslösungen unter Einbeziehung der Wasserkraftnutzung und parallel dazu Minimalmaßnahmen zur Stützung der Sohle zu prüfen. Hierfür sind exakte Kenntnisse über die Geschiebetransportvorgänge im Freilassinger Becken und im Unterlauf der Saalach notwendig, die mit Hilfe eines zwei-dimensionalen Geschiebetransportmodells simuliert werden sollen. Insbesondere sollen mittels der aus der Modellierung gewonnenen Kenntnisse die langfristige Sohlentwicklung abgeschätzt und die Wirkungsnachweise der erforderlichen Sohlstützmaßnahmen eruiert werden.
Ein Fluss ist natuerlicherweise nicht im Gleichgewicht, was sich in morphologischen Veraenderungen wie Auflandungen oder Erosion an der Flusssohle und den Ufern aeussert. Die Problematik des Geschiebetransportes und der Sohlenveraenderungen haben sowohl fuer Katastrophenbekaempfung wie fuer Landschaftsschutz (naturnahe Flussverbauungen) grosse Bedeutung. Im vorliegenden Projekt wird ein numerisches Simulationsmodell entwickelt, das den Flusslauf mit Hilfe von Querprofilen sowie der Oberflaechenbeschaffenheit beschreibt und aufgrund eines Abflussregimes und eines Geschiebeeintrages eine Prognose der Sohlenveraenderungen und eine Abschaetzung der anfallenden Geschiebemengen erlaubt.
| Origin | Count |
|---|---|
| Bund | 398 |
| Europa | 1 |
| Kommune | 2 |
| Land | 28 |
| Wissenschaft | 35 |
| Type | Count |
|---|---|
| Daten und Messstellen | 23 |
| Ereignis | 1 |
| Förderprogramm | 369 |
| Taxon | 1 |
| Text | 11 |
| unbekannt | 42 |
| License | Count |
|---|---|
| geschlossen | 21 |
| offen | 416 |
| unbekannt | 9 |
| Language | Count |
|---|---|
| Deutsch | 354 |
| Englisch | 146 |
| Resource type | Count |
|---|---|
| Archiv | 15 |
| Bild | 3 |
| Datei | 12 |
| Dokument | 17 |
| Keine | 284 |
| Unbekannt | 1 |
| Webdienst | 3 |
| Webseite | 127 |
| Topic | Count |
|---|---|
| Boden | 391 |
| Lebewesen und Lebensräume | 363 |
| Luft | 296 |
| Mensch und Umwelt | 446 |
| Wasser | 446 |
| Weitere | 431 |