API src

Found 334 results.

Related terms

Seismicity catalog collection, 2150 BC to 1996 AD

The Seismicity Catalog Collection is a compilation dataset on over four million earthquakes dating from 2150 BC to 1996 AD from NOAA's National Geophysical Data Center and U.S. Geological Survey's National Earthquake Information Center. The data include information on epicentral time of origin, location, magnitudes, depth and other earthquake-related parameters. This database is static and is no longer being updated. The CD collection was a compilation of all of the earthquake catalogs, both US and non-US, in the National Geophysical Data Center (NGDC) archive available in 1996. The purpose was to provide users with access to all the seismicity data in one place. Data can be accessed through the GeoVu data access and visualization software included on the CDs. This software allows visualization of pre-computed histograms as well as reformatting of data files to a format specified by the user. Many of the more popular data bases are available in several different formats so the user will not have to reformat large data bases. Files can be formatted for use on IBM PCs, Macs, or UNIX machines. Format information, data dictionary and statistical information are also included. A bibliography of earthquake-related materials at NCEI and the Summary of Earthquake Data Base (KGRD-21) are included on the CD-ROM. NOAA and NCEI make no warranty, expressed or implied, regarding these data, nor does the fact of distribution constitute such a warranty. NOAA and NCEI cannot assume liability for any damages caused by any errors or omissions in these data. If appropriate, NCEI can only certify that the data it distributes are an authentic copy of the records that were accepted for inclusion in the NCEI archives. This dataset has been archived in the framework of the PANGAEA US data rescue initiative 2025.

LGRB-BW INSPIRE LED: Epizentren seit 1994 (Natural Risk Zone: Observed Events) - Datensatz

Der Erdbebenkatalog Baden-Württemberg, bearbeitet vom Landeserdbebendienst (LED), beinhaltet Angaben über Erdbeben in und um Baden-Württemberg. Kartenmäßig dargestellt sind natürliche (tektonische) und induzierte Erdbeben im Gebiet 47.3°N bis 50.0°N und 7.2°E bis 10.75°E seit 1994. Ab 1996 ist der Katalog vollständig für Erdbeben stärker als etwa Magnitude ML = 2.0 (Richter-Skala). Mit dem Ausbau des Messnetzes und der gestiegenen Empfindlichkeit kann heute von einer Vollständigkeit mindestens ab Magnitude ML=1.5 im bearbeiteten Gebiet ausgegangen werden. Unter dem Begriff "induzierte Erdbeben" werden nicht-natürliche seismische Ereignisse zusammengefasst. Dazu zählen z. B. Bergschläge, d.h. Erdbeben im Bereich von aktiven oder offen gelassenen Grubengebäuden. Weitere induzierte Erdbeben stehen in Zusammenhang mit der Rohstoffgewinnung aus Bohrungen, also Erdöl-, Erdgas- oder Erdwärmeförderung bzw. Verpressung von Flüssigkeiten oder Gasen in den Untergrund. Steinbruchsprengungen sind im Katalog nicht enthalten. Als "gespürt" werden diejenigen Erdbeben gekennzeichnet, denen eine maximale Intensität (nicht zu verwechseln mit der Magnitude) auf der Europäischen Makroseismischen Skala (EMS-98, früher auch andere Skalen) von mindestens III zugeordnet werden kann. Insbesondere in den frühen Jahren der Zusammenstellung sind auch Erdbeben dargestellt, die von anderen Agenturen als dem LED bearbeitet wurden. Die entsprechende Quelle (verantwortliche Agentur) wird jeweils aufgeführt. Für Epizentren außerhalb des Landesgebiets von Baden-Württemberg und Rheinland-Pfalz sind die Angaben des LED bzw. des EDSW nicht maßgeblich. Die maßgeblichen Angaben veröffentlicht der jeweils lokal zuständige Erdbebendienst.

LGRB-BW INSPIRE LED: Historische Erdbeben von 1900 bis 1993 (Natural Risk Zone: Observed Events) - Datensatz

Der vom Landeserdbebendienst bearbeitete historische Erdbebenkatalog beinhaltet Angaben zu Erdbeben in und um Baden-Württemberg, auf dieser Ebene von 1900 bis 1993. Kartenmäßig dargestellt sind natürliche (tektonische) und induzierte Erdbeben im Gebiet 47.3°N bis 50.0°N und 7.2°E bis 10.75°E, die entweder eine Magnitude von größer-gleich 3 oder eine Intensität von größer-gleich IV erreicht haben und damit als potenziell spürbar anzusehen sind. Unter dem Begriff "induzierte Erdbeben" werden nicht-natürliche seismische Ereignisse zusammengefasst. Dazu zählen z. B. Bergschläge, d.h. Erdbeben im Bereich von aktiven oder offen gelassenen Grubengebäuden, etwa im saarländischen Kohlerevier. Weitere induzierte Erdbeben stehen in Zusammenhang mit der Rohstoffgewinnung aus Bohrungen, also Erdöl-, Erdgas- oder Erdwärmeförderung bzw. Verpressung von Flüssigkeiten oder Gasen in den Untergrund. Steinbruchsprengungen und andere Ereignisse wie Felsstürze etc. sind in dieser Darstellung nicht enthalten. Da viele der Erdbeben mangels verlässlicher instrumenteller Daten keine Magnitudenangabe haben, werden nur zwei Klassen unterschieden: Erdbeben, bei denen vermutlich keine Schäden aufgetreten sind, und solche, die nach bestem Wissen und Gewissen Schäden verursacht haben sollten. Bei der Erstellung des Katalogs wurde auf eine Vielzahl von Quellen zurück gegriffen. Die entsprechende Autorenschaft oder verantwortliche Agentur wird jeweils aufgeführt.

LGRB-BW INSPIRE LED: Induzierte Erdbeben seit 1994 (Natural Risk Zone: Observed Events) - Datensatz

Der Erdbebenkatalog des Landeserdbebendienstes beinhaltet außer natürlichen Erdbeben auch seismische Ereignisse anderer Art, die unter dem Begriff "induzierte Erdbeben" zusammengefasst werden können. Dazu zählen z. B. Bergschläge, d.h. Erdbeben im Bereich von aktiven oder offen gelassenen Grubengebäuden, etwa im saarländischen Kohlerevier. Weitere induzierte Erdbeben stehen in Zusammenhang mit der Rohstoffgewinnung aus Bohrungen, also Erdöl-, Erdgas- oder Erdwärmeförderung bzw. Verpressung von Flüssigkeiten oder Gasen in den Untergrund. Kartenmäßig dargestellt sind induzierte Erdbeben im Gebiet 47.3°N bis 50.0°N und 7.2°E bis 10.75°E seit 1994.Weitere Informationen unter: https://lgrb-bw.de/erdbeben/jahresbulletins

Geomechanische Beurteilung und Bohrplanung für Geothermiestandorte mittels Effective Stress, Teilvorhaben: Qualitätsranking

Die tiefe Geothermie in Deutschland hat das Potential ein entscheidender Faktor zur Erreichung der Klimaschutzziele zu sein - insbesondere bei der Wärmewende. Hierzu müssen jedoch die Risiken bezüglich der notwendigen Tiefbohrungen, Fündigkeit und Produktion weiter reduziert werden. Dabei ist die mechanische Integrität des Untergrundes entscheidend, beeinflusst sie doch maßgeblich die Reservoirqualität, die Bohrlochstabilität und das Auftreten induzierter Seismizität. Die mechanische Integrität des Untergrundes ergibt sich neben den geomechanischen Gesteinseigenschaften aus der Differenz zwischen minimalen Hauptspannungsmagnitude und dem Porendruck, der minimalen Effektivspannung. Das vorgeschlagene Projekt soll dazu beitragen, die Risiken und Gestehungskosten tiefengeothermischer Projekte in Deutschland zu verringern, indem erstmals Porendruck und somit minimale Effektivspannungen im Rahmen der World Stress Map zur Verfügung gestellt werden. Speziell für die Bohrplanung sind Porendruck und minimale Effektivspannung von zentraler Bedeutung, da sie das optimale Spülungsgewicht, die Rohrabsetzteufen und die Bohrlochstabilität definieren. In einem weiteren Schritt soll daher die neue Datenbank genutzt werden, um ein Bohrrisikomanagement-Toolkit zu entwickeln. Das Toolkit soll es ermöglichen unter Eingabe des Bohrstandorts und Bohrpfads automatisiert eine Vorhersage der minimalen Effektivspannung und Bohrlochstabilität zur Verfügung zu stellen. Das Toolkit wird von einem Industriepartner hinsichtlich seiner Eignung sowie der Sensitivitäten an realen Daten validiert und bzgl. seiner Handhabbarkeit optimiert. Die Verfügbarkeit einer Datenbank zu Porendruck und Effektivspannungen sowie die Bereitstellung eines Toolkits, das eine qualitativ hochwertige und standardisierte Vorhersage dieser Parameter erlaubt, wäre weltweit einzigartig und verschafft der Tiefen Geothermie in Deutschland sowohl sozioökonomische als auch sicherheitsrelevante Vorteile.

Geomechanische Beurteilung und Bohrplanung für Geothermiestandorte mittels Effective Stress

Die tiefe Geothermie in Deutschland hat das Potential ein entscheidender Faktor zur Erreichung der Klimaschutzziele zu sein - insbesondere bei der Wärmewende. Hierzu müssen jedoch die Risiken bezüglich der notwendigen Tiefbohrungen, Fündigkeit und Produktion weiter reduziert werden. Dabei ist die mechanische Integrität des Untergrundes entscheidend, beeinflusst sie doch maßgeblich die Reservoirqualität, die Bohrlochstabilität und das Auftreten induzierter Seismizität. Die mechanische Integrität des Untergrundes ergibt sich neben den geomechanischen Gesteinseigenschaften aus der Differenz zwischen minimalen Hauptspannungsmagnitude und dem Porendruck, der minimalen Effektivspannung. Das vorgeschlagene Projekt soll dazu beitragen, die Risiken und Gestehungskosten tiefengeothermischer Projekte in Deutschland zu verringern, indem erstmals Porendruck und somit minimale Effektivspannungen im Rahmen der World Stress Map zur Verfügung gestellt werden. Speziell für die Bohrplanung sind Porendruck und minimale Effektivspannung von zentraler Bedeutung, da sie das optimale Spülungsgewicht, die Rohrabsetzteufen und die Bohrlochstabilität definieren. In einem weiteren Schritt soll daher die neue Datenbank genutzt werden, um ein Bohrrisikomanagement-Toolkit zu entwickeln. Das Toolkit soll es ermöglichen unter Eingabe des Bohrstandorts und Bohrpfads automatisiert eine Vorhersage der minimalen Effektivspannung und Bohrlochstabilität zur Verfügung zu stellen. Das Toolkit wird von einem Industriepartner hinsichtlich seiner Eignung sowie der Sensitivitäten an realen Daten validiert und bzgl. seiner Handhabbarkeit optimiert. Die Verfügbarkeit einer Datenbank zu Porendruck und Effektivspannungen sowie die Bereitstellung eines Toolkits, dass eine qualitativ hochwertige und standardisierte Vorhersage dieser Parameter erlaubt, wäre weltweit einzigartig und verschafft der Tiefen Geothermie in Deutschland sowohl sozioökonomische als auch sicherheitsrelevante Vorteile.

Geomechanische Beurteilung und Bohrplanung für Geothermiestandorte mittels Effective Stress, Teilvorhaben: Verifizierung des Toolkits EFECT

Die tiefe Geothermie in Deutschland hat das Potential ein entscheidender Faktor zur Erreichung der Klimaschutzziele zu sein - insbesondere bei der Wärmewende. Hierzu müssen jedoch die Risiken bezüglich der notwendigen Tiefbohrungen, Fündigkeit und Produktion weiter reduziert werden. Dabei ist die mechanische Integrität des Untergrundes entscheidend, beeinflusst sie doch maßgeblich die Reservoirqualität, die Bohrlochstabilität und das Auftreten induzierter Seismizität. Die mechanische Integrität des Untergrundes ergibt sich neben den geomechanischen Gesteinseigenschaften aus der Differenz zwischen minimalen Hauptspannungsmagnitude und dem Porendruck, der minimalen Effektivspannung. Das vorgeschlagene Projekt soll dazu beitragen, die Risiken und Gestehungskosten tiefengeothermischer Projekte in Deutschland zu verringern, indem erstmals Porendruck und somit minimale Effektivspannungen im Rahmen der World Stress Map zur Verfügung gestellt werden. Speziell für die Bohrplanung sind Porendruck und minimale Effektivspannung von zentraler Bedeutung, da sie das optimale Spülungsgewicht, die Rohrabsetzteufen und die Bohrlochstabilität definieren. In einem weiteren Schritt soll daher die neue Datenbank genutzt werden, um ein Bohrrisikomanagement-Toolkit zu entwickeln. Das Toolkit soll es ermöglichen unter Eingabe des Bohrstandorts und Bohrpfads automatisiert eine Vorhersage der minimalen Effektivspannung und Bohrlochstabilität zur Verfügung zu stellen. Das Toolkit wird von einem Industriepartner hinsichtlich seiner Eignung sowie der Sensitivitäten an realen Daten validiert und bzgl. seiner Handhabbarkeit optimiert. Die Verfügbarkeit einer Datenbank zu Porendruck und Effektivspannungen sowie die Bereitstellung eines Toolkits, das eine qualitativ hochwertige und standardisierte Vorhersage dieser Parameter erlaubt, wäre weltweit einzigartig und verschafft der Tiefen Geothermie in Deutschland sowohl sozioökonomische als auch sicherheitsrelevante Vorteile.

Geomechanische Beurteilung und Bohrplanung für Geothermiestandorte mittels Effective Stress, Teilvorhaben: Entwicklung des Toolkits EFECT

Die tiefe Geothermie in Deutschland hat das Potential ein entscheidender Faktor zur Erreichung der Klimaschutzziele zu sein - insbesondere bei der Wärmewende. Hierzu müssen jedoch die Risiken bezüglich der notwendigen Tiefbohrungen, Fündigkeit und Produktion weiter reduziert werden. Dabei ist die mechanische Integrität des Untergrundes entscheidend, beeinflusst sie doch maßgeblich die Reservoirqualität, die Bohrlochstabilität und das Auftreten induzierter Seismizität. Die mechanische Integrität des Untergrundes ergibt sich neben den geomechanischen Gesteinseigenschaften aus der Differenz zwischen minimalen Hauptspannungsmagnitude und dem Porendruck, der minimalen Effektivspannung. Das vorgeschlagene Projekt soll dazu beitragen, die Risiken und Gestehungskosten tiefengeothermischer Projekte in Deutschland zu verringern, indem erstmals Porendruck und somit minimale Effektivspannungen im Rahmen der World Stress Map zur Verfügung gestellt werden. Speziell für die Bohrplanung sind Porendruck und minimale Effektivspannung von zentraler Bedeutung, da sie das optimale Spülungsgewicht, die Rohrabsetzteufen und die Bohrlochstabilität definieren. In einem weiteren Schritt soll daher die neue Datenbank genutzt werden, um ein Bohrrisikomanagement-Toolkit zu entwickeln. Das Toolkit soll es ermöglichen unter Eingabe des Bohrstandorts und Bohrpfads automatisiert eine Vorhersage der minimalen Effektivspannung und Bohrlochstabilität zur Verfügung zu stellen. Das Toolkit wird von einem Industriepartner hinsichtlich seiner Eignung sowie der Sensitivitäten an realen Daten validiert und bzgl. seiner Handhabbarkeit optimiert. Die Verfügbarkeit einer Datenbank zu Porendruck und Effektivspannungen sowie die Bereitstellung eines Toolkits, dass eine qualitativ hochwertige und standardisierte Vorhersage dieser Parameter erlaubt, wäre weltweit einzigartig und verschafft der Tiefen Geothermie in Deutschland sowohl sozioökonomische als auch sicherheitsrelevante Vorteile.

Induzierte Seismiziät in Abhängigkeit von Lithologie, Struktur und Spannung

Im Verbundprojekt 'Restless' soll die Frage geklärt werden, ob und in wieweit das Risiko induzierter Seismizität von der Lithologie des erschlossenen geothermischen Reservoirs abhängt. Gesamtziel des Projekts ist es, mit einer Kombination von Gelände-, Labor- und numerischen Methoden die notwendigen Bedingungen zur Reaktivierung von Störungen und die resultierende Seismizität in Abhängigkeit von deren geometrischen und lithologischen Eigenschaften genauer zu untersuchen. Ziel dieses Teilprojekts ist es zu untersuchen, bei welchen definierten Druckveränderungen in einem geothermischen Reservoir es bei gegebenen regionalen Spannungsverhältnissen zu induzierter Seismizität kommen kann. Dies soll durch die Weiterentwicklung hauseigener Simulationscodes erfolgen. Die geplanten transienten THM-Simulationen sowohl die räumliche und zeitliche Verteilung der seismischen Ereignisse als auch deren Quellsignalcharakteristik liefern. Diese Informationen werden dann genutzt, um die vom Quellort (Hypozentrum) ausgehenden seismischen Wellen im dreidimensionalen Raum zu simulieren und die daraus resultierenden Bodenschwinggeschwindigkeiten abzuschätzen. Notwendige Eingangsdaten und Randbedingungen der Simulationen, z.B. zu Modellgeometrien und gesteinsphysikalischen Parametern, werden durch die Verbundpartner zur Verfügung gestellt und durch eigene H/V-Messungen im Gelände ergänzt. Die Simulation erfolgen zunächst an generischen Modellen zur Erlangung eines besseren Prozessverständnisses sowie zur Untersuchung des möglichen Effekts unterschiedlicher Lithologien auf die induzierte Seismizität. Anschließend werden Simulationen für zwei Beispielstandorte durchgeführt. Die Arbeiten werden ergänzt durch eine Literaturstudie, welche neben der Recherche zu gesteinsphysikalischen Eigenschaften insbesondere eine Aufarbeitung existierender Geothermiestandorte hinsichtlich ihrer durchteuften Lithologien und induzierter Seismizität beinhaltet.

Induzierte Seismiziät in Abhängigkeit von Lithologie, Struktur und Spannung, Teilvorhaben: Simulation induzierter Seismizität und Wellenfeldausbreitung

Im Verbundprojekt 'Restless' soll die Frage geklärt werden, ob und in wieweit das Risiko induzierter Seismizität von der Lithologie des erschlossenen geothermischen Reservoirs abhängt. Gesamtziel des Projekts ist es, mit einer Kombination von Gelände-, Labor- und numerischen Methoden die notwendigen Bedingungen zur Reaktivierung von Störungen und die resultierende Seismizität in Abhängigkeit von deren geometrischen und lithologischen Eigenschaften genauer zu untersuchen. Ziel dieses Teilprojekts ist es zu untersuchen, bei welchen definierten Druckveränderungen in einem geothermischen Reservoir es bei gegebenen regionalen Spannungsverhältnissen zu induzierter Seismizität kommen kann. Dies soll durch die Weiterentwicklung hauseigener Simulationscodes erfolgen. Die geplanten transienten THM-Simulationen sowohl die räumliche und zeitliche Verteilung der seismischen Ereignisse als auch deren Quellsignalcharakteristik liefern. Diese Informationen werden dann genutzt, um die vom Quellort (Hypozentrum) ausgehenden seismischen Wellen im dreidimensionalen Raum zu simulieren und die daraus resultierenden Bodenschwinggeschwindigkeiten abzuschätzen. Notwendige Eingangsdaten und Randbedingungen der Simulationen, z.B. zu Modellgeometrien und gesteinsphysikalischen Parametern, werden durch die Verbundpartner zur Verfügung gestellt und durch eigene H/V-Messungen im Gelände ergänzt. Die Simulation erfolgen zunächst an generischen Modellen zur Erlangung eines besseren Prozessverständnisses sowie zur Untersuchung des möglichen Effekts unterschiedlicher Lithologien auf die induzierte Seismizität. Anschließend werden Simulationen für zwei Beispielstandorte durchgeführt. Die Arbeiten werden ergänzt durch eine Literaturstudie, welche neben der Recherche zu gesteinsphysikalischen Eigenschaften insbesondere eine Aufarbeitung existierender Geothermiestandorte hinsichtlich ihrer durchteuften Lithologien und induzierter Seismizität beinhaltet.

1 2 3 4 532 33 34