The Seismicity Catalog Collection is a compilation dataset on over four million earthquakes dating from 2150 BC to 1996 AD from NOAA's National Geophysical Data Center and U.S. Geological Survey's National Earthquake Information Center. The data include information on epicentral time of origin, location, magnitudes, depth and other earthquake-related parameters. This database is static and is no longer being updated. The CD collection was a compilation of all of the earthquake catalogs, both US and non-US, in the National Geophysical Data Center (NGDC) archive available in 1996. The purpose was to provide users with access to all the seismicity data in one place. Data can be accessed through the GeoVu data access and visualization software included on the CDs. This software allows visualization of pre-computed histograms as well as reformatting of data files to a format specified by the user. Many of the more popular data bases are available in several different formats so the user will not have to reformat large data bases. Files can be formatted for use on IBM PCs, Macs, or UNIX machines. Format information, data dictionary and statistical information are also included. A bibliography of earthquake-related materials at NCEI and the Summary of Earthquake Data Base (KGRD-21) are included on the CD-ROM. NOAA and NCEI make no warranty, expressed or implied, regarding these data, nor does the fact of distribution constitute such a warranty. NOAA and NCEI cannot assume liability for any damages caused by any errors or omissions in these data. If appropriate, NCEI can only certify that the data it distributes are an authentic copy of the records that were accepted for inclusion in the NCEI archives. This dataset has been archived in the framework of the PANGAEA US data rescue initiative 2025.
Im Verbundprojekt 'Restless' soll die Frage geklärt werden, ob und in wieweit das Risiko induzierter Seismizität von der Lithologie des erschlossenen geothermischen Reservoirs abhängt. Gesamtziel des Projekts ist es, mit einer Kombination von Gelände-, Labor- und numerischen Methoden die notwendigen Bedingungen zur Reaktivierung von Störungen und die resultierende Seismizität in Abhängigkeit von deren geometrischen und lithologischen Eigenschaften genauer zu untersuchen. Das Teilvorhaben untersucht die hydraulischen Eigenschaften des Kluftnetzwerkes im Nahbereich von Störungszonen im Granit. Im GranitLab des GZN können die hydraulischen, petrophysikalischen und geomechanischen Eigenschaften von spröden Störungszonen in Graniten untersucht werden. Das Granitlab verfügt über 15 hydraulisch und bohrlochgeophysikalisch untersuchte Bohrungen mit einer Tiefe von ca. 25 m. Diese sollen im Zuge von RESTLESS durch drei Schrägbohrungen mit einer Tiefe von 100 m erweitert werden. Die Kernbohrungen werden bohrlochgeophysikalisch vermessen. Produktions- und Injektionsversuche dienen der Bestimmung der Permeabilität des Kluftnetzwerkes, des Rissöffnungsdruckes und der Richtung der minimalen Hauptspannung. Geometrie und Vernetzung des Kluftnetzwerkes werden mit Bohrlochradar und Bohrlochtomographie bestimmt. Hierzu sind wiederholte Messungen vorgesehen, u.a. auch vor und nach der Injektion eines Salzwassertracers, der dazu dient, die Fließwege und -geschwindigkeiten im Kluftnetz nachvollziehen zu können. Die analytischen Auswertungen der Messdaten sollen zu einem besseren Verständnis Fließbedingungen, der Druckausbreitung und den hydraulisch relevanten Reservoirbedingungen führen. Daneben werden im Labor Gesteinsproben aus Analogaufschlüssen petrophysikalisch untersucht, um mit den Messergebnissen die Modellierungen zu parametrisieren. Darüber hinaus werden mit XRD-Analyse der Tonmineralgehalt und die Art der Tonminerale ermittelt.
Enhanced Geothermal Systems (EGS) zielen darauf ab, die in der Erdkruste gespeicherte Wärme durch zirkulierende Flüssigkeiten zwischen Injektions- und Produktionsbohrlöchern zu extrahieren. Ideale Bedingungen finden sich typischerweise in Formationen in einer Tiefe von 2 bis 5 km, in denen die Durchflussrate für kommerzielle geothermische Anlagen nicht ausreicht und in denen die Temperaturen hoch sind (d. H. >> 100 ° C). Daher ist die Hochdruck-Flüssigkeitsinjektion, die als hydraulische Stimulation bekannt ist, eine allgemein angewandte Technik, um ein verbundenes Bruchnetzwerk zu erzeugen, das die Flüssigkeitszirkulation erleichtert. Die hydraulische Stimulation geht typischerweise mit einer induzierten Seismizität einher, die von der Öffentlichkeit wahrgenommen werden kann und sogar Schäden verursacht. Das Ziel dieses Projekts ist es, ein grundlegendes Verständnis der induzierten Seismizität in gebrochenen Gesteinen zu vermitteln, das die Fähigkeit verbessert, das seismische Risiko vorherzusagen und zu kontrollieren. Dieses Projekt geht von der Hypothese aus, dass die Seismizität gemeinsam durch die Bruchnetzgeometrie und die aktivierten thermo-hydromechanischen (THM) Prozesse in geologischen Systemen gesteuert wird. Wir werden Discrete Fracture Networks (DFN) anwenden, um die strukturellen Diskontinuitäten darzustellen und die THM-Prozesse mit hoher Auflösung zu modellieren. Dieses Projekt verwendet die Datensätze aus kleinen (Dekameter-) Stimulationsexperimenten am Grimsel-Teststandort in der Schweiz und modernste numerische Modelle, um Folgendes zu erreichen: 1) Testen Sie die Wirksamkeit hochauflösender Modelle zur Erfassung der seismische, hydraulische und mechanische Prozesse, die mit kleinen Experimenten beobachtet wurden; 2) Verknüpfung der geometrischen Attribute eines Bruchnetzwerks (wie Intensität, Konnektivität, Länge und räumliche Verteilung) mit der räumlichen, zeitlichen und Größenverteilung der induzierten Seismizität; 3) ein neuartiges Prognosemodell für die maximal mögliche Größe vorschlagen und testen, das die gemeinsamen Auswirkungen von Multiphysikprozessen berücksichtigt, die unter standortspezifischen geologischen Bedingungen und Betriebsbedingungen dominieren; 4) Bewertung der Hochskalierung der hochauflösenden DFN-Modelle im kleinen Maßstab (Dekameter), um die Experimente im Reservoir-Maßstab (Kilometer) zu simulieren. Dieses Forschungsprojekt ist neu in der Behandlung der durch Injektion induzierten Seismizität durch hochauflösende physikbasierte Modelle und hochwertige Datensätze, die aus einzigartigen In-situ-Experimenten abgeleitet wurden. Die vorgeschlagene Forschung hat erhebliche Auswirkungen auf die Förderung der Übergangspolitik hin zu einer Versorgung mit erneuerbaren Energien und trägt dazu bei, unser Wissen über die Auslösemechanismen induzierter Erdbeben zu erweitern.
Wir planen die Nutzung eines U-Tube-KASMA Systems, welches von Prof. Tullis Onstott (Princeton University) in einem 600 m tiefen Bohrloch installiert wird, das eine aktive Störungszone im Roodepoort Quarzit in 3400 m Tiefe in der 'Moab Khotsong gold mine' antrifft. Das Bohrloch ist Teil des ICDP-finanzierten Projektes DSeis und dient der Beobachtung von seismisch ausgelösten in situ geochemischen und isotopischen Änderungen tiefer Fluide sowie mikrobiellen Aktivitäten. Die Kombination unsers Gas-Monitoring-Systems mit der U-Tube-KASMA Installation ergibt die einmalige Möglichkeit, minimal veränderte Geofluide aus einer tiefen aktiven Störungszone zu beproben.Während seismischer Ereignisse entlang der Verwerfungszone erwarten wir die Freisetzung von Geogasen, insbesondere H2, der als Energiequelle für tiefes mikrobielles Leben dienen kann. Das Geogas (inkl. H2 und O3) sollen kontinuierlich mit spezifischen Sensoren eines portablen gasanalytischen Systems detektiert werden, welches direkt an den Gasseparator des automatischen U-Tube-KASMA angeschlossen ist. Durch die chemische und isotopische Charakterisierung der Fluide vor und nach seismischer Aktivität hoffen wir die Herkunft und Genese von H2 aufklären zu können; letztere beruht auf Spaltung der O-H Bindungen von Wasser. In Kombination mit Daten zur Permeabilität und Porosität der Störungszone werden diese Ergebnisse helfen, verschiedene Migrationsmechanismen des Fluids, vom Entstehungsort bis zum Zielhorizont, zu verstehen. Dabei stellt sich die Frage, ob schwache seismische Ereignisse die Konnektivität isoliert bestehender Fluide durch Bildung neuer Wegsamkeiten erhöhen, oder ob frische Mineraloberflächen für Wasser-Gesteinsreaktionen erzeugt werden, die mechano-chemisch neu synthetisierten H2 freisetzen. Die Echtzeit-Analyse der U-Tube Proben vor Ort kann zeigen, wie schnell Änderungen in der Untergrund Gaschemie aufgrund seismischer Aktivität stattfinden. Ein weiteres Ziel ist die Identifizierung der seismischen Momente und der Abstand und die Orientierung des Erdbebenherdes zur Störungszone und dem Bohrloch. Die Probenahme und Analyse in Isotopen-Laboratorien ermöglicht die Abschätzung, in welchem Ausmaß sich die H/D-Isotopie von H2 und CH4, sowie 13CCO2 und 13CCH4 ändert. Es soll geprüft werden, ob sie aus der gleichen Quelle stammen und ob der Isotopenaustausch zwischen diesen Spezies im thermodynamischen Gleichgewicht ist.Edelgasisotopenmessungen erlauben es, die Residenzzeiten der Kluftfluide zu berechnen und könnten die Frage lösen, ob gemessene H2/He-Verhältnisse mit der berechneten radiolytisch/radiogenen Produktionsrate übereinstimmen. Die Daten der gaschemischen Messungen sind wichtige Eingangsparameter für physikalisch-chemische Modelle zur Beschreibung des geochemischen Verhaltens der Fluide. In Kombination mit seismischen Karten tragen sie zur genaueren Bestimmung des globalen Vorkommens von gas-chemischen Produktionsprozessen in Störungszonen bei.
Der Datenbestand, der dem Web Map Service (WMS) zugrunde liegt, liefert Informationen zum seismischen Geschehen in Deutschland und benachbarten Gebieten. Er beinhaltet die Orte, an denen seit dem Jahr 800 seismische Ereignisse stattfanden. Grundlage für die Epizentrumsbestimmung sind historische Quellen sowie seit Beginn der instrumentellen Erdbebenaufzeichnung im 20. Jahrhundert Messungen mit Seismometerstationen. Die digitale Datenerfassung an den Seismometerstationen des Deutschen Regionalnetzes (GRSN) sowie den Messanlagen des GERES-Arrays und des Gräfenberg-Arrays (GRF) und die Echtzeitübetragung der registrieten Seismometerdaten zum Seismologischen Zentralobservatorium der BGR gestattet es heute, seismische Ereignisse unverzüglich zu detektieren, auszuwerten und im WMS bereitzustellen. Es werden alle Ereignisse mit einer lokalen Magnitude ML 2,0 oder höher dargestellt. Die Epizentrumsbestimmung erfolgt zunächst automatisch. Daher kann es in einigen Fällen zu fehlerhaften Epizentrumskoordinaten und zu überschätzten Magnitudewerten kommen. Aus diesem Grund werden die Ergebnisse der automatischen Bestimmung im Rahmen einer manuellen Routineauswertung in der Regel am folgenden Werktag überprüft und gegebenenfalls korrigiert.
Der Erdbebenkatalog Baden-Württemberg, bearbeitet vom Landeserdbebendienst (LED), beinhaltet Angaben über Erdbeben in und um Baden-Württemberg. Kartenmäßig dargestellt sind natürliche (tektonische) und induzierte Erdbeben im Gebiet 47.3°N bis 50.0°N und 7.2°E bis 10.75°E seit 1994. Ab 1996 ist der Katalog vollständig für Erdbeben stärker als etwa Magnitude ML = 2.0 (Richter-Skala). Mit dem Ausbau des Messnetzes und der gestiegenen Empfindlichkeit kann heute von einer Vollständigkeit mindestens ab Magnitude ML=1.5 im bearbeiteten Gebiet ausgegangen werden. Unter dem Begriff "induzierte Erdbeben" werden nicht-natürliche seismische Ereignisse zusammengefasst. Dazu zählen z. B. Bergschläge, d.h. Erdbeben im Bereich von aktiven oder offen gelassenen Grubengebäuden. Weitere induzierte Erdbeben stehen in Zusammenhang mit der Rohstoffgewinnung aus Bohrungen, also Erdöl-, Erdgas- oder Erdwärmeförderung bzw. Verpressung von Flüssigkeiten oder Gasen in den Untergrund. Steinbruchsprengungen sind im Katalog nicht enthalten. Als "gespürt" werden diejenigen Erdbeben gekennzeichnet, denen eine maximale Intensität (nicht zu verwechseln mit der Magnitude) auf der Europäischen Makroseismischen Skala (EMS-98, früher auch andere Skalen) von mindestens III zugeordnet werden kann. Insbesondere in den frühen Jahren der Zusammenstellung sind auch Erdbeben dargestellt, die von anderen Agenturen als dem LED bearbeitet wurden. Die entsprechende Quelle (verantwortliche Agentur) wird jeweils aufgeführt. Für Epizentren außerhalb des Landesgebiets von Baden-Württemberg und Rheinland-Pfalz sind die Angaben des LED bzw. des EDSW nicht maßgeblich. Die maßgeblichen Angaben veröffentlicht der jeweils lokal zuständige Erdbebendienst.
Im Verbundprojekt 'Restless' soll die Frage geklärt werden, ob und in wieweit das Risiko induzierter Seismizität von der Lithologie des erschlossenen geothermischen Reservoirs abhängt. Gesamtziel des Projekts ist es, mit einer Kombination von Gelände-, Labor- und numerischen Methoden die notwendigen Bedingungen zur Reaktivierung von Störungen und die resultierende Seismizität in Abhängigkeit von deren geometrischen und lithologischen Eigenschaften genauer zu untersuchen. Ziel dieses Teilprojekts ist es zu untersuchen, bei welchen definierten Druckveränderungen in einem geothermischen Reservoir es bei gegebenen regionalen Spannungsverhältnissen zu induzierter Seismizität kommen kann. Dies soll durch die Weiterentwicklung hauseigener Simulationscodes erfolgen. Die geplanten transienten THM-Simulationen sowohl die räumliche und zeitliche Verteilung der seismischen Ereignisse als auch deren Quellsignalcharakteristik liefern. Diese Informationen werden dann genutzt, um die vom Quellort (Hypozentrum) ausgehenden seismischen Wellen im dreidimensionalen Raum zu simulieren und die daraus resultierenden Bodenschwinggeschwindigkeiten abzuschätzen. Notwendige Eingangsdaten und Randbedingungen der Simulationen, z.B. zu Modellgeometrien und gesteinsphysikalischen Parametern, werden durch die Verbundpartner zur Verfügung gestellt und durch eigene H/V-Messungen im Gelände ergänzt. Die Simulation erfolgen zunächst an generischen Modellen zur Erlangung eines besseren Prozessverständnisses sowie zur Untersuchung des möglichen Effekts unterschiedlicher Lithologien auf die induzierte Seismizität. Anschließend werden Simulationen für zwei Beispielstandorte durchgeführt. Die Arbeiten werden ergänzt durch eine Literaturstudie, welche neben der Recherche zu gesteinsphysikalischen Eigenschaften insbesondere eine Aufarbeitung existierender Geothermiestandorte hinsichtlich ihrer durchteuften Lithologien und induzierter Seismizität beinhaltet.
Im Verbundprojekt 'Restless' soll die Frage geklärt werden, ob und in wieweit das Risiko induzierter Seismizität von der Lithologie des erschlossenen geothermischen Reservoirs abhängt. Gesamtziel des Projekts ist es, mit einer Kombination von Gelände-, Labor- und numerischen Methoden die notwendigen Bedingungen zur Reaktivierung von Störungen und die resultierende Seismizität in Abhängigkeit von deren geometrischen und lithologischen Eigenschaften genauer zu untersuchen. Ziel dieses Teilprojekts ist es zu untersuchen, bei welchen definierten Druckveränderungen in einem geothermischen Reservoir es bei gegebenen regionalen Spannungsverhältnissen zu induzierter Seismizität kommen kann. Dies soll durch die Weiterentwicklung hauseigener Simulationscodes erfolgen. Die geplanten transienten THM-Simulationen sowohl die räumliche und zeitliche Verteilung der seismischen Ereignisse als auch deren Quellsignalcharakteristik liefern. Diese Informationen werden dann genutzt, um die vom Quellort (Hypozentrum) ausgehenden seismischen Wellen im dreidimensionalen Raum zu simulieren und die daraus resultierenden Bodenschwinggeschwindigkeiten abzuschätzen. Notwendige Eingangsdaten und Randbedingungen der Simulationen, z.B. zu Modellgeometrien und gesteinsphysikalischen Parametern, werden durch die Verbundpartner zur Verfügung gestellt und durch eigene H/V-Messungen im Gelände ergänzt. Die Simulation erfolgen zunächst an generischen Modellen zur Erlangung eines besseren Prozessverständnisses sowie zur Untersuchung des möglichen Effekts unterschiedlicher Lithologien auf die induzierte Seismizität. Anschließend werden Simulationen für zwei Beispielstandorte durchgeführt. Die Arbeiten werden ergänzt durch eine Literaturstudie, welche neben der Recherche zu gesteinsphysikalischen Eigenschaften insbesondere eine Aufarbeitung existierender Geothermiestandorte hinsichtlich ihrer durchteuften Lithologien und induzierter Seismizität beinhaltet.
| Origin | Count |
|---|---|
| Bund | 301 |
| Land | 34 |
| Wissenschaft | 8 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 3 |
| Förderprogramm | 186 |
| Hochwertiger Datensatz | 4 |
| Text | 107 |
| unbekannt | 32 |
| License | Count |
|---|---|
| geschlossen | 118 |
| offen | 211 |
| unbekannt | 3 |
| Language | Count |
|---|---|
| Deutsch | 309 |
| Englisch | 61 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Bild | 5 |
| Datei | 2 |
| Dokument | 97 |
| Keine | 125 |
| Webdienst | 17 |
| Webseite | 105 |
| Topic | Count |
|---|---|
| Boden | 332 |
| Lebewesen und Lebensräume | 280 |
| Luft | 94 |
| Mensch und Umwelt | 332 |
| Wasser | 112 |
| Weitere | 319 |