API src

Found 113 results.

Forest Canopy Cover Loss (FCCL) - Germany - Monthly, Administrative Level

This vector dataset is based on a 10 m resolution raster dataset that shows forest canopy cover loss (FCCL) in Germany at a monthly resolution from September 2017 to September 2024. Results at pixel level were aggregated at municipality, district, and federal state level. For the results at administrative level we differentiate between deciduous and coniferous forests. We use the stocked area map 2018 (Langner et al. 2022, https://doi.org/10.3220/DATA20221205151218 ) as a reference forest mask. We differentiate between deciduous and coniferous forests by intersecting the stocked area map with a tree species map (Blickensdoerfer et al. 2024). Pixels of the classes birch, beech, oak, alder, deciduous trees with long lifespan and deciduous trees with short lifespan were classified as deciduous forest and pixels of the classes Douglas fir, spruce, pine, larch and fir as coniferous forest. The coverage of the two datasets is not identical, which is why a few areas of the forest reference map remained unclassified. These were filled with the dominant leaf type map of the Copernicus Land Monitoring Service (CLMS 2025). Therefore, the vector data at administrative level contains information about unclassified forest areas and the total forest area as the sum of deciduous, coniferous, and unclassified forests. The FCCL confidence at pixel level is lowest at the end of the time series because the number of repeated threshold exceedance is used as a criterion to record forest canopy cover losses. Therefore, we excluded July 2024 through September 2024 from the annual and overall statistics and summarized the respective FCCL as additional attribute. The dataset is a fully reprocessed continuation of the assessment in Thonfeld et al. (2022).

WMS SL Sentinel-2 TCI - Sentinel-2 TCI 2024

Sentinel-2 Echtfarbenbild (TCI), Kombination der Spektralkanäle B4 (rot), B3 (grün) und B2 (blau), räumliche Auflösung 10 m (2019):Dieser Layer visualisiert das Sentinel-2 Echtfarbenbild (TCI) des Jahr 2024.

Tree Species - Sentinel-1/2 - Germany, 2022

The Tree Species Germany product provides a map of dominant tree species across Germany for the year 2022 at a spatial resolution of 10 meters. The map depicts the distribution of ten tree species groups derived from multi-temporal optical Sentinel-2 data, radar data from Sentinel-1, and a digital elevation model. The input features explicitly incorporate phenological information to capture seasonal vegetation dynamics relevant for species discrimination. A total of over 80,000 training and test samples were compiled from publicly accessible sources, including urban tree inventories, Google Earth Pro, Google Street View, and field observations. The final classification was generated using an XGBoost machine learning algorithm. The Tree Species Germany product achieves an overall F1-score of 0.89. For the dominant species pine, spruce, beech, and oak, class-wise F1-scores range from 0.76 to 0.98, while F1-scores for other widespread species such as birch, alder, larch, Douglas fir, and fir range from 0.88 to 0.96. The product provides a consistent, high-resolution, and up-to-date representation of tree species distribution across Germany. Its transferable, cost-efficient, and repeatable methodology enables reliable large-scale forest monitoring and offers a valuable basis for assessing spatial patterns and temporal changes in forest composition in the context of ongoing climatic and environmental dynamics.

CropTypes - Crop Type Maps for Germany - Yearly, 10m

This raster dataset shows the main type of crop grown on each field in Germany each year. Crop types and crop rotation are of great economic importance and have a strong influence on the functions of arable land and ecology. Information on the crops grown is therefore important for many environmental and agricultural policy issues. With the help of satellite remote sensing, the crops grown can be recorded uniformly for whole Germany. Based on Sentinel-1 and Sentinel-2 time series as well as LPIS data from some Federal States of Germany, 18 different crops or crop groups were mapped per pixel with 10 m resolution for Germany on an annual basis since 2017. These data sets enable a comparison of arable land use between years and the derivation of crop rotations on individual fields. More details and the underlying (in the meantime slightly updated) methodology can be found in Asam et al. 2022.

Forest Structure - Sentinel-1/2, GEDI - Germany, Yearly

The product shows forest structure information on canopy height, total canopy cover and Above-ground biomass density (AGBD) in Germany as annual products in 10 m spatial resolution. The products were generated using a machine learning modelling approach that combines complementary spaceborne remote sensing sensors, namely GEDI (Global Ecosystem Dynamics Investigation; NASA; full-waveform LiDAR), Sentinel-1 (Synthetic-Aperture-Radar; ESA, C-band) and Sentinel-2 (Multispectral Instrument; ESA; VIS-NIR-SWIR). Sample estimates on forest structure from GEDI were modelled in 10 m spatial resolution as annual products based on spatio-temporal composites from Sentinel-1 and -2. The derived products are the first consistent data sets on canopy height, total canopy cover and AGBD for Germany which enable a quantitative assessment of recent forest structure dynamics, e.g. in the context of repeated drought events since 2018. The full description of the method and results can be found in the publication of Kacic et al. (2023).

SWIM Water Extent - Sentinel-1/2 - Daily

SWIM Water Extent is a global surface water product at 10 m pixel spacing based on Sentinel-1/2 data. The collection contains binary layers indicating open surface water for each Sentinel-1/2 scene. Clouds and cloud shadows are removed using ukis-csmask (see: https://github.com/dlr-eoc/ukis-csmask ) and are represented as NoData. The water extent extraction is based on convolutional neural networks (CNN). For further information, please see the following publications: https://doi.org/10.1016/j.rse.2019.05.022 and https://doi.org/10.3390/rs11192330

WMS SL Sentinel-2 TCI - Sentinel-2 TCI 2018

Sentinel-2 Echtfarbenbild (TCI), Kombination der Spektralkanäle B4 (rot), B3 (grün) und B2 (blau), räumliche Auflösung 10 m (2019):Dieser Layer visualisiert das Sentinel-2 Echtfarbenbild (TCI) des Jahr 2018.

WMS SL Sentinel-2 TCI - Sentinel-2 TCI 2020

Sentinel-2 Echtfarbenbild (TCI), Kombination der Spektralkanäle B4 (rot), B3 (grün) und B2 (blau), räumliche Auflösung 10 m (2019):Dieser Layer visualisiert das Sentinel-2 Echtfarbenbild (TCI) des Jahr 2020.

WMS SL Sentinel-2 TCI - Sentinel-2 TCI 2025

Sentinel-2 Echtfarbenbild (TCI), Kombination der Spektralkanäle B4 (rot), B3 (grün) und B2 (blau), räumliche Auflösung 10 m (2019):Dieser Layer visualisiert das Sentinel-2 Echtfarbenbild (TCI) des Jahr 2025.

WMS SL Sentinel-2 TCI - Sentinel-2 TCI 2019

Sentinel-2 Echtfarbenbild (TCI), Kombination der Spektralkanäle B4 (rot), B3 (grün) und B2 (blau), räumliche Auflösung 10 m (2019):Dieser Layer visualisiert das Sentinel-2 Echtfarbenbild (TCI) des Jahr 2019.

1 2 3 4 510 11 12