API src

Found 126 results.

WMS SL Sentinel-2 NDVI - Sentinel-2 NDVI 2019

Sentinel-2 Normierter Differenzierter Vegetationsindex (NDVI), räumliche Auflösung 10 m (2019):Dieser Layer visualisiert den Sentinel-2 Normierter Differenzierter Vegetationsindex (NDVI) des Jahr 2019.

WMS SL Sentinel-2 TCI - Sentinel-2 TCI 2021

Sentinel-2 Echtfarbenbild (TCI), Kombination der Spektralkanäle B4 (rot), B3 (grün) und B2 (blau), räumliche Auflösung 10 m (2019):Dieser Layer visualisiert das Sentinel-2 Echtfarbenbild (TCI) des Jahr 2021.

WMS SL Sentinel-2 NDVI - Sentinel-2 NDVI 2020

Sentinel-2 Normierter Differenzierter Vegetationsindex (NDVI), räumliche Auflösung 10 m (2019):Dieser Layer visualisiert den Sentinel-2 Normierter Differenzierter Vegetationsindex (NDVI) des Jahr 2020.

Tree Species - Sentinel-1/2 - Germany, 2022

The Tree Species Germany product provides a map of dominant tree species across Germany for the year 2022 at a spatial resolution of 10 meters. The map depicts the distribution of ten tree species groups derived from multi-temporal optical Sentinel-2 data, radar data from Sentinel-1, and a digital elevation model. The input features explicitly incorporate phenological information to capture seasonal vegetation dynamics relevant for species discrimination. A total of over 80,000 training and test samples were compiled from publicly accessible sources, including urban tree inventories, Google Earth Pro, Google Street View, and field observations. The final classification was generated using an XGBoost machine learning algorithm. The Tree Species Germany product achieves an overall F1-score of 0.89. For the dominant species pine, spruce, beech, and oak, class-wise F1-scores range from 0.76 to 0.98, while F1-scores for other widespread species such as birch, alder, larch, Douglas fir, and fir range from 0.88 to 0.96. The product provides a consistent, high-resolution, and up-to-date representation of tree species distribution across Germany. Its transferable, cost-efficient, and repeatable methodology enables reliable large-scale forest monitoring and offers a valuable basis for assessing spatial patterns and temporal changes in forest composition in the context of ongoing climatic and environmental dynamics.

Forest Structure - Sentinel-1/2, GEDI - Germany, Yearly

The product shows forest structure information on canopy height, total canopy cover and Above-ground biomass density (AGBD) in Germany as annual products in 10 m spatial resolution. The products were generated using a machine learning modelling approach that combines complementary spaceborne remote sensing sensors, namely GEDI (Global Ecosystem Dynamics Investigation; NASA; full-waveform LiDAR), Sentinel-1 (Synthetic-Aperture-Radar; ESA, C-band) and Sentinel-2 (Multispectral Instrument; ESA; VIS-NIR-SWIR). Sample estimates on forest structure from GEDI were modelled in 10 m spatial resolution as annual products based on spatio-temporal composites from Sentinel-1 and -2. The derived products are the first consistent data sets on canopy height, total canopy cover and AGBD for Germany which enable a quantitative assessment of recent forest structure dynamics, e.g. in the context of repeated drought events since 2018. The full description of the method and results can be found in the publication of Kacic et al. (2023).

Störungsflächen und Flächen mit Vitalitätsveränderungen aus Sentinel-2-Daten

Die Datensätze bilden die zwischen Oktober 2017 und September 2024 infolge von Sturmschäden, Schneebruch und Borkenkäferbefall entstandenen Störungsflächen im Wald sowie Flächen mit Vitalitätsveränderungen. Diese Flächen stellen das Resultat einer mithilfe von Sentinel-2-Daten durchgeführten teilautomatisierten Satellitenbildauswertung dar. Dabei handelt es sich um Ergebnisse aus dem durch das Kompetenzzentrum Wald und Forstwirtschaft (Sachsenforst) initiierten „Sentinel-2-Projekt“. Ziel dieses Projekts war die Lokalisierung der zwischen Herbst 2017 und Herbst 2024 entstandenen Störungsflächen und Flächen mit Vitalitätsveränderungen im sächsischen Gesamtwald.

SWIM Water Extent - Sentinel-1/2 - Daily

SWIM Water Extent is a global surface water product at 10 m pixel spacing based on Sentinel-1/2 data. The collection contains binary layers indicating open surface water for each Sentinel-1/2 scene. Clouds and cloud shadows are removed using ukis-csmask (see: https://github.com/dlr-eoc/ukis-csmask ) and are represented as NoData. The water extent extraction is based on convolutional neural networks (CNN). For further information, please see the following publications: https://doi.org/10.1016/j.rse.2019.05.022 and https://doi.org/10.3390/rs11192330

WMS SL Sentinel-2 TCI - Sentinel-2 TCI 2017

Sentinel-2 Echtfarbenbild (TCI), Kombination der Spektralkanäle B4 (rot), B3 (grün) und B2 (blau), räumliche Auflösung 10 m (2019):Dieser Layer visualisiert das Sentinel-2 Echtfarbenbild (TCI) des Jahr 2017.

WMS SL Sentinel-2 TCI - Sentinel-2 TCI 2023

Sentinel-2 Echtfarbenbild (TCI), Kombination der Spektralkanäle B4 (rot), B3 (grün) und B2 (blau), räumliche Auflösung 10 m (2019):Dieser Layer visualisiert das Sentinel-2 Echtfarbenbild (TCI) des Jahr 2023.

WMS SL Sentinel-2 TCI - Sentinel-2 TCI 2020

Sentinel-2 Echtfarbenbild (TCI), Kombination der Spektralkanäle B4 (rot), B3 (grün) und B2 (blau), räumliche Auflösung 10 m (2019):Dieser Layer visualisiert das Sentinel-2 Echtfarbenbild (TCI) des Jahr 2020.

1 2 3 4 511 12 13