SWIM Water Extent is a global surface water product at 10 m pixel spacing based on Sentinel-1/2 data. The collection contains binary layers indicating open surface water for each Sentinel-1/2 scene. Clouds and cloud shadows are removed using ukis-csmask (see: https://github.com/dlr-eoc/ukis-csmask ) and are represented as NoData. The water extent extraction is based on convolutional neural networks (CNN). For further information, please see the following publications: https://doi.org/10.1016/j.rse.2019.05.022 and https://doi.org/10.3390/rs11192330
The Tree Species Germany product provides a map of dominant tree species across Germany for the year 2016 at a spatial resolution of 10 meters. The map depicts the distribution of ten tree species groups derived from multi-temporal optical Sentinel-2 data. The input features explicitly incorporate phenological information to capture seasonal vegetation dynamics relevant for species discrimination. A total of over 100,000 training and test samples were compiled from publicly accessible sources, including urban tree inventories, Google Earth Pro, Google Street View, and field observations. The final product was created by majority-voting on annual XGBoost Sentinel-2 tree species classifications (2016–2024) and filtering with forest structure data. If no clear majority vote was achieved, the class uncertain was assigned. The Tree Species Germany 2016 product achieves an overall F1-score of 0.95. For the dominant species pine, spruce, beech, and oak, class-wise F1-scores range from 0.92 to 0.99, while F1-scores for other widespread species such as birch, alder, larch, Douglas fir, fir, and other deciduous species range from 0.85 to 0.96. The product provides a consistent, high-resolution, and up-to-date representation of tree species distribution across Germany. Its transferable, cost-efficient, and repeatable methodology enables reliable large-scale forest monitoring and offers a valuable basis for assessing spatial patterns and temporal changes in forest composition in the context of ongoing climatic and environmental dynamics.
Sentinel-2 Echtfarbenbild (TCI), Kombination der Spektralkanäle B4 (rot), B3 (grün) und B2 (blau), räumliche Auflösung 10 m (2019):Dieser Layer visualisiert das Sentinel-2 Echtfarbenbild (TCI) des Jahr 2020.
Sentinel-2 Falschfarbenbild (ColoredInfraRed), Kombination der Spektralkanäle B8 (rot), B4 (grün) und B3 (blau), räumliche Auflösung 10 m (2019):Dieser Layer visualisiert die Sentinel-2 Falschfarbenbilder(CIR) des Jahr 2022.
This raster dataset shows the main type of crop grown on each field in Germany each year. Crop types and crop rotation are of great economic importance and have a strong influence on the functions of arable land and ecology. Information on the crops grown is therefore important for many environmental and agricultural policy issues. With the help of satellite remote sensing, the crops grown can be recorded uniformly for whole Germany. Based on Sentinel-1 and Sentinel-2 time series as well as LPIS data from some Federal States of Germany, 18 different crops or crop groups were mapped per pixel with 10 m resolution for Germany on an annual basis since 2018. These data sets enable a comparison of arable land use between years and the derivation of crop rotations on individual fields. More details and the underlying (in the meantime slightly updated) methodology can be found in Asam et al. 2022. This raster dataset shows the main type of crop grown on each field in Germany each year. Crop types and crop rotation are of great economic importance and have a strong influence on the functions of arable land and ecology. Information on the crops grown is therefore important for many environmental and agricultural policy issues. With the help of satellite remote sensing, the crops grown can be recorded uniformly for whole Germany. Based on Sentinel-1 and Sentinel-2 time series as well as LPIS data from some Federal States of Germany, 18 different crops or crop groups were mapped per pixel with 10 m resolution for Germany on an annual basis since 2017. These data sets enable a comparison of arable land use between years and the derivation of crop rotations on individual fields. More details and the underlying (in the meantime slightly updated) methodology can be found in Asam et al. 2022.
Sentinel-2 Echtfarbenbild (TCI), Kombination der Spektralkanäle B4 (rot), B3 (grün) und B2 (blau), räumliche Auflösung 10 m (2019):Dieser Layer visualisiert das Sentinel-2 Echtfarbenbild (TCI) des Jahr 2023.
Sentinel-2 Echtfarbenbild (TCI), Kombination der Spektralkanäle B4 (rot), B3 (grün) und B2 (blau), räumliche Auflösung 10 m (2019):Dieser Layer visualisiert das Sentinel-2 Echtfarbenbild (TCI) des Jahr 2022.
Sentinel-2 Echtfarbenbild (TCI), Kombination der Spektralkanäle B4 (rot), B3 (grün) und B2 (blau), räumliche Auflösung 10 m (2019):Dieser Layer visualisiert das Sentinel-2 Echtfarbenbild (TCI) des Jahr 2025.
Sentinel-2 Echtfarbenbild (TCI), Kombination der Spektralkanäle B4 (rot), B3 (grün) und B2 (blau), räumliche Auflösung 10 m (2019):Dieser Layer visualisiert das Sentinel-2 Echtfarbenbild (TCI) des Jahr 2017.
Die Datensätze bilden die zwischen Oktober 2017 und September 2024 infolge von Sturmschäden, Schneebruch und Borkenkäferbefall entstandenen Störungsflächen im Wald sowie Flächen mit Vitalitätsveränderungen. Diese Flächen stellen das Resultat einer mithilfe von Sentinel-2-Daten durchgeführten teilautomatisierten Satellitenbildauswertung dar. Dabei handelt es sich um Ergebnisse aus dem durch das Kompetenzzentrum Wald und Forstwirtschaft (Sachsenforst) initiierten „Sentinel-2-Projekt“. Ziel dieses Projekts war die Lokalisierung der zwischen Herbst 2017 und Herbst 2024 entstandenen Störungsflächen und Flächen mit Vitalitätsveränderungen im sächsischen Gesamtwald.
| Origin | Count |
|---|---|
| Bund | 79 |
| Kommune | 2 |
| Land | 67 |
| Wissenschaft | 27 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Förderprogramm | 52 |
| unbekannt | 69 |
| License | Count |
|---|---|
| geschlossen | 1 |
| offen | 84 |
| unbekannt | 37 |
| Language | Count |
|---|---|
| Deutsch | 90 |
| Englisch | 34 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Keine | 19 |
| Webdienst | 61 |
| Webseite | 65 |
| Topic | Count |
|---|---|
| Boden | 73 |
| Lebewesen und Lebensräume | 84 |
| Luft | 63 |
| Mensch und Umwelt | 84 |
| Wasser | 37 |
| Weitere | 122 |