API src

Found 18 results.

Sentinel-5P TROPOMI Surface Nitrogendioxide (NO2), Level 4 – Regional (Germany and neighboring countries)

The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the Nitrogen Dioxide (NO2) near surface concentration for Germany and neighboring countries as derived from the POLYPHEMUS/DLR air quality model. Surface NO2 is mainly generated by anthropogenic sources, e.g. transport and industry. POLYPHEMUS/DLR is a state-of-the-art air quality model taking into consideration - meteorological conditions, - photochemistry, - anthropogenic and natural (biogenic) emissions, - TROPOMI NO2 observations for data assimilation. This Level 4 air quality product (surface NO2 at 15:00 UTC) is based on innovative algorithms, processors, data assimilation schemes and operational processing and dissemination chain developed in the framework of the INPULS project. The DLR project INPULS develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Sentinel-5P TROPOMI – Cloud Optical Thickness (COT), Level 3 – Global

This product displays the Cloud Optical Thickness (COT) around the globe. Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The cloud optical thickness is retrieved from the O2-A band using the ROCINN algorithm. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.

Sentinel-5P TROPOMI – Cloud-Top Height (CTH), Level 3 – Global

Global Cloud-Top Height (CTH) as derived from the Sentinel-5P/TROPOMI instrument. Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The cloud-top height is retrieved from the O2-A band using the ROCINN algorithm. Daily observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.

Sentinel-5P TROPOMI - Aerosol Optical Depth (AOD), Level 3 - Global

Aerosol optical depth (AOD) as derived from TROPOMI observations. AOD describes the attenuation of the transmitted radiant power by the absence of aerosols. Attenuation can be caused by absorption and/or scattering. AOD is the primary parameter to evaluate the impact of aerosols on weather and climate. Daily AOD observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Sentinel-5P TROPOMI - Aerosol Single-Scattering Albedo (ASSA), Level 3 - Global

Aerosol single-scattering albedo (ASSA) as derived from TROPOMI observations. ASSA is a measure of how much light is scattered by aerosols compared to how much is absorbed. It is important for understanding the impact of aerosols on climate and radiative forcing. ASSA is unitless; a value of unity implies that extinction is completely due to scattering; conversely, a single-scattering albedo of zero implies that extinction is completely due to absorption. Daily ASSA observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Sentinel-5P TROPOMI – Aerosol Layer Height (ALH), Level 3 – Global

Aerosols are an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. Daily observations are binned onto a regular latitude-longitude grid. The Aerosol layer height is provided in kilometres. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Sentinel-5P TROPOMI – Ultraviolet Index (UVI), Level 3 – Global

UV Index (UVI) as derived from TROPOMI observations. The UVI describes the intensity of the solar ultraviolet radiation. Values around zero indicate low, values greater than 10 indicate very high UV exposure on the ground. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

APP4AQ-p2: Innovative APPlications for the augmented use of satellite observations to support Air Quality management - phase 2

Satellite data play currently a minor role in air quality management. At present, ground measurements and/or model simulations are used to assess the temporal and area wide evolution of air quality. The Achilles' heel of such modelling is emission data and their spatiotemporal variation. Air pollutant and GHG satellite data can be increasingly exploited now also using the data of the recently launched Sentinel-5P instrument (13th October 2017) for determining present area-wide annual- or seasonal and almost daily regional scale (ca. 7 km x 7 km) air pollution variability. The current and future exploitation of satellite data and air quality and climate requirements were discussed with Austrian air quality management authorities in the preceding first APP4AQ project phase. The requirement analysis revealed on the one hand that there is a need for improved (trans-boundary) air pollutant transport related air quality assessment such as fine dust episodes, Saharan dust, field burning etc. On the other hand, there is a strong need for updated, improved and validated emission inventories for air quality as well as greenhouse gases (GHG). The aim of the proposed APP4AQ phase two is to exploit the coverage and information of recent and future satellite data for developing service-oriented applications for the field of air pollution control. Further data processing using measurements and modelling will create an added value and will foster satellite usage in the long run. The user-friendly accessible representation of satellite data and its spatiotemporal evolution is our first working priority. It will enable first and swift air quality analysis of short term analysis, now casting and process understanding of air pollution (e.g. episodes, Saharan dust, forest fires). The harmonisation of satellite data with air quality measurements and area-wide modelled air pollutants, i.e. further processing, quantification and validation of satellite data will be a further main activity. On this basis, by comparing harmonised satellite data with model simulations and measurement the spatial variability of emission inventories with 7 km x 7 km resolution will be verified and matched. Particularly, this enhanced use of satellite data provides an important basis for the analysis and review of measures in the fields of air pollution control and GHG reduction. (abridged text)

RiSKWa - SAUBER+: Innovative Konzepte und Technologien für die separate Behandlung von Abwasser aus Einrichtungen des Gesundheitswesens, Teilvorhaben: geomer GmbH

Problemstellung: Auch im 21. Jahrhundert stellt die Luftverschmutzung noch ein enormes Gesundheitsrisiko dar. Bei ihrer Bekämpfung stehen Städte und Regionalverbände aber vor einem großen Problem: Ihnen stehen derzeit nur punktuell erhobene Daten zur Verfügung, wodurch ihnen der für effektive Maßnahmen erforderliche Überblick in der Fläche fehlt. Diese Blindstelle soll durch die Daten des Erdbeobachtungsprogramms Copernicus geschlossen werden. So erlauben es die jüngsten Satellitenmissionen, Luftschadstoffe tagesaktuell in hoher Auflösung vom Orbit aus zu erfassen. Projektziel: Ziel von SAUBER ist es, die Daten des Copernicus-Programms für eine nachhaltige Stadt- bzw. Regionalentwicklung zu erschließen. SAUBER wird dabei nicht nur einen flächendeckenden Überblick über die aktuelle, sondern dank des Einsatzes Künstlicher Intelligenz auch Prognosen und Simulationen der zukünftigen Luftqualität bieten. So können besonders belastete Gebiete im Vorhinein identifiziert und die drohende Luftverschmutzung durch proaktive Umplanungen reduziert ggf. sogar ganz vermieden werden. Durchführung: Um die Detailschärfe der Satellitendaten zu erhöhen, werden sie mit weiteren Daten angereichert - u.a. mit Verkehr- und Wetterdaten sowie den Ergebnissen der lokalen Messstationen. Die verschnittenen Daten werden mit analytischen Verfahren ausgewertet, so dass sich ein flächendeckendes, zugleich aber detailliertes Bild Luftqualität ergibt. Dieses Bild geht dabei einerseits in der räumlichen Abdeckung über die derzeit nur punktuellen Messungen der Luftqualität hinaus und übertrifft andererseits im Detailgrad die Auflösung der Satellitendaten.

S-VELD - Sentinel-5P Surface NO2 - Germany, Monthly

This collection contains monthly mean surface NO2 concentrations for Germany derived from Sentinel-5P/TROPOMI data. The Sentinel-5P NO2 data is generated by DLR and provided in the framework of the mFUND-Project "S-VELD". The surface NO2 data are concentrations with the unit "μg/m3". Sentinel-5P observes Germany once per day at ~12:00 UTC and only cloud-free measurements (cloud fraction less than ~0.2) are used. The Sentinel-5P surface NO2 data within each month are averaged and gridded onto a regular UTM grid. The number of measurements used in the calculation of the averaged value are included in this collection as well.

1 2