The project aims at achieving a better understanding of the processes that drive or limit the response of grassland systems in a world of increasing atmospheric pCO2. We will test the hypothesis that the previously shown increase in below-ground allocation of C under elevated pCO2 provides the necessary energy excess and will stimulate free-living N2 fixers in a low N grassland environment. The project thus aims at assessing the occurrence and importance of free-living N2 fixers under elevated pCO2 and identify the associated microbial communities involved in order to better understand ecosystems response and sustainability of grassland systems. This project had the last opportunity to obtain soil samples from a grassland ecosystem adapted to long-term (10 year) elevated atmospheric pCO2 as the Swiss FACE experiment. The project aims to identify the relevant components of free-living diazotrophs of the microbial community using 15N stable isotope - DNA probing.
Based on a better understanding of terrestrial and freshwater biodiversity and ecosystem functioning ALARM will develop and test methods and protocols for the assessment of large-scale environmental risks in order to minimise negative direct and indirect human impacts. Research will focus on assessment and forecast of changes in biodiversity and in structure, function, and dynamics of ecosystems. This relates to ecosystem services and includes the relationship between society, economy and biodiversity. In particular, risks arising from climate change, environmental chemicals, biological invasions and pollinator loss in the context of current and future European land use patterns will be assessed. There is an increasing number of case studies on the environmental risks subsequent to each of these impacts. This yields an improved understanding on how these act individually and affect living systems. Whereas the knowledge on how they act in concert is poor and ALARM will be the first research initiative with the critical mass needed to deal with such aspects of combined impacts and their consequences. So far the ALARM consortium combines the expertise of 54 partners from 26 countries (19 EU, Bulgaria, Romania, Israel, Switzerland, Russia, Chile, and Argentina). Within this call we propose to include 16 new TTC partners from Russia, Belarus, China, South-Africa, India, Croatia, Ukraine, Serbia & Montenegro, The Philippines, Bolivia, Guatemala, and Mexico, in order to complement expertise and geographical coverage of the existing consortium.
Aquifers are the main source of water in most semi-arid areas of the Mediterranean basin. As a result of over-exploitation hydrologic deficits of varying acuity prevail in these areas. Seawater intrusion and pollution have been identified as the primary factors for quality degradation. Further deterioration can be expected based on trends in the precipitation regime attributed to climate change. The objective of this project is to identify alternative sources of water and to investigate the feasibility, both environmental and economic of their utilization. Alternative water sources to be artificially recharged comprise: surface water runoff, treated effluent, and imported water. Furthermore, brackish water bodies, present in many aquifers could be utilised after desalination. The project structured into eight work-packages comprehensively addresses all issues related to the problem: expected precipitation rates, recharge and water budgets, identification of potential alternative water sources and technologies for their utilization, development of tools for the management of groundwater resources under artificial recharge conditions, aquifer vulnerability assessment, characterization of the unsaturated zone, and mixing effects. Four test sites have been selected for practical application of the approach. Substantial field testing, integration of technologies and findings to ensure optimal implementations of aquifer recharge alternatives, quantification of socio-economic impacts and development of dissemination platform are planned. Finally a carefully designed project management shall drive and accompany the project execution in order to ascertain consistency and efficiency.
The project aims at supporting the implementation of the proposed Directive of the European Parliament and of the Council on the management of waste from the extractive industries 2003/0107. The Directive was prepared following several major accidents with a serious impact on the environment, and it has the purpose of ensuring a safer management of the mining waste facilities, so that such accidents will not occur in the future. This project addresses particularly Article 9, which provides for the classification of waste facilities with respect to the possible consequences of an accident, and respectively the Annex II: Characterisation of mining waste and Annex III: Criteria for the classification of waste facilities. The activities of the project are divided into four major work packages as follows: - Preparation of a Methodology for the Characterisation of Mining Waste - Elaboration of a Risk Assessment Methodology for the Classification of Mining Waste Facilities, including Old/Abandoned Mining Waste Facilities - Review of Techniques for the Prevention and Abatement of Pollution Generated by Mining Wastes - Development of a Decision Support Tool for Minimising the Impact of the Mining Industry on the Environment. The Consortium co-ordinated by BIUTEC, Austria, includes universities, research institutes, NGOs and implementing authorities from 8 European countries, both Members of the EU and accession countries. The experts team is highly qualified and has many years of experience and research in this area, so that the best outputs can be obtained. The project will build on the results of other projects carried out in this field, and will relate closely to on-going projects, so that there is no overlap in our activities. In order to provide an effective tool for the potential beneficiaries, the project team will consult with representatives of the stakeholders before the final versions of the outputs are publicly made available on the project web-site.
Alum-rosin sizing for paper, which came into commercial use in 1835 caused a shift of pH of paper from pseudo-neutral to acidic regions, which dramatically decreased permanence of paper. As a result, decay of library and archival holdings are reaching catastrophic proportions, with about 25 percent of the books in the general library collections brittle while additional 60 percent are endangered. In order to prevent the decay of paper induced by acids, a variety of mass deacidification techniques are available on the market. While a number of comparative evaluations of the treatments were performed in the past, the processes are continuously changing, while additional three were developed in recently. The proposed project aims to: - develop standard model materials and evaluation criteria, in order to enable superior evaluation of existing processes and ease in assessment of emerging ones - comparatively evaluate immediate and long term effects of treatments - develop quality control criteria and evaluation techniques - address environmental and health aspects The objective of extensive dissemination is to incorporate the most suitable mass treatment into the preservation policy of European libraries and archives.
MORSE was a joint European project, carried out by six partner institutions in France, Great Britain, and Germany. It was financially supported by the Commission of the European Community as a part of the Marine Science and Technology (MAST) program under contract no. MAS3-CT95-0027. The objective of the project was to gain an understanding of the physical processes involved in radar signatures of internal waves using laboratory tank, airborne radar, and satellite imagery. To achieve the ultimate goal, independent numerical models are needed which are capable of predicting radar backscattering for all radar bands, extracting ocean surface characteristics at high spatial resolution, predicting internal wave fields in time and space, and inverting radar signatures into geophysical parameters. Existing models were not sufficiently reliable to produce quantitative results in order to retrieve the three-dimensional structure of the ocean's hydrodynamic processes. Progress in the understanding and mathematical description of different processes and increasing capacity of modern computers opens doors towards much more detailed, comprehensive models. The activities of the Satellite Oceanography group of the University of Hamburg within the framework of MORSE focused on theoretical considerations regarding the hydrodynamic modulation of ocean waves by spatially varying current fields over internal waves and the radar imaging of the resulting roughness variations. This research was based on our advanced radar imaging model which describes the modulation of the complete two-dimensional ocean wave spectrum according to wave-current interaction theory and the backscattered radar signal by a composite surface model. In addition, the Satellite Oceanography group has wide experience regarding the analysis of radar signatures of internal waves. A large number of ERS-1 / ERS-2 SAR images of internal waves in the Strait of Gibraltar and in the Strait of Messina was analyzed. Furthermore, numerical hydrodynamical models were developed, which are capable of describing the generation and propagation of internal tides and their disintegration into internal solitary waves. The MORSE project has provided an opportunity to exploit and extend the knowledge obtained in previous remote sensing projects and to calibrate and validate the corresponding numerical models.
Differenzierung der Quellen- und Senkenfunktion des Bodens unter Berücksichtigung der Nutzungsgeschichte. Im Rahmen des CARBOEUROFLUX-Projekts wurden im Hainich (Thüringen) Kohlenstoff (C)- Speicherungsraten festgestellt, die der Vorstellung der Kohlendioxid-Neutralität von alten Wäldern widersprechen und die Frage nach deren Kyoto-Relevanz aufwerfen. Im Rahmen europäischer Projekte lässt sich allerdings nicht klären, wie diese hohen Speicherraten entstehen und wo C im System verbleibt. Wir vermuten, dass durch historischen C-Export, z.B. infolge von Streunutzung, die Böden im Hainich verarmten und die entleerten Speicher jetzt wieder aufgefüllt werden. Um das Ausmaß des nutzungsbedingten C-Exports abschätzen zu können, werden aus Schriftquellen Art und Umfang der Biomassenutzung in ihrer zeitlichen und örtlichen Entwicklung rekonstruiert. Zudem untersuchen wir, welche Anteile des C-Eintrages veratmet, gespeichert und über den Wasserpfad exportiert werden. Hierzu werden 13C und 14C- Isotopenverhältnisse an Bodengasen sowie gelöstem und festem Boden- C bestimmt. Unsere Untersuchungen zielen auf ein grundlegendes Verständnis der C-Speicherung im Jahresverlauf ab. Die Zusammenarbeit mit dem Kompetenzzentrum 'Dynamik Komplexer Geosysteme' und dem europäischen CARBOEUROPE Cluster wird die Doppelerhebung von Daten verhindern und deren gegenseitige Verfügbarkeit sicherstellen. Ziel der Arbeit ist es, den historischen Kohlenstoffexport insbesondere unter Berücksichtigung der forstlichen Nebennutzung abzuschätzen. Hierzu soll anhand von Literaturdaten einerseits die Vegetationsgeschichte geklärt werden. Andererseits soll der im Untersuchungsgebiet im Zuge der forstlichen und landwirtschaftlichen Nutzungen erfolgte Biomasseentzug nach Art und Umfang dokumentiert werden. Diese Arbeiten sind notwendig, um den Einfluss der Nutzungsgeschichte auf die Kohlenstoffspeicherung im Untersuchungsstandort abzuschätzen. Im Rahmen des Gesamtprojektes sollen zunächst Daten zur Entwicklung der Biomasse im Untersuchungsgebiet zusammengestellt werden. Eine weitere Aufgabe besteht darin, auf der Basis von Literaturstudien einen möglichen Vergleichsstandort mit unterschiedlicher Nutzungsgeschichte zu identifizieren.
Despite the advantages of solar membrane distillation (MD) systems very few experimental systems have been developed as opposed to the mature technologies solar PV-driven RO and solar distillation. Therefore, main objective of MEDESOL Project is the development of an environmentally friendly improved-cost desalination technology to fresh water supply in arid and semi-arid regions in EU and Third Countries based on solar MD. The layout involves the innovative concept of multistage MD in order to minimize specific energy and membrane area required and also to substantially reduce the brine generation. The aim of this work was to evaluate the technical feasibility of producing potable water from seawater by integrating several membrane distillation modules (Multi-step Membrane Distillation System). The aim is to develop systems for a capacity ranging from 0.5 to 50 m3/day. Technical simplicity, long maintenance-free operation periods and high-quality potable water output are the very important aims which will enable successful application of the systems that are based in membrane distillation. The heat source will proceed from an advanced compound parabolic solar concentrator, developed to the specific concentration ratio to achieve the specific needed range of temperatures (90ºC) and the seawater heater will include the development of an advanced non-fouling surface coatings to avoid the deposit formation (i.e. scaling) at such temperature. Laboratory tests under defined testing conditions of all components are very important for the preparation of successful field tests under real conditions. Prime Contractor: Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Ciemat, Madrid, Spain.
The HyFLEET:CUTE project involves the operation of 47 hydrogen powered buses in regular public transport service in 10 cities on three continents. The Project aims to diversify and reduce energy consumption in the transport system by developing new, fuel efficient hydrogen powered bus technology, and clean, efficient and safe ways of producing and distributing hydrogen fuel. Objectives: - Develop hydrogen powered bus technology in order to reduce the consumption of fuel and energy in the whole transportation system. - Develop efficient and environmentally 'friendly' ways to produce hydrogen. - Research the technology and development needs to establish a hydrogen refueling infrastructure. - Inform the community and key decision-makers about the potential advantages of a hydrogen-based transport system and how they can help to develop it.
| Origin | Count |
|---|---|
| Bund | 84 |
| Type | Count |
|---|---|
| Förderprogramm | 84 |
| License | Count |
|---|---|
| offen | 84 |
| Language | Count |
|---|---|
| Deutsch | 14 |
| Englisch | 79 |
| Resource type | Count |
|---|---|
| Keine | 53 |
| Webseite | 31 |
| Topic | Count |
|---|---|
| Boden | 78 |
| Lebewesen und Lebensräume | 75 |
| Luft | 69 |
| Mensch und Umwelt | 84 |
| Wasser | 70 |
| Weitere | 84 |