The project aims at achieving a better understanding of the processes that drive or limit the response of grassland systems in a world of increasing atmospheric pCO2. We will test the hypothesis that the previously shown increase in below-ground allocation of C under elevated pCO2 provides the necessary energy excess and will stimulate free-living N2 fixers in a low N grassland environment. The project thus aims at assessing the occurrence and importance of free-living N2 fixers under elevated pCO2 and identify the associated microbial communities involved in order to better understand ecosystems response and sustainability of grassland systems. This project had the last opportunity to obtain soil samples from a grassland ecosystem adapted to long-term (10 year) elevated atmospheric pCO2 as the Swiss FACE experiment. The project aims to identify the relevant components of free-living diazotrophs of the microbial community using 15N stable isotope - DNA probing.
The working documents on revision of the Sewage Sludge Directive (86/278/EEC) on Biowaste and the Soil Protection Communication call for standards on sampling and analysis of sludge, treated biowastes and soils. The European Directives are intended to prevent unacceptable release of contaminants, impairment of soil function, or exposure to pathogens, and to protect crops, human and animal health, the quality of water and the wider environment when sludges and treated biowastes are used on land. The EU animal by-product regulations are fixing microbiological threshold values, for which microbiological methods of analysis are needed. The European Commission wishes to cite European (CEN) standards in order that there is harmonised application of the directives and that reports from Member States (MS) can be compared. This project to develop standards for hygienic parameters in sludge, soil and biowaste, presented under the name 'HORIZONTAL-HYG', will be carried out under the umbrella of the main project HORIZONTAL 'Development of horizontal standards for soil, sludge and biowaste'. This ensures full integration in the CEN system through BT Task Force 151 specially set up in support of this project as well as direct supervision by DG ENV and MS, which form the Steering Committee of HORIZONTAL. Preparation of HORIZONTAL-HYG was taken in a full agreement with the DG ENV, DG JRC and the MS already contributing to HORIZONTAL. HORIZONTAL-HYG's objective is to produce standardised methods for sampling and hygienic microbiological parameters, as Salmonella spp, Escherichia coli, Clostridium perfringens, Ascaris ova in sludges, treated biowastes and soils written in CEN format. Validation of the methods is an essential part of the development as it quantifies performance in terms of repeatability and reproducibility. The consortium is well connected in CEN and ISO and thus provides an excellent basis for implementation of the deliverables. Prime Contractor: Energieonderzoek Centrum Nederland; Petten, Netherlands.
MORSE was a joint European project, carried out by six partner institutions in France, Great Britain, and Germany. It was financially supported by the Commission of the European Community as a part of the Marine Science and Technology (MAST) program under contract no. MAS3-CT95-0027. The objective of the project was to gain an understanding of the physical processes involved in radar signatures of internal waves using laboratory tank, airborne radar, and satellite imagery. To achieve the ultimate goal, independent numerical models are needed which are capable of predicting radar backscattering for all radar bands, extracting ocean surface characteristics at high spatial resolution, predicting internal wave fields in time and space, and inverting radar signatures into geophysical parameters. Existing models were not sufficiently reliable to produce quantitative results in order to retrieve the three-dimensional structure of the ocean's hydrodynamic processes. Progress in the understanding and mathematical description of different processes and increasing capacity of modern computers opens doors towards much more detailed, comprehensive models. The activities of the Satellite Oceanography group of the University of Hamburg within the framework of MORSE focused on theoretical considerations regarding the hydrodynamic modulation of ocean waves by spatially varying current fields over internal waves and the radar imaging of the resulting roughness variations. This research was based on our advanced radar imaging model which describes the modulation of the complete two-dimensional ocean wave spectrum according to wave-current interaction theory and the backscattered radar signal by a composite surface model. In addition, the Satellite Oceanography group has wide experience regarding the analysis of radar signatures of internal waves. A large number of ERS-1 / ERS-2 SAR images of internal waves in the Strait of Gibraltar and in the Strait of Messina was analyzed. Furthermore, numerical hydrodynamical models were developed, which are capable of describing the generation and propagation of internal tides and their disintegration into internal solitary waves. The MORSE project has provided an opportunity to exploit and extend the knowledge obtained in previous remote sensing projects and to calibrate and validate the corresponding numerical models.
*The Water Framework Directive (WFD) provides a European policy basis at the river basin scale. The river basin management and planning process prescribed in the WFD focuses on integrated management, involving all physical domains in water management, sectors of water use, socio-economics and stakeholder participation. As such, the WFD poses new challenges to water resources managers. In practise, the preparation of WFD river basin management plans is influenced by uncertainties in the underlying data and modelling results. The preparation of integrated water management plans for the WFD will require making a large number of decisions by operational agencies in Europe. A decision maker has to make decisions based on available information. In most cases this information is deficient, incomplete and uncertain. How should this affect the decision making. Therefore, there is a clear and urgent need for developing new methodologies and tools that can be used to assist in implementing the WFD. In order to support such research and development, it is necessary to have a network of representative river basins with datasets suitable for this purpose. This implies that the datasets, in addition to covering the diversity in terms of ecological regimes and socio-economic conditions found across Europe, must have built-in information on the uncertainties in the data. HarmoniRiB is a research and technological development (RTD) project funded by the European Commission (contract number EVK1-CT-2002-00109) that was initiated in October 2002 and will be completed in March 2006. The overall goal of HarmoniRiB is to develop methodologies for quantifying uncertainty and its propagation from the raw data to concise management information. Thus, the HarmoniRiB project aims to support the WFD implementation, by addressing issues of uncertainty in data and modelling, and by developing a 'virtual laboratory for modelling studies'. This virtual laboratory will comprise of a set of river basins, of which data relevant to modelling and the WFD implementation are readily available for the scientific community. The data can be used for comparison and demonstration of methodologies and models relevant to the WFD. HarmoniRiB is implemented by a Consortium of ten partners from eight European countries. It consists of three universities (UVA, TUC, UCLM), five public research institutes (GEUS, RIZA, CNR-IRSA, UFZ, CEH) one private sector research and consulting company (DHI) and one river basin authority (PM). The British partner of the Consortium is the Centre for Ecology and Hydrology (CEH). CEH role in the project is to develop a database design for data required to support river basin management,to populate the database with a dataset from the Kennet river basin, and to conduct a demonstratition case study on that basin.
Objectives: The PASAD project aims at contributing to a deeper understanding of sustainable rural development. Its major objective is to draw a more comprehensive picture of the rural economy through integrating various determinants of rural development and several methodologies, which allows the evaluation of linkages and interaction effects. Decreasing soil fertility implies decreasing yields over time and hence lowers the real incomes of already poor farmers even further. Sustainability in agricultural production depends on various interdependent aspects that require integrated analytical approaches to address the complexity involved. Smallholder production of food crops in poor countries is particularly vulnerable to hazards that are related to (i) production technologies as well as (ii) factor and commodity markets. The former aspect includes appropriate input use and land management, while the latter particularly considers rural labor markets, intermediate input markets, and commercial output markets. In this context, the project focuses on three crucial aspects, namely (i) institutional and other determinants to foster the degree of commercialization of agricultural small-scale produce, (ii) alternative occupational choices in rural labor markets with respect to agricultural and non-agricultural employment, and (iii) biophysical aspects concerning soil-conserving production technologies. The main hypothesis is that all three aspects need to be addressed sufficiently and simultaneously in order to promote sustainable smallholder agricultural production that is able to contribute to overall economic growth and development and, consequently, to food security. Methodology: The project follows an interdisciplinary approach, which combines several methodologies within economic and social sciences: Computable general equilibrium (CGE) modelling, Bio-economic household modelling, Household and labor force survey analysis, Institutional analysis, GIS-based spatial econometrics.
Alum-rosin sizing for paper, which came into commercial use in 1835 caused a shift of pH of paper from pseudo-neutral to acidic regions, which dramatically decreased permanence of paper. As a result, decay of library and archival holdings are reaching catastrophic proportions, with about 25 percent of the books in the general library collections brittle while additional 60 percent are endangered. In order to prevent the decay of paper induced by acids, a variety of mass deacidification techniques are available on the market. While a number of comparative evaluations of the treatments were performed in the past, the processes are continuously changing, while additional three were developed in recently. The proposed project aims to: - develop standard model materials and evaluation criteria, in order to enable superior evaluation of existing processes and ease in assessment of emerging ones - comparatively evaluate immediate and long term effects of treatments - develop quality control criteria and evaluation techniques - address environmental and health aspects The objective of extensive dissemination is to incorporate the most suitable mass treatment into the preservation policy of European libraries and archives.
Article 16 of the Water Framework Directive (WFD, Directive 2000/60/EC) lays down the Community Strategy for the establishment of harmonised quality standards and emission controls for the priority substances and other substances posing a significant risk to, or via, the aquatic environment. In order to achieve the protection objectives of the WFD, the Commission shall (i) submit proposals for quality standards applicable to the concentrations of the priority substances in surface water, sediment or biota, and (ii) identify the appropriate cost-effective and proportionate level and combination of product and process controls for both point and diffuse sources. Proposals for environmental quality standards and emission controls for point sources shall be submitted within 2 years of the inclusion of the substance concerned on the list of priority substances (European Parliament and Council Decision No. 2455/2001/EC), i.e. in December 2003. This study is part of the preparatory work of the Commission and its overall objectives are: - The development and description of a concept which enables the European Commission to submit proposals for quality standards applicable to the concentrations of the priority substances of the Water Framework Directive (2000/60/EC) and those substances not on the priority list but regulated in the 'daughter directives' of Directive 76/464/EEC (on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community) in water, sediment and biota, as required by Articles 16(7) and 16(10) of the Water Framework Directive. - Elaboration of proposals for quality standards for the priority substances of the Water Framework Directive and recommended values for other substances of concern (see footnote 1) with regard to surface water, sediment, biota, and human health as objectives of protection. Conclusions: The elaboration of quality standards with the developed methodological framework clearly showed that the proposed approach is applicable for the derivation of specific quality standards addressing the particular objectives of protection as well as for the identification of the overall quality standard that finally may be imposed to safeguard the entire set of objectives of protection. Also, with regard to the effort required to work with the concept, it can be considered as economic. This is attributable to the fact that despite the comprehensive consideration of all relevant routes of exposure and objectives of protection the different quality standards for the specific objectives are normally only derived if certain pre-defined trigger values are exceeded. This avoids the assessment of irrelevant exposure routes and the calculation of unnecessary standards. Problems encountered during the elaboration of the standards were in general not attributable to the suggested methodological framework but mostly to the limited availability of data or to the limitations of the available data.
Differenzierung der Quellen- und Senkenfunktion des Bodens unter Berücksichtigung der Nutzungsgeschichte. Im Rahmen des CARBOEUROFLUX-Projekts wurden im Hainich (Thüringen) Kohlenstoff (C)- Speicherungsraten festgestellt, die der Vorstellung der Kohlendioxid-Neutralität von alten Wäldern widersprechen und die Frage nach deren Kyoto-Relevanz aufwerfen. Im Rahmen europäischer Projekte lässt sich allerdings nicht klären, wie diese hohen Speicherraten entstehen und wo C im System verbleibt. Wir vermuten, dass durch historischen C-Export, z.B. infolge von Streunutzung, die Böden im Hainich verarmten und die entleerten Speicher jetzt wieder aufgefüllt werden. Um das Ausmaß des nutzungsbedingten C-Exports abschätzen zu können, werden aus Schriftquellen Art und Umfang der Biomassenutzung in ihrer zeitlichen und örtlichen Entwicklung rekonstruiert. Zudem untersuchen wir, welche Anteile des C-Eintrages veratmet, gespeichert und über den Wasserpfad exportiert werden. Hierzu werden 13C und 14C- Isotopenverhältnisse an Bodengasen sowie gelöstem und festem Boden- C bestimmt. Unsere Untersuchungen zielen auf ein grundlegendes Verständnis der C-Speicherung im Jahresverlauf ab. Die Zusammenarbeit mit dem Kompetenzzentrum 'Dynamik Komplexer Geosysteme' und dem europäischen CARBOEUROPE Cluster wird die Doppelerhebung von Daten verhindern und deren gegenseitige Verfügbarkeit sicherstellen. Ziel der Arbeit ist es, den historischen Kohlenstoffexport insbesondere unter Berücksichtigung der forstlichen Nebennutzung abzuschätzen. Hierzu soll anhand von Literaturdaten einerseits die Vegetationsgeschichte geklärt werden. Andererseits soll der im Untersuchungsgebiet im Zuge der forstlichen und landwirtschaftlichen Nutzungen erfolgte Biomasseentzug nach Art und Umfang dokumentiert werden. Diese Arbeiten sind notwendig, um den Einfluss der Nutzungsgeschichte auf die Kohlenstoffspeicherung im Untersuchungsstandort abzuschätzen. Im Rahmen des Gesamtprojektes sollen zunächst Daten zur Entwicklung der Biomasse im Untersuchungsgebiet zusammengestellt werden. Eine weitere Aufgabe besteht darin, auf der Basis von Literaturstudien einen möglichen Vergleichsstandort mit unterschiedlicher Nutzungsgeschichte zu identifizieren.
In contrast to their advances in other areas, weather forecast models have not been successful in improving the Quantitative Precipitation Forecast during the last 16 years. One reason for this stagnation is the lack of comprehensive, high-quality data sets usable for model validation as well as for data assimilation, thus leading to improved initial fields in numerical models. Theoretical analyses have identified the requirements measured data have to meet in order to close the gaps in process understanding. In field campaigns, it has been shown that the newest generation of remote sensing systems has the potential to yield data sets of the required quality. It is therefore time to combine the most powerful remote sensing instruments with proven ground-based and airborne measurement techniques in an Intensive Observations Period (IOP). Its goal is to serve as a backbone for the SPP 1167 by producing the demanded data sets of unachieved accuracy and resolution. This requires a sophisticated scientific preparation and a careful coordination between the efforts of the institutions involved. For the first time, the pre-convective environment, the formation of clouds and the onset and development of precipitation as well as its intensity will be observed in four dimensions simultaneously in a region of sufficient size. This shall be achieved by combining the IOP with international programs and by collaboration between leading scientists in Europe, US and other countries. Thus, the IOP is a unique opportunity to make Germany the setting of an international field campaign featuring the newest generation of measurement systems such as scanning radar and lidar and leading to outstanding advances in atmospheric sciences.
| Origin | Count |
|---|---|
| Bund | 84 |
| Type | Count |
|---|---|
| Förderprogramm | 84 |
| License | Count |
|---|---|
| offen | 84 |
| Language | Count |
|---|---|
| Deutsch | 14 |
| Englisch | 79 |
| Resource type | Count |
|---|---|
| Keine | 53 |
| Webseite | 31 |
| Topic | Count |
|---|---|
| Boden | 78 |
| Lebewesen und Lebensräume | 74 |
| Luft | 69 |
| Mensch und Umwelt | 84 |
| Wasser | 70 |
| Weitere | 84 |