The project aims at achieving a better understanding of the processes that drive or limit the response of grassland systems in a world of increasing atmospheric pCO2. We will test the hypothesis that the previously shown increase in below-ground allocation of C under elevated pCO2 provides the necessary energy excess and will stimulate free-living N2 fixers in a low N grassland environment. The project thus aims at assessing the occurrence and importance of free-living N2 fixers under elevated pCO2 and identify the associated microbial communities involved in order to better understand ecosystems response and sustainability of grassland systems. This project had the last opportunity to obtain soil samples from a grassland ecosystem adapted to long-term (10 year) elevated atmospheric pCO2 as the Swiss FACE experiment. The project aims to identify the relevant components of free-living diazotrophs of the microbial community using 15N stable isotope - DNA probing.
Over land, observations of rain rates are more or less operational. To obtain information about precipitation at the coastal zones, weather radars are used. However, over the oceans, especially away from the main shipping routes, no direct precipitation measurements are performed. In these regions, satellite data can provide information about precipitation events. Satellites deploying passive and active microwave sensors can operate independently of cloud cover and time of day. Passive microwave sensors give crude estimates of rain rates over large areas but cannot resolve small-scale rain events of short duration as are often observed in the tropics, for example. Active microwave sensors with high resolutions, such as synthetic aperture radars can provide more reliable information. Though the effect of rain on the atmosphere is a very topical area of research, the radar backscattering mechanisms at the water surface during rain events combined with wind are still not well understood. The purpose of this project is to investigate the radar backscattering from the water surface in the presence of rain and wind in order to interpret satellite radar data produced by active microwave sensors. Furthermore, the results should be embedded into models of the radar backscattering from the water surface to allow for estimating rain rates by using satellite data. Research topics: Rain impinging on a water surfaces generates splash products including crowns, cavities, stalks and secondary drops, which do not propagate, and ring waves and subsurface turbulence. We are investigating this phenomena at the wind-wave tank of the University of Hamburg. The tank is fitted with an artificial rain simulator of 2.3 m2 area mounted 4.5 m over the water surface. Rain drops of 2.1 and 2.9 mm in diameter with rain rates up to 100 mm/h have been produced. Wind with speeds 10 m/s and monomolecular slicks act on the water surface. The influence of the rain on the water surface is measured with a resistance type wire gauge, a two dimensional laser slope gauge and an coherent 9.8 GHz (x band) continuous wave scatterometer operating at VV-, HH- and HV-polarization. The influence of rain below the water surface is measured with colored raindrops which are observed with a video camera to investigate the turbulent motion and the depth of the mixed layer. At the North Sea Port of Buesum in Germany, a scatterometer operating at all polarizations and five frequencies will be mounted during summer of this year. The radar backscatter of the sea surface during rain events will be measured in combination with meteorological observations. With help of these measurements, existing radar backscatter models of the water surface will be improved for the presence of rain events. To validate the improved models, ERS-2 SAR-images will be compared with weather radar data.
MORSE was a joint European project, carried out by six partner institutions in France, Great Britain, and Germany. It was financially supported by the Commission of the European Community as a part of the Marine Science and Technology (MAST) program under contract no. MAS3-CT95-0027. The objective of the project was to gain an understanding of the physical processes involved in radar signatures of internal waves using laboratory tank, airborne radar, and satellite imagery. To achieve the ultimate goal, independent numerical models are needed which are capable of predicting radar backscattering for all radar bands, extracting ocean surface characteristics at high spatial resolution, predicting internal wave fields in time and space, and inverting radar signatures into geophysical parameters. Existing models were not sufficiently reliable to produce quantitative results in order to retrieve the three-dimensional structure of the ocean's hydrodynamic processes. Progress in the understanding and mathematical description of different processes and increasing capacity of modern computers opens doors towards much more detailed, comprehensive models. The activities of the Satellite Oceanography group of the University of Hamburg within the framework of MORSE focused on theoretical considerations regarding the hydrodynamic modulation of ocean waves by spatially varying current fields over internal waves and the radar imaging of the resulting roughness variations. This research was based on our advanced radar imaging model which describes the modulation of the complete two-dimensional ocean wave spectrum according to wave-current interaction theory and the backscattered radar signal by a composite surface model. In addition, the Satellite Oceanography group has wide experience regarding the analysis of radar signatures of internal waves. A large number of ERS-1 / ERS-2 SAR images of internal waves in the Strait of Gibraltar and in the Strait of Messina was analyzed. Furthermore, numerical hydrodynamical models were developed, which are capable of describing the generation and propagation of internal tides and their disintegration into internal solitary waves. The MORSE project has provided an opportunity to exploit and extend the knowledge obtained in previous remote sensing projects and to calibrate and validate the corresponding numerical models.
Context: With increasing global change pressures, and due to existing limitations, and un-sustainability factors and risks of conventional urban water management (UWM), cities experience difficulties in efficiently managing the ever scarcer water resources, their uses/services, and their after-use disposal, without creating environmental, social and/or economic damage. In order to meet these challenges, SWITCH calls for a paradigm shift in UWM. There is a need to convert adhoc actions (problem/incident driven) into a coherent and consolidated approach (sustainability driven). This calls for an IP Approach. Research conceptSWITCH therefore proposes an action research project which has as a main objective: The development, application and demonstration of a range of tested scientific, technological and socio-economic solutions and approaches that contribute to the achievement of sustainable and effective UWM schemes in 'The City of the future'.The project will be implemented by different combinations of consortium partners, along the lines of seven complementary and interactive themes. The research approach is innovative for the combination of: action research: address problems through innovation based upon involvement of users.learning alliances: to link up stakeholders to interact productively and to create win-win solutions along the water chain; multiple-way learning: European cities learn from each other and from developing countries, and vice versa.multiple-level or integrated approach: to consider the urban water system and its components (city level) in relation to its impacts on, and dependency of, the natural environment in the river basin (river basin level), and in relation to Global Change pressures (global level).Instruments and scopeAn IP with 30 partners, their resources, and a total budget of 25,191,396 EURO including budget for demonstration activities in 9 Cities in Europe and developing countries. Prime Contractor: UNESCO - Institute for Water Education, Delf, Netherlands.
Der aktuelle Sachstand bei der Erstellung von Luftreinhalte- und Aktionsplänen in Deutschland wird mit Hilfe einer eingehenden Analyse derzeit veröffentlichter Pläne beschrieben (Stand: 31.08.2008). Diese Pläne stellen in der Zusammenschau eine umfangreiche Darstellung der aktuellen Luftschadstoffsituation, der verschiedenen Methoden der Prognose und der diskutierten Maßnahmen dar. Als wichtiges Hilfsmittel der vergleichenden Auswertung dient die Darstellung der Daten der Luftreinhaltepläne als thematische Karte. Es gibt zahlreiche strukturelle und inhaltliche Unterschiede zwischen den verschiedenen Entwicklungsstufen der Pläne und ebenso zwischen den Plänen verschiedener Bundesländer. Zur Klassifizierung der in den Plänen genannten Maßnahmen wurde in den vorigen Arbeiten (FKZ 204 42 222) und (FKZ 363 01 140) ein Maßnahmenschema entwickelt, das im vorliegenden Bericht nochmals erweitert wurde. Mit diesem Analysewerkzeug wurden alle bis zum 31.08.2008 vorgelegten Veröffentlichungen, d. h. Pläne, Fortschreibungen und Entwürfe, systematisch erfasst und untersucht. Um die Vergleichbarkeit der in den Plänen aufgeführten Maßnahmen zu gewährleisten, wurde die in den Vorgängerarbeiten entwickelte Zusammenstellung von standardisierten Maßnahmen weitergeführt. Diese sogenannten Standard- Maßnahmen stellen ein zentrales Element der Maßnahmenanalyse dar und bilden alle Maßnahmen ab, die in Deutschland laut den vorgelegten Plänen durchgeführt, geplant oder diskutiert werden. Die erneute Aktualisierung dient insbesondere auch dazu festzustellen, mit welchen Maßnahmen die Länder planen, die ab 2010 gültigen Luftqualitätsgrenzwerte einzuhalten. Umweltzonen haben sich, wie bereits in den Vorgängerarbeiten gezeigt, als wichtiges Element im Maßnahmenbündel etabliert. Die neue Bestandsaufnahme erfasst auch den aktuellen und geplanten Stand der Umweltzonen. Das Vorhaben diskutiert darüber hinaus die Abschätzung der Wirksamkeit der Maßnahmen im Hinblick auf das Minderungspotenzial für PM10-Feinstaub und Stickstoffdioxid unter Berücksichtigung anderer nationaler Wirkungsuntersuchungen.
Differenzierung der Quellen- und Senkenfunktion des Bodens unter Berücksichtigung der Nutzungsgeschichte. Im Rahmen des CARBOEUROFLUX-Projekts wurden im Hainich (Thüringen) Kohlenstoff (C)- Speicherungsraten festgestellt, die der Vorstellung der Kohlendioxid-Neutralität von alten Wäldern widersprechen und die Frage nach deren Kyoto-Relevanz aufwerfen. Im Rahmen europäischer Projekte lässt sich allerdings nicht klären, wie diese hohen Speicherraten entstehen und wo C im System verbleibt. Wir vermuten, dass durch historischen C-Export, z.B. infolge von Streunutzung, die Böden im Hainich verarmten und die entleerten Speicher jetzt wieder aufgefüllt werden. Um das Ausmaß des nutzungsbedingten C-Exports abschätzen zu können, werden aus Schriftquellen Art und Umfang der Biomassenutzung in ihrer zeitlichen und örtlichen Entwicklung rekonstruiert. Zudem untersuchen wir, welche Anteile des C-Eintrages veratmet, gespeichert und über den Wasserpfad exportiert werden. Hierzu werden 13C und 14C- Isotopenverhältnisse an Bodengasen sowie gelöstem und festem Boden- C bestimmt. Unsere Untersuchungen zielen auf ein grundlegendes Verständnis der C-Speicherung im Jahresverlauf ab. Die Zusammenarbeit mit dem Kompetenzzentrum 'Dynamik Komplexer Geosysteme' und dem europäischen CARBOEUROPE Cluster wird die Doppelerhebung von Daten verhindern und deren gegenseitige Verfügbarkeit sicherstellen. Ziel der Arbeit ist es, den historischen Kohlenstoffexport insbesondere unter Berücksichtigung der forstlichen Nebennutzung abzuschätzen. Hierzu soll anhand von Literaturdaten einerseits die Vegetationsgeschichte geklärt werden. Andererseits soll der im Untersuchungsgebiet im Zuge der forstlichen und landwirtschaftlichen Nutzungen erfolgte Biomasseentzug nach Art und Umfang dokumentiert werden. Diese Arbeiten sind notwendig, um den Einfluss der Nutzungsgeschichte auf die Kohlenstoffspeicherung im Untersuchungsstandort abzuschätzen. Im Rahmen des Gesamtprojektes sollen zunächst Daten zur Entwicklung der Biomasse im Untersuchungsgebiet zusammengestellt werden. Eine weitere Aufgabe besteht darin, auf der Basis von Literaturstudien einen möglichen Vergleichsstandort mit unterschiedlicher Nutzungsgeschichte zu identifizieren.
In contrast to their advances in other areas, weather forecast models have not been successful in improving the Quantitative Precipitation Forecast during the last 16 years. One reason for this stagnation is the lack of comprehensive, high-quality data sets usable for model validation as well as for data assimilation, thus leading to improved initial fields in numerical models. Theoretical analyses have identified the requirements measured data have to meet in order to close the gaps in process understanding. In field campaigns, it has been shown that the newest generation of remote sensing systems has the potential to yield data sets of the required quality. It is therefore time to combine the most powerful remote sensing instruments with proven ground-based and airborne measurement techniques in an Intensive Observations Period (IOP). Its goal is to serve as a backbone for the SPP 1167 by producing the demanded data sets of unachieved accuracy and resolution. This requires a sophisticated scientific preparation and a careful coordination between the efforts of the institutions involved. For the first time, the pre-convective environment, the formation of clouds and the onset and development of precipitation as well as its intensity will be observed in four dimensions simultaneously in a region of sufficient size. This shall be achieved by combining the IOP with international programs and by collaboration between leading scientists in Europe, US and other countries. Thus, the IOP is a unique opportunity to make Germany the setting of an international field campaign featuring the newest generation of measurement systems such as scanning radar and lidar and leading to outstanding advances in atmospheric sciences.
Recent events such as the Pakistan earthquake, Hurricane Katrina, the Indian Ocean tsunami and the European heat waves of 2003 reveal the vulnerability of societies to extreme events. The goal of this project is to strengthen prevention, mitigation and preparedness strategies in order to reduce the health, social and economic impacts of extreme events on communities. The objectives of the MICRODIS project are to strengthen the scientific and empirical foundation on the relationship between extreme events and their impacts; to develop and integrate knowledge, concepts, methods and databases towards a common global approach and to improve human resources and coping capacity in Asia and Europe through training and knowledge sharing. This integrated project involves 19 partners from Asia and Europe, including research, policy and ground roots institutions. The outputs will include an evidence-base on impacts, field methodologies and tools for data compilation, impact models, and integrated vulnerability assessments. It will also strengthen standardised data collection of extreme events and their impacts at local, regional and global levels. Prime Contractor: Université Catholique de Louvain; Louvain-la-neuve; Belgium.
Despite the advantages of solar membrane distillation (MD) systems very few experimental systems have been developed as opposed to the mature technologies solar PV-driven RO and solar distillation. Therefore, main objective of MEDESOL Project is the development of an environmentally friendly improved-cost desalination technology to fresh water supply in arid and semi-arid regions in EU and Third Countries based on solar MD. The layout involves the innovative concept of multistage MD in order to minimize specific energy and membrane area required and also to substantially reduce the brine generation. The aim of this work was to evaluate the technical feasibility of producing potable water from seawater by integrating several membrane distillation modules (Multi-step Membrane Distillation System). The aim is to develop systems for a capacity ranging from 0.5 to 50 m3/day. Technical simplicity, long maintenance-free operation periods and high-quality potable water output are the very important aims which will enable successful application of the systems that are based in membrane distillation. The heat source will proceed from an advanced compound parabolic solar concentrator, developed to the specific concentration ratio to achieve the specific needed range of temperatures (90ºC) and the seawater heater will include the development of an advanced non-fouling surface coatings to avoid the deposit formation (i.e. scaling) at such temperature. Laboratory tests under defined testing conditions of all components are very important for the preparation of successful field tests under real conditions. Prime Contractor: Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Ciemat, Madrid, Spain.
The HyFLEET:CUTE project involves the operation of 47 hydrogen powered buses in regular public transport service in 10 cities on three continents. The Project aims to diversify and reduce energy consumption in the transport system by developing new, fuel efficient hydrogen powered bus technology, and clean, efficient and safe ways of producing and distributing hydrogen fuel. Objectives: - Develop hydrogen powered bus technology in order to reduce the consumption of fuel and energy in the whole transportation system. - Develop efficient and environmentally 'friendly' ways to produce hydrogen. - Research the technology and development needs to establish a hydrogen refueling infrastructure. - Inform the community and key decision-makers about the potential advantages of a hydrogen-based transport system and how they can help to develop it.
| Origin | Count |
|---|---|
| Bund | 84 |
| Type | Count |
|---|---|
| Förderprogramm | 84 |
| License | Count |
|---|---|
| offen | 84 |
| Language | Count |
|---|---|
| Deutsch | 14 |
| Englisch | 79 |
| Resource type | Count |
|---|---|
| Keine | 53 |
| Webseite | 31 |
| Topic | Count |
|---|---|
| Boden | 78 |
| Lebewesen und Lebensräume | 76 |
| Luft | 69 |
| Mensch und Umwelt | 84 |
| Wasser | 70 |
| Weitere | 84 |