Im FuE-Vorhaben EnSort sollen im hoch-komplexen Sortierprozess von recycelbaren Abfallstoffen (Verpackungsmaterialien, gelbe Tonne aus Haushalten etc.) zu Wertstoffen mit Hilfe der Künstlichen Intelligenz über zu erfassende und auszuwertende Materialerkennungsdaten Aggregate mit hohem spezifischen Energieverbrauch optimiert werden. Dazu muss die Anpassungsfähigkeit der Anlage an sich ändernde Input- und flexibel geforderte Outputqualitäten erhöht werden. Für die vorauslaufende Digitalisierung des bisher überwiegend manuell geregelten Prozesses ist ein Modell zur vollständigen Simulation des Sortierprozess als digitaler Zwilling zu erstellen. Dieses 'Betriebsmodell' wird im großtechnischen Praxisbetrieb einer Sortieranlage für Leichtverpackungsabfälle (LVP) iterativ verbessert und verifiziert. Die Energieeffizienzsteigerung ist später Resultat einer sich an die ständig wechselnden In- und Outputparameter anpassende Prozessregelung. Weiterhin wird über eine intelligente voll automatisierte Regelung der Gesamtanlage die Auslastung der Einzelaggregate optimiert und damit der Durchsatz erhöht. So sinkt der spezifische Energieverbrauch. Zusätzlich wird die Herstellung der Ballen, zu denen die Recyclate zur Volumenreduktion für die Transportwege gepresst werden, optimiert. Hierzu werden Erkenntnisse aus rein betrieblichen sowie durch das BMWi geförderten Vorhaben genutzt.
Abflussprognosen zur Bewältigung von Extremwetterlagen Um das Transportaufkommen in Deutschland auch unter schwierigen Bedingungen zu bewältigen und dies aufrecht zu erhalten bzw. zu steigern, sind verkehrsträgerübergreifende Lösungsansätze notwendig. Ziel dieses Projekt ist es, die Resilienz und die Verfügbarkeit des Verkehrsträgers Wasserstraße bei extremen Wetterereignissen zu erhöhen. Aufgabenstellung und Ziel Etwa 3.000 km der Bundeswasserstraßen sind mit Staustufen ausgebaut, die meist aus einem beweglichen Wehr, einer Schleuse und einem Laufwasserkraftwerk bestehen. Durch das Ändern des Abflusses über das Kraftwerk und über das Wehr hält ein lokaler Regler den gewünschten Oberwasserstand innerhalb der vorgegebenen Stauzieltoleranz. Die Abfluss- und Stauregelung soll dabei mehrere, mitunter gegensätzliche Ziele erfüllen: Einhaltung des Stauziels innerhalb der festgelegten Toleranz, Verminderung von Abflussschwankungen, optimale Nutzung der Wasserkraft und Minimierung des Verschleißes der Wehrverschlüsse. Im Zuge des Klimawandels ist mit einer Zunahme extremer Wetterereignisse zu rechnen. Die Abfluss- und Stauregelung steht gerade in Niedrigwasserperioden vor wachsenden Herausforderungen. Schwankungen des Abflusses sind in diesen Phasen schwierig auszugleichen und Über- bzw. Unterschreitungen der Stauzieltoleranz sind nicht auszuschließen. Dadurch entsteht eine Gefahr für die Schifffahrt. Ziel des vorgestellten Vorhabens ist es, anhand einer fundierten Datenanalyse und der Methode des maschinellen Lernens Zusammenhänge zwischen Niederschlagsereignissen und Abflussschwankungen vertieft zu untersuchen. Zusätzlich sollen Abflussprognosen erstellt werden, welche die Abfluss- und Stauregelung unterstützen. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Die Verwendung maschinellen Lernens für Abflussvorhersagen auf der Basis von Niederschlags- und Zuflussdaten stellt ein vielversprechendes Werkzeug für die WSV dar. Prognosen schaffen einen vorausschauenden Handlungsspielraum für die Abfluss- und Stauregelung, sodass starke Wasserstandsund Abflussschwankungen minimiert und damit die Sicherheit und Leichtigkeit der Schifffahrt erhöht werden. Die Resilienz der Wasserstraße wird dadurch auch unter den zunehmenden Auswirkungen des Klimawandels gesteigert. Untersuchungsmethoden Das Verfahren wird exemplarisch an einer Stauhaltung der Mosel getestet. Die Niederschlagsdaten des Einzugsgebiets der Stauhaltung werden vom Deutschen Wetterdienst im Rahmen der Zusammenarbeit im BMDV-Expertennetzwerk bereitgestellt. Die Pegeldaten der oberliegenden Stauhaltung sowie die der untersuchten Stauhaltung selbst werden von der WSV zur Verfügung gestellt. In einem ersten Schritt werden die Pegeldaten untersucht. Anhand einer Kreuzkorrelation können Abhängigkeiten zwischen dem oberliegenden Pegel und dem Pegel in der untersuchten Stauhaltung aufgezeigt werden. In einem weiteren Schritt werden ebenfalls die Niederschlags- und Wehrdaten betrachtet und deren Zusammenhang mit den Pegeldaten untersucht. Zusätzlich wird eine Methode erarbeitet, um Wasserstandsschwankungen so zu filtern, dass die Werte möglichst unbeeinflusst von Schleusungen und Schifffahrt sind. Im Anschluss an die Aufbereitung der Daten wird nach einer geeigneten Methode des Maschinellen Lernens (ML) gesucht. Dabei werden unterschiedliche ML-Modelle in Python implementiert und trainiert. Der vielversprechendste Modelltyp soll weiter genutzt und mit unterschiedlichen Parametrierungen getestet werden. Hierbei wird immer auf einen Prognosezeitraum von drei Stunden hingearbeitet. Für die Abfluss- und Stauregelung ist eine dreistündige Prognose wünschenswert, um Schwankungen des Abflusses effektiv zu bewältigen.
Der zukünftig erhöhte Wasserstoffbedarf rückt den Transport über Pipelines in den Vordergrund. Durch lange Transportwege muss dieser regelmäßig auf seinen Ausgangsdruck verdichtet werden. Zur Komprimierung sind entsprechende Kompressoren notwendig, welche mit Koaleszenzfiltern ausgestattet werden müssen, um die Reinheit des Wasserstoffs beim Transport zu gewährleisten. Das Projekt beschäftigt sich mit der Entwicklung und Realisierung einer neuartigen Technologie zur Fertigung von Koaleszenzfiltermedien, welche mittels Schaumauftragsverfahren hergestellt werden. Ein gezieltes Design der Filtermedien ermöglicht eine Verringerung des Druckverlustes und somit ein enormes CO2-Einsparpotential. Um das CO2-Einsparpotential unter realen Bedingungen zu ermitteln, wird für Testzwecke ein Wasserstoffteststand aufgebaut. Parallel zu den Experimenten werden numerische Untersuchungen, die zu einem auf klassischen CFD-Verfahren basieren, als auch auf Machine-Learning basierten Ansätzen beruhen. Durch geeignete Co-Simulationen können Modelle für unterschiedliche Skalen berechnet werden. Die validierten Modelle werden für die Optimierung komplexer Filterstrukturen eingesetzt und erlauben eine Effizienz-Steigerung der Filtermedien.
Der Datensatz beinhaltet Daten vom LBGR über den Bodenfeuchteindex und wird über je einen Darstellungs- und Downloaddienst bereitgestellt. Der Bodenfeuchteindex stellt ein dimensionsloses Maß für die potenziellen, reliefbedingten Feuchteverhältnisse des Bodens dar. Er quantifiziert die potenzielle Wasserabflussmenge in Abhängigkeit von der Einzugsgebietsgröße (potentieller Abfluss) und der Neigung (Verweildauer des abfließenden Wassers).
The Tree Species Germany product provides a map of dominant tree species across Germany for the year 2022 at a spatial resolution of 10 meters. The map depicts the distribution of ten tree species groups derived from multi-temporal optical Sentinel-2 data, radar data from Sentinel-1, and a digital elevation model. The input features explicitly incorporate phenological information to capture seasonal vegetation dynamics relevant for species discrimination. A total of over 80,000 training and test samples were compiled from publicly accessible sources, including urban tree inventories, Google Earth Pro, Google Street View, and field observations. The final classification was generated using an XGBoost machine learning algorithm. The Tree Species Germany product achieves an overall F1-score of 0.89. For the dominant species pine, spruce, beech, and oak, class-wise F1-scores range from 0.76 to 0.98, while F1-scores for other widespread species such as birch, alder, larch, Douglas fir, and fir range from 0.88 to 0.96. The product provides a consistent, high-resolution, and up-to-date representation of tree species distribution across Germany. Its transferable, cost-efficient, and repeatable methodology enables reliable large-scale forest monitoring and offers a valuable basis for assessing spatial patterns and temporal changes in forest composition in the context of ongoing climatic and environmental dynamics.
Veranlassung Methoden des maschinellen Lernens kommen in der gewässerkundlichen Praxis der BfG bisher nur vereinzelt zum Einsatz. Der Einsatz von ML entspricht in vielen Bereichen aber bereits dem Stand von Wissenschaft und Technik und hält zunehmend Einzug auch in gewässerkundliche Fragestellungen. ML besitzt das Potenzial, zum einen bestehende Aufgaben und Methoden qualitativ zu optimieren (z. B. in Form verbesserter Prognosemethoden). Zum anderen werden durch den Einsatz von ML arbeitsaufwändige, mit klassischen Ansätzen nicht leistbare Analysen erst möglich, wodurch auch gänzlich neue oder substanziell erweiterte Leistungen und Produkte entstehen. Der unmittelbare Anwendungs- und Aufgabenbezug von MALPROG lässt diesbezüglich konkrete Ergebnisse für relevante Fachaufgaben sowie zielführende Erkenntnisse für eine Übertragung auf weitere Arbeitsfelder der BfG erwarten. Ziele Die übergeordneten Ziele von MALPROG sind - wissenschaftliche Erkenntnis und Datenharmonisierung: Untersuchung praktischer Anwendbarkeit von Methoden des maschinellen Lernens für ausgewählte BfG-Fachaufgaben (Messdatenplausibilisierung, Abfluss- und Wasserstandsvorhersage, Vegetationskartierung, Ölerkennung) - Technologietransfer: Überführung zielführender Methoden des maschinellen Lernens in zentrale Dienste und Applikationen der BfG - Konsolidierung des Wissens: Initiierung einer BfG-weiten Arbeitsgruppe "KI" zwecks Beratung, Unterstützung, Austausch und Koordination zukünftiger Anwendungen mit Bezug zu Methoden der künstlichen Intelligenz Für die konkrete Anwendung der ML-Methoden für die Fach- und Beratungsaufgaben der BfG sollen - eine weitere Steigerung der Vorhersagegüte erzielt, längerfristige Vorhersageskalen erschlossen und innovative Beratungsprodukte generiert werden, - eine intelligente Vorbeurteilung von Öl-Verschmutzungen ermöglicht werden, die z. B. einen effizienteren Einsatz unbemannter Systeme ermöglicht und den teuren Datentransfer für weitfliegende Systeme wesentlich reduziert, - durch die Anwendung auf digitale Orthofotos eine Identifizierung von Vegetation mit erhöhtem Automatisierungsgrad auf großer Fläche ermöglicht werden, z. B. für eine effiziente Erstellung von Biotoptypenkartierungen und für ein stringentes Vegetationsmonitoring bei Entwicklungsmaßnahmen, - durch Kameraaufnahmen automatisch Makroplastik in fließenden Gewässern identifiziert und klassifiziert werden, - Messfehler von Bodenfeuchtemessungen identifiziert und korrigiert werden. Die vertiefte Befassung mit den Möglichkeiten und Grenzen von ML-Methoden soll die BfG unterstützen, um die rasant zunehmende Menge an (Umwelt-)Daten unter Nutzung steigender Rechenressourcen in eine verbesserte Leistungsfähigkeit ihres Beratungsangebots (z. B. für die WSV, das BMDV, das BMUV) zu überführen. Die Entwicklung von Anwendungsfeldern im Bereich der künstlichen Intelligenz (KI) ist ein zentrales Ziel der Bundesregierung (KI-Strategie für Deutschland), welches das BMDV für den Verkehrssektor in seinem Aktionsplan "Digitalisierung und Künstliche Intelligenz in der Mobilität" aufgegriffen und weiter konkretisiert hat. Pilothafte Anwendungen belegen aber neben dem hohen Bedarf auch das große Potenzial von Methoden des maschinellen Lernens im Bereich der Gewässerkunde (Prognose, Klassifikation, Regression). Im Rahmen von MALPROG wird die Nutzung KI- bzw. ML-basierter Methoden für konkrete Anwendungsfelder in der Gewässerkunde systematisch untersucht. Als zielführend identifizierte Ansätze werden in die praktische Facharbeit integriert, um letztlich deren Potenzial für konkrete Anwendungen in der Analyse- und Beratungspraxis der BfG und WSV ausschöpfen zu können.
| Origin | Count |
|---|---|
| Bund | 1662 |
| Europa | 2 |
| Global | 1 |
| Land | 102 |
| Wissenschaft | 24 |
| Zivilgesellschaft | 25 |
| Type | Count |
|---|---|
| Daten und Messstellen | 3 |
| Ereignis | 4 |
| Förderprogramm | 1492 |
| Text | 156 |
| Umweltprüfung | 1 |
| unbekannt | 126 |
| License | Count |
|---|---|
| geschlossen | 212 |
| offen | 1559 |
| unbekannt | 11 |
| Language | Count |
|---|---|
| Deutsch | 1722 |
| Englisch | 289 |
| Resource type | Count |
|---|---|
| Archiv | 8 |
| Bild | 6 |
| Datei | 20 |
| Dokument | 76 |
| Keine | 1458 |
| Unbekannt | 1 |
| Webdienst | 18 |
| Webseite | 255 |
| Topic | Count |
|---|---|
| Boden | 876 |
| Lebewesen und Lebensräume | 888 |
| Luft | 726 |
| Mensch und Umwelt | 1782 |
| Wasser | 552 |
| Weitere | 1559 |