<p>Baumkataster Stand 2020. Inklusive Georeferenzierung und Angaben nach Art, Gattung und Alter der erfassten Bäume.</p> <p><strong>Was bedeuten die Felder?</strong></p> <p><strong>Objekttyp</strong>: Es gibt 14 Objekttypen die wie folgt unterteilt sind:</p> <p>1 NN; 2 Kleingarten; 3 Sportplatz; 4 Kinderspielplatz; 5 Gebäude/Schule/Heim; 6 Straße/Platz; 7 Grünanlage; 8 Friedhof; 9 Biotopflächen; 10 Fluss/Bach; 11 Sonderanlage; 12 Forst; 13 Ausgleichsfläche; 14 Unbekannt</p> <p><strong>Baumbest_1</strong> : Z.B Baumbest:1 : 22P => 22 P ist die Baumnummer<br /> Gängig sind folgende Buchstabenkürzel:<br /> G = Bäume auf der Seite mit geraden Hausnummern<br /> U = Bäume auf der Seite mit ungeraden Hausnummern<br /> P = Bäume auf einen Platz<br /> M = Bäume auf einem Mittelstreifen<br /> MU = Bäume auf einem Mittelstreifen zur Seite mit den ungeraden Hausnummern<br /> MG = Bäume auf einem Mittelstreifen zur Seite mit den geraden Hausnummern<br /> MM = Bäume auf einem Mittelstreifen in der mittleren Reihe<br /> Ein Teil der Bäume hat auch nur eine Nummer, das ist z.B. auf Spielplätzen der Fall oder wenn in einer Straße nur wenige Bäume stehen.<br /> Die Nummerierung ist teilweise so eingerichtet, dass bei einem Kontrollgang der kürzeste Weg genommen werden kann – dafür sind die Buchstaben teilweise auch hinter die Baumnummern gesetzt.<br /> </p> <p><strong>STAMMVON: </strong>z.B.<strong> </strong>"STAMMVON": 0.0<br /> Bei 2- oder mehrstämmigen Bäumen wird einmal der kleinste und einmal der größte Stammdurchmesser in cm angegeben.<br /> Der kleinste Stammdurchmesser wird bei „Stamm von“ und der größte bei „Stamm bis“<br /> </p> <p><strong>STAMMBIS: </strong>z.B. "STAMMBIS": 50.0<br /> Die ist die Angabe des Stammdurchmessers in cm.<br /> Bei 2- oder mehrstämmigen Bäume erfolgt hierunter der Eintrag des größten Stammdurchmessers</p> <p><strong>KRONE: </strong>z.B. "KRONE": 8.0<br /> Die ist die Angabe zum Durchmesser der Krone in Meter.</p> <p><strong>H_HE: </strong>z.B. "H_HE": 10.0,<br /> Dies ist die Angabe zur Höhe des Baumes in Meter.</p> <p><strong>Sorte:</strong> z.B.<br /> "Sorte": null,<br /> In der botanischen Nomenklatur unterteilt man Pflanzen in Gattung, Art und Sorte<br /> Bei Pflanzungen in früheren Zeiten wurden hierzu leider keine Angaben gemacht. Bei Neupflanzungen sollen diese Einträge nun standardmäßig durchgeführt werden.<br /> Der Eintrag „null“ gibt an, dass hier keine Sorte eingetragen wurde.<br /> </p> <p>Information</p> <p>Es sind noch nicht alle Bäume erfasst, die Erfassung des gesamten städtischen Baumbestandes wird angestrebt. Der Datensatz wird aus diesem Grunde unregelmäßig aktualisiert. Der Einsatz einer neuen Software ist in Planung und soll mittelfristig auch den Abruf von Daten des Baumkatatsers erleichtern.</p>
Die Globalstrahlung oder der potentielle topographische Strahlungsgenuss gibt die Energiemenge an, die in einem Jahr direkt auf die Erdoberfläche trifft. Streuungen werden hierbei nicht berücksichtigt. Der Reliefparameter geht damit hinsichtlich seiner Aussagekraft über Parameter wie Sonn- und Schatthang oder eine Klassifikation der Exposition hinaus. Die Transmissionsrate (verringerte Durchlässigkeit der Atmosphäre durch Bewölkungseinfluss) wurde mit 60 % angesetzt (60 % = ca. Durchschnittswert für Deutschland). Definition und Berechnung: SAGA-Standard. Einheit: [KWh/m2] BÖHNER, J., & ANTONIC, O. (2009). Land-Surface Parameters Specific to Topo-Climatology. In T. Hengl, & H. I. Reuter (Eds.), Geomorphometry: Concepts, Software, Applications (pp. 195-226). Elsevier Science.
Die Globalstrahlung oder der potentielle topographische Strahlungsgenuss gibt die Energiemenge an, die in einem Jahr direkt auf die Erdoberfläche trifft. Streuungen werden hierbei nicht berücksichtigt. Der Reliefparameter geht damit hinsichtlich seiner Aussagekraft über Parameter wie Sonn- und Schatthang oder eine Klassifikation der Exposition hinaus. Die Transmissionsrate (verringerte Durchlässigkeit der Atmosphäre durch Bewölkungseinfluss) wurde mit 60 % angesetzt (60 % = ca. Durchschnittswert für Deutschland). Definition und Berechnung: SAGA-Standard. Einheit: [KWh/m2] BÖHNER, J., & ANTONIC, O. (2009). Land-Surface Parameters Specific to Topo-Climatology. In T. Hengl, & H. I. Reuter (Eds.), Geomorphometry: Concepts, Software, Applications (pp. 195-226). Elsevier Science.
Daten der Wetterstation Heiliger Weg alle 15 Minuten des Jahres 2008. Ab 18.09.2008 Gerätewechsel und Nutzung einer neuen Software und Daten alle 10 Minuten.Die Wettermessstation unterliegt keinem (gesetzlichen) technischen Akkreditierungs-Zertifizierungs- und Qualitätssicherungsverfahren. Eine Gewähr für die Richtigkeit der Messungen wird daher von Seiten des Umweltamtes nicht übernommen.Um die Zeitchronologie zu dokumentieren, werden fehlende Daten leer angelegt. Diese entstehen durch Datenübertragungsfehler oder einem Ausfall der Messgeräte.
Der Datensatz enthält den Verlauf der Teststrecke für Automatisiertes und Vernetztes Fahren in Hamburg (TAVF). Das Team Verkehrs- und Infrastrukturprojekte des LGV beschäftigt sich seit 2019 mit dem Thema HD-Karten aus kommunaler Perspektive. Eine Fragestellung war, ob mit LGV-eigenen Mitteln ein Datensatz erstellt werden kann, der zur Simulationszwecken für das autonome oder automatisierte Fahren genutzt werden kann. Im Rahmen des mFund-Projektes EDDY (European Digital Dynamic Mapping) entstand in den letzten Monaten so dieser vorliegende hochgenaue Datensatz zur TAVF-Strecke. Bei den Daten handelt es sich um Forschungsdaten, der Datensatz ist nicht nach ISO 26262-Kriterien abgenommen. Alle Straßengeometrien basieren auf UAV-Daten (Stand 2021.06 - 2022.07), geplante oder ungeplante Änderungen werden seitdem nicht regelmäßig eingearbeitet. Die Qualität der Straßengeometrien liegt bei einer erwarteten geometrischen Genauigkeit von 10 cm. Der Datensatz besteht aus drei verschiedenen Geodatensätzen, die so aufgebaut sind, dass sie von der Software Trian3DBuilder zu einer OpenDRIVE-Datei umgewandelt werden können. Die Attribute werden aus diesem Grund in englischer Sprache gepflegt. Der erste Datensatz stellt die sogenannten Referenzlinien dar, an die alle weiteren Geometrien und Attribute geknüpft werden. Der zweite Datensatz bildet die Geometrien der verschiedenen Fahrstreifen ab, der dritte Datensatz beinhaltet die Geometrien von Abbiegebeziehungen innerhalb von Kreuzungen. Wenn Sie Fragen haben oder den OpenDrive Datensatz benutzen möchten, kontaktieren Sie uns bitte unter folgender E-Mail-Adresse: hdmap@gv.hamburg.de . Ansprechpartner für Interessenten aus der Industrie und Wissenschaft, die an der Nutzung der Teststrecke interessiert sind, ist die TAVF-Geschäftsstelle (Kontakt: moin@tavf.hamburg ). Weitere Informationen unter: www.tavf.hamburg
Die Bedienungsanleitung beschreibt die Benutzung des InGrid Editors. Der InGrid Editor im METAVER-Portal dient der Erfassung und Pflege von Metadaten. Es handelt sich um eine modular aufgebaute Software, die als technische Basis für Metadatenkataloge dient. Der Name InGrid steht für "Information Grid" und beschreibt ein Informationsnetzwerk, das detaillierte Informationen in unterschiedlichen Metadatensatztypen und verknüpfte Adressinformationen zu Organisationen und Personen enthält. Der InGrid Editor ist eine Webanwendung mit einer benutzerfreundlichen Oberfläche, die es ermöglicht, Metadaten dezentral über den Webbrowser zu pflegen und zu aktualisieren. Der Editor ermöglicht die Verwaltung von Umwelt- und Geoinformationen sowie Open Data. Die Software unterstützt verschiedene Standards wie zum Beispiel den WMS-Darstellungsdienst, den WFS-Downloaddienst, den Atom Download Dienst und den CSW Service. Im InGrid Editor können Geodatensätze, Geodatendienste, Anwendungen, Datenbanken, Dokumente und Projekte mit Metadaten beschrieben werden. Um den InGrid Editor nutzen zu können, müssen sich Nutzer an ihren zuständigen Katalogadministrator wenden und ihre Nutzerkennung freischalten lassen. Diese Freischaltung ermöglicht die Eingabe und Pflege von Metadaten. Um sich im Portal anzumelden, nutzen Sie bitte das Kontaktformular in METAVER und wählen dort das entsprechende Bundesland aus.
As part of the CDRmare joint project GEOSTOR (https://geostor.cdrmare.de/), the BGR created detailed static geological 3D models for two potential CO2 storage structures in the Middle Buntsandstein in the Exclusive Economic Zone (EEZ) of the German North Sea and supplemented them with petrophysical parameters (e.g. porosities, permeabilities). The 3D geological model (Pilot area A; ~1300 km2) is located on the West Schleswig Block in the area of the Henni salt pillow (pilot region A). It is based on 2D seismic data from various surveys and geophysical/geological information from four exploration wells. The model comprises 14 generalized faults and the following 14 horizon surfaces: 1) Sea Floor, 2) Mid Miocene Unconformity, 3) Base Rupelian, 4) Base Tertiary, 5) Base Upper Cretaceous, 6) Base Lower Cretaceous, 7) Base Muschelkalk, 8) Base Röt (Pelite), 9) Base Röt (Salinar), 10) Base Solling Formation, 11) Base Detfurth Formation, 12) Base Volpriehausen Formation, 13) Base Triassic, 14) Base Zechstein. The selected potential reservoir structure in the Middle Buntsandstein is formed by an anticline created by the uplift of the underlying Henni salt pillow. The primary reservoir unit is the 40-50 m thick Lower Volpriehausen Sandstone, the main sealing units are the Röt and the Lower Cretaceous. Petrophysical analyses of all considered well data were conducted and reservoir properties (including porosity and permeability) were calculated to determine the static reservoir capacity for these potential CO2 storage structures. Both models were parameterized and can be used for further dynamic simulations of storage capacity, geo-risk, and infrastructure analyses, in order to develop a comprehensive feasibility study for potential CO2 storage within the project framework. The 3D models were created by the BGR between 2021 and 2024. SKUA-GOCAD was used as the modeling software. We would like to thank AspenTech for providing licenses for their SSE software package as part of the Academic Program (https://www.aspentech.com/en/academic-program).
As part of the CDRmare joint project GEOSTOR (https://geostor.cdrmare.de/), the BGR created detailed static geological 3D models for two potential CO2 storage structures in the Middle Buntsandstein in the Exclusive Economic Zone (EEZ) of the German North Sea and supplemented them with petrophysical parameters (e.g. porosities, permeabilities). The 3D geological model (Pilot area B; ~560 km2) is located in the north-western part of the German North Sea sector, the so-called “Entenschnabel”, an approximately 150 kilometer long and 30 kilometer wide area between the offshore sectors of the Netherlands, Denmark and Great Britain (pilot region B). The model in the Ducks Beak is based on several high-resolution 3D seismic data and geophysical/geological information from four exploration wells. It includes 20 generalized faults and the following 16 horizon surfaces: 1) Sea Floor, 2) Mid Miocene Unconformity, 3) Base Tertiary, 4) Base Upper Cretaceous, 5) Base Lower Cretaceous, 6) Base Upper Jurassic, 7) Base Lower Jurassic, 8) Base Muschelkalk, 9) Base Röt, 10) Base Solling Formation, 11) Base Detfurth Formation, 12) Base Volpriehausen Wechselfolge, 13) Base Volpriehausen Formation, 14) Base Triassic, 15) Base Zechstein, 16) Top Basement. The reservoir formed by sandstones of the Middle Buntsandstein is located within the Mads Graben, which is bounded to the west by the extensive Mads Fault (normal fault). Marine mudstones of the Upper Jurassic and Lower Cretaceous serve as the main seal formations. Petrophysical analyses of all considered well data were conducted and reservoir properties (including porosity and permeability) were calculated to determine the static reservoir capacity for these potential CO2 storage structures. The model parameterized and can be used for further dynamic simulations of storage capacity, geo-risk, and infrastructure analyses, in order to develop a comprehensive feasibility study for potential CO2 storage within the project framework. The 3D models were created by the BGR between 2021 and 2024. SKUA-GOCAD was used as the modeling software. We would like to thank AspenTech for providing licenses for their SSE software package as part of the Academic Program (https://www.aspentech.com/en/academic-program).
As part of the CDRmare joint project GEOSTOR (https://geostor.cdrmare.de/), the BGR created detailed static geological 3D models for two potential CO2 storage structures in the Middle Buntsandstein in the Exclusive Economic Zone (EEZ) of the German North Sea and supplemented them with petrophysical parameters (e.g. porosities, permeabilities). The 3D geological model (Pilot area B; ~560 km2) is located in the north-western part of the German North Sea sector, the so-called “Entenschnabel”, an approximately 150 kilometer long and 30 kilometer wide area between the offshore sectors of the Netherlands, Denmark and Great Britain (pilot region B). The model in the Ducks Beak is based on several high-resolution 3D seismic data and geophysical/geological information from four exploration wells. It includes 20 generalized faults and the following 16 horizon surfaces: 1) Sea Floor, 2) Mid Miocene Unconformity, 3) Base Tertiary, 4) Base Upper Cretaceous, 5) Base Lower Cretaceous, 6) Base Upper Jurassic, 7) Base Lower Jurassic, 8) Base Muschelkalk, 9) Base Röt, 10) Base Solling Formation, 11) Base Detfurth Formation, 12) Base Volpriehausen Wechselfolge, 13) Base Volpriehausen Formation, 14) Base Triassic, 15) Base Zechstein, 16) Top Basement. The reservoir formed by sandstones of the Middle Buntsandstein is located within the Mads Graben, which is bounded to the west by the extensive Mads Fault (normal fault). Marine mudstones of the Upper Jurassic and Lower Cretaceous serve as the main seal formations. Petrophysical analyses of all considered well data were conducted and reservoir properties (including porosity and permeability) were calculated to determine the static reservoir capacity for these potential CO2 storage structures. The model parameterized and can be used for further dynamic simulations of storage capacity, geo-risk, and infrastructure analyses, in order to develop a comprehensive feasibility study for potential CO2 storage within the project framework. The 3D models were created by the BGR between 2021 and 2024. SKUA-GOCAD was used as the modeling software. We would like to thank AspenTech for providing licenses for their SSE software package as part of the Academic Program (https://www.aspentech.com/en/academic-program).
As part of the CDRmare joint project GEOSTOR (https://geostor.cdrmare.de/), the BGR created detailed static geological 3D models for two potential CO2 storage structures in the Middle Buntsandstein in the Exclusive Economic Zone (EEZ) of the German North Sea and supplemented them with petrophysical parameters (e.g. porosities, permeabilities). The 3D geological model (Pilot area A; ~1300 km2) is located on the West Schleswig Block in the area of the Henni salt pillow (pilot region A). It is based on 2D seismic data from various surveys and geophysical/geological information from four exploration wells. The model comprises 14 generalized faults and the following 14 horizon surfaces: 1) Sea Floor, 2) Mid Miocene Unconformity, 3) Base Rupelian, 4) Base Tertiary, 5) Base Upper Cretaceous, 6) Base Lower Cretaceous, 7) Base Muschelkalk, 8) Base Röt (Pelite), 9) Base Röt (Salinar), 10) Base Solling Formation, 11) Base Detfurth Formation, 12) Base Volpriehausen Formation, 13) Base Triassic, 14) Base Zechstein. The selected potential reservoir structure in the Middle Buntsandstein is formed by an anticline created by the uplift of the underlying Henni salt pillow. The primary reservoir unit is the 40-50 m thick Lower Volpriehausen Sandstone, the main sealing units are the Röt and the Lower Cretaceous. Petrophysical analyses of all considered well data were conducted and reservoir properties (including porosity and permeability) were calculated to determine the static reservoir capacity for these potential CO2 storage structures. Both models were parameterized and can be used for further dynamic simulations of storage capacity, geo-risk, and infrastructure analyses, in order to develop a comprehensive feasibility study for potential CO2 storage within the project framework. The 3D models were created by the BGR between 2021 and 2024. SKUA-GOCAD was used as the modeling software. We would like to thank AspenTech for providing licenses for their SSE software package as part of the Academic Program (https://www.aspentech.com/en/academic-program).
Origin | Count |
---|---|
Bund | 6361 |
Land | 322 |
Wissenschaft | 28 |
Zivilgesellschaft | 8 |
Type | Count |
---|---|
Ereignis | 5 |
Förderprogramm | 6025 |
Software | 19 |
Text | 308 |
Umweltprüfung | 25 |
unbekannt | 250 |
License | Count |
---|---|
geschlossen | 501 |
offen | 6065 |
unbekannt | 66 |
Language | Count |
---|---|
Deutsch | 6538 |
Englisch | 762 |
unbekannt | 28 |
Resource type | Count |
---|---|
Archiv | 28 |
Bild | 8 |
Datei | 13 |
Dokument | 138 |
Keine | 3612 |
Unbekannt | 9 |
Webdienst | 8 |
Webseite | 2919 |
Topic | Count |
---|---|
Boden | 3735 |
Lebewesen & Lebensräume | 3553 |
Luft | 3001 |
Mensch & Umwelt | 6632 |
Wasser | 2467 |
Weitere | 6446 |