API src

Found 132 results.

Related terms

Matrix Schindeltechnologie für die Zukunft der Photovoltaik

Das Projekt "Matrix Schindeltechnologie für die Zukunft der Photovoltaik" wird/wurde ausgeführt durch: Zahoransky AG.Das Teilprojekt 'Entwicklung Matrix-Schindel-Stringer Technologie' der Zahoransky AG befasst sich mit der gezielten Weiterentwicklung des Industrie-Stringers für die Matrix-Schindeltechnologie. Durch eine konsequente Kostensenkung soll das Maschinenkonzept endgültig wettbewerbsfähig werden. Unter Anwendung modernster Entwicklungsmethoden, wie z.B. dem Einsatz eines digitalen Zwillings, soll ein Baukasten entwickelt werden, der die Maschinen von einer sehr niedrigen Ausbringungsmenge und Invest bis zur Hochdurchsatzanlage abdecken soll. Neben der konstruktiven Entwicklung wird die dazugehörige Steuerungssoftware entwickelt, welche am digitalen Zwilling abgeprüft und in Betrieb genommen wird. Der digitale Zwilling erlaubt ebenso die Prozessabläufe, wie auch Parameteroptimierungen. Final wird die Maschine digital funktionsfähig abgebildet und in der Form bestellfähig sein. Die hohe Flexibilität der Basismaschine zur Zellverbindung erfordert Maschinenrüstzeiten, die zu Stillstandzeiten führen. Ein zu entwickelnder Produktkonfigurator soll es dem Maschineneinrichter ermöglichen Modullayouts/Produktrezepturen maschinenunabhängig (offline) zu erstellen und diese dann auf die Maschinensteuerung übertragen zu können und somit Maschinenrüstzeiten zu vermeiden. Für die gebäudeintegrierte Photovoltaik (BIPV) wird dies der erste Schritt in die Massenproduktion bedeuten. Darüber hinaus wird die Zahoransky AG eine Anlage für die automatisierte Anschlussdosenkontaktierung in ihrer Basisversion beschaffen und aufbauen, um dem Projektpartner M10 Industries AG diese für die Modifikation zur Verfügung stellen. Diese wird sowohl für die Weiterentwicklung der realen Maschine als auch deren digitalen Zwilling benötigt. In Kombination mit dem Produktkonfigurator und des modularen Maschinenkonzepts der vorgelagerten Basismaschine zur Zellverbindung wird dies zukünftig maßgebliche Wettbewerbsvorteile für die Modulhersteller generieren.

Matrix Schindeltechnologie für die Zukunft der Photovoltaik, Teilvorhaben: Entwicklung Matrix-Schindel-Stringer Technologie

Das Projekt "Matrix Schindeltechnologie für die Zukunft der Photovoltaik, Teilvorhaben: Entwicklung Matrix-Schindel-Stringer Technologie" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Zahoransky AG.Das Teilprojekt 'Entwicklung Matrix-Schindel-Stringer Technologie' der Zahoransky AG befasst sich mit der gezielten Weiterentwicklung des Industrie-Stringers für die Matrix-Schindeltechnologie. Durch eine konsequente Kostensenkung soll das Maschinenkonzept endgültig wettbewerbsfähig werden. Unter Anwendung modernster Entwicklungsmethoden, wie z.B. dem Einsatz eines digitalen Zwillings, soll ein Baukasten entwickelt werden, der die Maschinen von einer sehr niedrigen Ausbringungsmenge und Invest bis zur Hochdurchsatzanlage abdecken soll. Neben der konstruktiven Entwicklung wird die dazugehörige Steuerungssoftware entwickelt, welche am digitalen Zwilling abgeprüft und in Betrieb genommen wird. Der digitale Zwilling erlaubt ebenso die Prozessabläufe, wie auch Parameteroptimierungen. Final wird die Maschine digital funktionsfähig abgebildet und in der Form bestellfähig sein. Die hohe Flexibilität der Basismaschine zur Zellverbindung erfordert Maschinenrüstzeiten, die zu Stillstandzeiten führen. Ein zu entwickelnder Produktkonfigurator soll es dem Maschineneinrichter ermöglichen Modullayouts/Produktrezepturen maschinenunabhängig (offline) zu erstellen und diese dann auf die Maschinensteuerung übertragen zu können und somit Maschinenrüstzeiten zu vermeiden. Für die gebäudeintegrierte Photovoltaik (BIPV) wird dies der erste Schritt in die Massenproduktion bedeuten. Darüber hinaus wird die Zahoransky AG eine Anlage für die automatisierte Anschlussdosenkontaktierung in ihrer Basisversion beschaffen und aufbauen, um dem Projektpartner M10 Industries AG diese für die Modifikation zur Verfügung stellen. Diese wird sowohl für die Weiterentwicklung der realen Maschine als auch deren digitalen Zwilling benötigt. In Kombination mit dem Produktkonfigurator und des modularen Maschinenkonzepts der vorgelagerten Basismaschine zur Zellverbindung wird dies zukünftig maßgebliche Wettbewerbsvorteile für die Modulhersteller generieren.

Aluminium-Fassadenelemente mit integrierten Photovoltaikmodulen für architektonische Solarfassaden, Teilvorhaben: Mikro-Wechselrichter für eine schnelle und einfache Integration von BIPV-Elementen und ihr sicherer Betrieb

Das Projekt "Aluminium-Fassadenelemente mit integrierten Photovoltaikmodulen für architektonische Solarfassaden, Teilvorhaben: Mikro-Wechselrichter für eine schnelle und einfache Integration von BIPV-Elementen und ihr sicherer Betrieb" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Solarnative GmbH.Im Vorhaben AluPV werden langfristige Fragestellungen der bautechnischen Produktionstechnologie, neue Fertigungsverfahren und Materialkombination durch Verschränkung von Baustoffwirtschaft, Bereich Metall- und Fassadenbau, dem Energiesektor und dem Bereich Photovoltaikindustrie, adressiert. Dazu wird ein innovatives modulares Fassadensystem aus PV- und Designelementen für ästhetisch ansprechende, energieerzeugende Fassaden entwickelt, gekennzeichnet durch eine vereinfachte Installation in die Gebäudehülle und zum Anschluss an Gebäudeenergiesysteme. Dabei liegt der Fokus auf der Erarbeitung von Lösungen und Funktionsintegration für die konstruktive und elektrischen Anschluss- und Verbindungstechnik durch integrierte Aufhängung im Aluminiumprofil, angepasste Unterkonstruktion und integrierter Modulwechselrichter. Beanspruchungsanalysen, Durchführung von Feld- und Ertragstests und notwendigen Charakterisierungs- und Prüfmethoden zu Material- und Bauteilbewertung auf Seite der Photovoltaik und im Kontext BIM & Zulassung begleiten diese Arbeiten. Abschluss findet das Projekt mit einem Demonstratoraufbau und einer Wirtschaftlichkeitsanalyse zur Verifikation der Untersuchungsergebnisse und Demonstration einer anwendungsnahen Umsetzung. Das angestrebte modulare System bietet große Chancen mit ästhetisch ansprechenden Produkten zur Beschleunigung des Solarenergieausbaus insbesondere im urbanen Raum beizutragen und das Potential der gebäudeintegrierten Solarintegration aus seiner Nische heraus zu holen. Im Solarnative Teilprojekt werden Mikro-Wechselrichter entwickelt, die in ihren elektrischen Kenngrößen auf die Photovoltaik Fassadenelemente angepasst sind. Die Mikro-Wechselrichter werden in die Fassade integriert. Sie sollen einfach zu installieren sein und einen sicheren Betrieb der Photovoltaikanlage ermöglichen. Über ein spezielles Datenmonitoring System wird die Anlage überwacht.

Aluminium-Fassadenelemente mit integrierten Photovoltaikmodulen für architektonische Solarfassaden, Teilvorhaben: Systemintegration, Monitoring und Bewertung von BIPV-Anlagen

Das Projekt "Aluminium-Fassadenelemente mit integrierten Photovoltaikmodulen für architektonische Solarfassaden, Teilvorhaben: Systemintegration, Monitoring und Bewertung von BIPV-Anlagen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Baltic Renewable Partners GmbH & Co. KG.Im Vorhaben AluPV werden langfristige Fragestellungen der bautechnischen Produktionstechnologie, neue Fertigungsverfahren und Materialkombination durch Verschränkung von Baustoffwirtschaft, Bereich Metall- und Fassadenbereich, dem Energiesektor, und dem Bereich Photovoltaikindustrie, adressiert. Dazu wird ein innovatives modulares Fassadensystems aus PV- und Designelementen für ästhetisch ansprechende, energieerzeugende Fassaden entwickelt, gekennzeichnet durch eine vereinfachte Installation in die Gebäudehülle und zum Anschluss an Gebäudeenergiesysteme. Dabei liegt der Fokus auf der Erarbeitung von Lösungen und Funktionsintegration für die konstruktive und elektrischen Anschluss und Verbindungstechnik durch integrierte Aufhängung im Aluminiumprofil, angepasste Unterkonstruktion und integrierter Modulwechselrichter. Beanspruchungsanalysen, Durchführung von Feld- und Ertragstests und notwendigen Charakterisierungs- und Prüfmethoden zu Material- und Bauteilbewertung auf Seite der Photovoltaik und im Kontext BIM & Zulassung begleiten diese Arbeiten. Abschluss findet das Projekt mit einem Demonstratoraufbau und Wirtschaftlichkeitsanalyse zur Verifikation der Untersuchungsergebnisse und Demonstration einer anwendungsnahen Umsetzung. Das angestrebte modulare System bietet große Chancen mit ästhetisch ansprechenden Produkten zur Beschleunigung des Solarenergieausbaus insbesondere im urbanen Raum beizutragen und das Potential der gebäudeintegrierten Solarintegration aus seiner Nische heraus zu holen. Wir als Baltic Renewable beschäftigen uns dabei ganzheitlich mit dem Projekt und bringen unsere Expertise in Planung, Aufbau, Überwachung, Wartung und Bewertung mit ein.

Aluminium-Fassadenelemente mit integrierten Photovoltaikmodulen für architektonische Solarfassaden, Teilvorhaben: Modulares Al-Fassadensystem aus Photovoltaik-integrierten und ästhetischen Design-Elementen

Das Projekt "Aluminium-Fassadenelemente mit integrierten Photovoltaikmodulen für architektonische Solarfassaden, Teilvorhaben: Modulares Al-Fassadensystem aus Photovoltaik-integrierten und ästhetischen Design-Elementen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: MN Metall GmbH.Im Vorhaben AluPV werden langfristige Fragestellungen der bautechnischen Produktionstechnologie, neue Fertigungsverfahren und Materialkombination durch Verschränkung von Baustoffwirtschaft, Bereich Metall- und Fassadenbau, dem Energiesektor und dem Bereich Photovoltaikindustrie, adressiert. Dazu wird ein innovatives modulares Fassadensystem aus PV- und Designelementen für ästhetisch ansprechende, energieerzeugende Fassaden entwickelt, gekennzeichnet durch eine vereinfachte Installation in die Gebäudehülle und zum Anschluss an Gebäudeenergiesysteme. Dabei liegt der Fokus auf der Erarbeitung von Lösungen und Funktionsintegration für die konstruktive und elektrischen Anschluss- und Verbindungstechnik durch integrierte Aufhängung im Aluminiumprofil, angepasste Unterkonstruktion und integrierter Modulwechselrichter. Beanspruchungsanalysen, Durchführung von Feld- und Ertragstests und notwendigen Charakterisierungs- und Prüfmethoden zu Material- und Bauteilbewertung auf Seite der Photovoltaik und im Kontext BIM & Zulassung begleiten diese Arbeiten. Abschluss findet das Projekt mit einem Demonstratoraufbau und einer Wirtschaftlichkeitsanalyse zur Verifikation der Untersuchungsergebnisse und Demonstration einer anwendungsnahen Umsetzung. Das angestrebte modulare System bietet große Chancen mit ästhetisch ansprechenden Produkten zur Beschleunigung des Solarenergieausbaus insbesondere im urbanen Raum beizutragen und das Potential der gebäudeintegrierten Solarintegration aus seiner Nische heraus zu holen. Es werden PV integrierte Formatvarianten aus Aluminiumblech- und Strangpresstechnik entwickelt, die gestalterische Freiheiten für Architekten zulassen. Ziel ist es ein modulares Montage- und Installationskonzept und a. mit integrierten Kabelführungen, Steck- und Einschublösungen und einer direkten Unterkonstruktionsanbindung zu entwickeln. Parallel wird ein Fertigungs-Know-how zum Bau eigener PV-Module erarbeitet.

Aluminium-Fassadenelemente mit integrierten Photovoltaikmodulen für architektonische Solarfassaden, Teilvorhaben: Konstruktive Integration von BIPV-Elementen in vorgehängte hinterlüftete Fassaden und ihre Zulassung

Das Projekt "Aluminium-Fassadenelemente mit integrierten Photovoltaikmodulen für architektonische Solarfassaden, Teilvorhaben: Konstruktive Integration von BIPV-Elementen in vorgehängte hinterlüftete Fassaden und ihre Zulassung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: VHF Plan Fassadenberatung Volker Liesenhoff.Im Vorhaben AluPV werden langfristige Fragestellungen der bautechnischen Produktionstechnologie, neue Fertigungsverfahren und Materialkombination durch Verschränkung von Baustoffwirtschaft, Bereich Metall- und Fassadenbau, dem Energiesektor und dem Bereich Photovoltaikindustrie, adressiert. Dazu wird ein innovatives modulares Fassadensystem aus PV- und Designelementen für ästhetisch ansprechende, energieerzeugende Fassaden entwickelt, gekennzeichnet durch eine vereinfachte Installation in die Gebäudehülle und zum Anschluss an Gebäudeenergiesysteme. Dabei liegt der Fokus auf der Erarbeitung von Lösungen und Funktionsintegration für die konstruktive und elektrischen Anschluss- und Verbindungstechnik durch integrierte Aufhängung im Aluminiumprofil, angepasste Unterkonstruktion und integrierter Modul-wechselrichter. Beanspruchungsanalysen, Durchführung von Feld- und Ertragstests und notwendigen Charakterisierungs- und Prüfmethoden zu Material- und Bauteilbewertung auf Seite der Photovoltaik und im Kontext BIM & Zulassung begleiten diese Arbeiten. Abschluss findet das Projekt mit einem Demonstratoraufbau und einer Wirtschaftlichkeitsanalyse zur Verifikation der Untersuchungsergebnisse und Demonstration einer anwendungsnahen Umsetzung. Das angestrebte modulare System bietet große Chancen mit ästhetisch ansprechenden Produkten zur Beschleunigung des Solarenergieausbaus insbesondere im urbanen Raum beizutragen und das Potential der gebäudeintegrierten Solarintegration aus seiner Nische heraus zu holen. Die technischen Erarbeitung der erforderlichen Kennwerte zur Berechnung der aus Temperatur, Eis, Eigengewicht und Wind entstehenden mechanischen Einwirkungen auf die Elemente und den Lastabtrag über eine Unterkonstruktion an den Verankerungsgrund und den hieraus zu definierenden Annahmen und Prüfkonzepte zur Erlangung von Zulassungen und ETA’s wird im Verlauf des Projektes erarbeitet. Die Erstellung von BIM Daten und CAD Bearbeitung erfolgt ebenso im Projektverlauf.

Aluminium-Fassadenelemente mit integrierten Photovoltaikmodulen für architektonische Solarfassaden

Das Projekt "Aluminium-Fassadenelemente mit integrierten Photovoltaikmodulen für architektonische Solarfassaden" wird/wurde ausgeführt durch: Institut für Solarenergieforschung GmbH.Im Vorhaben AluPV werden langfristige Fragestellungen der bautechnischen Produktionstechnologie, neue Fertigungsverfahren und Materialkombination durch Verschränkung von Baustoffwirtschaft, Bereich Metall- und Fassadenbau, dem Energiesektor und dem Bereich Photovoltaikindustrie, adressiert. Dazu wird ein innovatives modulares Fassadensystem aus PV- und Designelementen für ästhetisch ansprechende, energieerzeugende Fassaden entwickelt, gekennzeichnet durch eine vereinfachte Installation in die Gebäudehülle und zum Anschluss an Gebäudeenergiesysteme. Dabei liegt der Fokus auf der Erarbeitung von Lösungen und Funktionsintegration für die konstruktive und elektrischen Anschluss- und Verbindungstechnik durch integrierte Aufhängung im Aluminiumprofil, angepasste Unterkonstruktion und integrierter Modulwechselrichter. Beanspruchungsanalysen, Durchführung von Feld- und Ertragstests und notwendigen Charakterisierungs- und Prüfmethoden zu Material- und Bauteilbewertung auf Seite der Photovoltaik und im Kontext BIM & Zulassung begleiten diese Arbeiten. Abschluss findet das Projekt mit einem Demonstratoraufbau und einer Wirtschaftlichkeitsanalyse zur Verifikation der Untersuchungsergebnisse und Demonstration einer anwendungsnahen Umsetzung. Das angestrebte modulare System bietet große Chancen mit ästhetisch ansprechenden Produkten zur Beschleunigung des Solarenergieausbaus insbesondere im urbanen Raum beizutragen und das Potential der gebäudeintegrierten Solarintegration aus seiner Nische heraus zu holen. Der Schwerpunkt am ISFH liegt auf der Entwicklung von industrietauglichen Fertigungsverfahren von PV-Modulen auf Al-Bauteilen, die Untersuchung der Langzeitstabilität, Erarbeitung von verschattungstoleranten Verschaltungskonzepten sowie der Bestimmung der PV-Erträge und Systembewertungen für komplexe Integrationssituationen.

Aluminium-Fassadenelemente mit integrierten Photovoltaikmodulen für architektonische Solarfassaden, Teilvorhaben: Produktionsprozesse zur langzeitstabilen Integration von PV auf Aluminiumbauteilen und zum Aufbau von Leichtbau-BIPV-Modulen

Das Projekt "Aluminium-Fassadenelemente mit integrierten Photovoltaikmodulen für architektonische Solarfassaden, Teilvorhaben: Produktionsprozesse zur langzeitstabilen Integration von PV auf Aluminiumbauteilen und zum Aufbau von Leichtbau-BIPV-Modulen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen.Im Vorhaben AluPV werden langfristige Fragestellungen der bautechnischen Produktionstechnologie, neue Fertigungsverfahren und Materialkombination durch Verschränkung von Baustoffwirtschaft, Bereich Metall- und Fassadenbau, dem Energiesektor und dem Bereich Photovoltaikindustrie, adressiert. Dazu wird ein innovatives modulares Fassadensystem aus PV- und Designelementen für ästhetisch ansprechende, energieerzeugende Fassaden entwickelt, gekennzeichnet durch eine vereinfachte Installation in die Gebäudehülle und zum Anschluss an Gebäudeenergiesysteme. Dabei liegt der Fokus auf der Erarbeitung von Lösungen und Funktionsintegration für die konstruktive und elektrischen Anschluss- und Verbindungstechnik durch integrierte Aufhängung im Aluminiumprofil, angepasste Unterkonstruktion und integrierter Modulwechselrichter. Beanspruchungsanalysen, Durchführung von Feld- und Ertragstests und notwendigen Charakterisierungs- und Prüfmethoden zu Material- und Bauteilbewertung auf Seite der Photovoltaik und im Kontext BIM & Zulassung begleiten diese Arbeiten. Abschluss findet das Projekt mit einem Demonstratoraufbau und einer Wirtschaftlichkeitsanalyse zur Verifikation der Untersuchungsergebnisse und Demonstration einer anwendungsnahen Umsetzung. Das angestrebte modulare System bietet große Chancen mit ästhetisch ansprechenden Produkten zur Beschleunigung des Solarenergieausbaus insbesondere im urbanen Raum beizutragen und das Potential der gebäudeintegrierten Solarintegration aus seiner Nische heraus zu holen. Im Teilvorhaben entwickelt Fraunhofer CSP Produktionsprozesse zur langzeitstabilen Integration von PV auf Al-Bauteilen. Ziel ist es die Fertigungs- und Formgebungsentwicklung, inkl. der Evaluierung und Qualifizierung in der Materialauswahl durchzuführen. Begleitet wird dies im Aufbau neuer Prüfmethoden im Kontext der photovoltaischen Gebäudeintegration und Analyse von Verschaltungslayouts für verschattungssensitive Anwendungen in der Fassade.

Aluminium-Fassadenelemente mit integrierten Photovoltaikmodulen für architektonische Solarfassaden, Teilvorhaben: Verschaltungstechnik für den zuverlässigen Betrieb von PV-Modulen auf Al-Komponenten, Herstellungsprozesse und Erträge der BIPV-Module

Das Projekt "Aluminium-Fassadenelemente mit integrierten Photovoltaikmodulen für architektonische Solarfassaden, Teilvorhaben: Verschaltungstechnik für den zuverlässigen Betrieb von PV-Modulen auf Al-Komponenten, Herstellungsprozesse und Erträge der BIPV-Module" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Institut für Solarenergieforschung GmbH.Im Vorhaben AluPV werden langfristige Fragestellungen der bautechnischen Produktionstechnologie, neue Fertigungsverfahren und Materialkombination durch Verschränkung von Baustoffwirtschaft, Bereich Metall- und Fassadenbau, dem Energiesektor und dem Bereich Photovoltaikindustrie, adressiert. Dazu wird ein innovatives modulares Fassadensystem aus PV- und Designelementen für ästhetisch ansprechende, energieerzeugende Fassaden entwickelt, gekennzeichnet durch eine vereinfachte Installation in die Gebäudehülle und zum Anschluss an Gebäudeenergiesysteme. Dabei liegt der Fokus auf der Erarbeitung von Lösungen und Funktionsintegration für die konstruktive und elektrischen Anschluss- und Verbindungstechnik durch integrierte Aufhängung im Aluminiumprofil, angepasste Unterkonstruktion und integrierter Modulwechselrichter. Beanspruchungsanalysen, Durchführung von Feld- und Ertragstests und notwendigen Charakterisierungs- und Prüfmethoden zu Material- und Bauteilbewertung auf Seite der Photovoltaik und im Kontext BIM & Zulassung begleiten diese Arbeiten. Abschluss findet das Projekt mit einem Demonstratoraufbau und einer Wirtschaftlichkeitsanalyse zur Verifikation der Untersuchungsergebnisse und Demonstration einer anwendungsnahen Umsetzung. Das angestrebte modulare System bietet große Chancen mit ästhetisch ansprechenden Produkten zur Beschleunigung des Solarenergieausbaus insbesondere im urbanen Raum beizutragen und das Potential der gebäudeintegrierten Solarintegration aus seiner Nische heraus zu holen. Der Schwerpunkt am ISFH liegt auf der Entwicklung von industrietauglichen Fertigungsverfahren von PV-Modulen auf Al-Bauteilen, die Untersuchung der Langzeitstabilität, Erarbeitung von verschattungstoleranten Verschaltungskonzepten sowie der Bestimmung der PV-Erträge und Systembewertungen für komplexe Integrationssituationen.

Digitale Planung und automatisierte Produktion von Gebäude-integrierter Photovoltaik, Teilvorhaben: Optimierte Auslegung und Produktion von gebäudeintegrierten PV-Modulen durch den Einsatz von digitalen Zwillingen und Raytracing-Berechnungen

Das Projekt "Digitale Planung und automatisierte Produktion von Gebäude-integrierter Photovoltaik, Teilvorhaben: Optimierte Auslegung und Produktion von gebäudeintegrierten PV-Modulen durch den Einsatz von digitalen Zwillingen und Raytracing-Berechnungen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Leibniz Universität Hannover, Institut für Montagetechnik und Industrierobotik.Das Ziel des Projektes DIGI-PV ist die Reduktion von Hemmnissen für einen großflächigen Einsatz der PV-Technologie zur Erschließung von Fassadenflächen für die energetische Nutzung, mit Fokus auf Bestandsgebäuden. Die Hemmnisse bestehen hier aktuell in aufwändigen Planungsprozessen für die BIPV-Fassade, sowie in der nicht-automatisierten und somit kostenintensiven Herstellung von BIPV-Modulen. Hierfür werden automatisierte Prozesse und Werkzeuge entwickelt, die Planende, Produzierende und Nutzende befähigen, effiziente und kostengünstige Prozesse umzusetzen und entlang mehrerer Phasen der Produktlebensdauer zu unterstützen. Es werden Methoden für eine hochautomatisierte Erfassung, Digitalisierung, Klassifizierung und Strukturierung von Gebäudeoberflächen im Bestand entwickelt und in einen digitalen Zwilling des Gebäudes überführt. Gleichzeitig werden Konzepte für einen digitalen Zwilling des Prozesses auf Grundlage der Prozess- und Produktparameter erarbeitet. Auf Basis der digitalen Zwillinge werden anschließend Verfahren für die automatisierte Auslegung von BIPV-Modulen für eine optimale Nutzung der Gebäudeoberfläche entwickelt und Konzepte zur Ableitung der automatisierten Produktionsplanung erstellt. Die beteiligten Institute der Leibniz Universität Hannover forschen in diesem Teilvorhaben neben der optimierten Positionierung und Verschaltung von PV-Modulen auf Fassadeflächen auf Grundlage von Raytracing-Berechnungen. Außerdem forschen sie an Verfahren zur automatisierten Produktion sowie Konzepten der nachhaltigen Produktion von PV-Fassadenelementen.

1 2 3 4 512 13 14