Im Vorhaben AluPV werden langfristige Fragestellungen der bautechnischen Produktionstechnologie, neue Fertigungsverfahren und Materialkombination durch Verschränkung von Baustoffwirtschaft, Bereich Metall- und Fassadenbau, dem Energiesektor und dem Bereich Photovoltaikindustrie, adressiert. Dazu wird ein innovatives modulares Fassadensystem aus PV- und Designelementen für ästhetisch ansprechende, energieerzeugende Fassaden entwickelt, gekennzeichnet durch eine vereinfachte Installation in die Gebäudehülle und zum Anschluss an Gebäudeenergiesysteme. Dabei liegt der Fokus auf der Erarbeitung von Lösungen und Funktionsintegration für die konstruktive und elektrischen Anschluss- und Verbindungstechnik durch integrierte Aufhängung im Aluminiumprofil, angepasste Unterkonstruktion und integrierter Modulwechselrichter. Beanspruchungsanalysen, Durchführung von Feld- und Ertragstests und notwendigen Charakterisierungs- und Prüfmethoden zu Material- und Bauteilbewertung auf Seite der Photovoltaik und im Kontext BIM & Zulassung begleiten diese Arbeiten. Abschluss findet das Projekt mit einem Demonstratoraufbau und einer Wirtschaftlichkeitsanalyse zur Verifikation der Untersuchungsergebnisse und Demonstration einer anwendungsnahen Umsetzung. Das angestrebte modulare System bietet große Chancen mit ästhetisch ansprechenden Produkten zur Beschleunigung des Solarenergieausbaus insbesondere im urbanen Raum beizutragen und das Potential der gebäudeintegrierten Solarintegration aus seiner Nische heraus zu holen. Der Schwerpunkt am ISFH liegt auf der Entwicklung von industrietauglichen Fertigungsverfahren von PV-Modulen auf Al-Bauteilen, die Untersuchung der Langzeitstabilität, Erarbeitung von verschattungstoleranten Verschaltungskonzepten sowie der Bestimmung der PV-Erträge und Systembewertungen für komplexe Integrationssituationen.
Eine im Auftrag des FNN im VDE erstellte Studie von Ecofys und dem IFK empfiehlt die teilweise Nachrüstung von Solarstromanlagen, um die sogenannte 50,2-Hertz-Problematik zu lösen. Bis zur Einführung einer Übergangsregelung im April 2011 mussten sich Stromerzeuger am Niederspannungsnetz beim Überschreiten einer Netzfrequenz von 50,2 Hertz vom öffentlichen Netz trennen. Würde der seltene Fall einer Überfrequenz mit der heute installierten PV-Leistung eintreten, ginge deren zu diesem Zeitpunkt eingespeiste Leistung schlagartig verloren. Das Nachrüsten älterer Solaranlagen soll für diesen Fall Vorsorge treffen und rund 9 GW installierte Leistung ertüchtigen. Die Studie mit dem vollständigen Titel Auswirkungen eines hohen Anteils dezentraler Erzeugungsanlagen auf die System-/Netzstabilität bei Überfrequenz und Entwicklung von Lösungsvorschlägen zu deren Überwindung wurde von Ecofys und dem Institut für Feuerungs- und Kraftwerkstechnik (IFK) der Universität Stuttgart verfasst. Auftraggeber sind die vier deutschen Übertragungsnetzbetreiber vertreten durch EnBW Transportnetze AG, der Bundesverband Solarwirtschaft e. V. (BSW-Solar) und das Forum Netztechnik/Netzbetrieb im VDE (VDE/FNN). Die Empfehlungen wurden am 1. September 2011 den Bundesministerien für Umwelt und für Wirtschaft vorgestellt.
Bislang ist die Kaufentscheidung bei Solarmodulen überwiegend preisgetrieben. Bewertungskriterien wie die Recyclingfähigkeit, die CO2-Emission bei der Herstellung oder die Vermeidung umweltbedenklicher Stoffe spielen eine untergeordnete Rolle bei der Kaufentscheidung. Aus diesem Grund wird auf EU-Ebene eine Ökodesign-Verordnung mit einem dazugehörigen Energielabel für Solarmodule vorbereitet, die 2023 in Kraft treten soll. Der Kunde soll Informationen zur Nachhaltigkeit des Solarmodules erhalten. Darüber hinaus sollen Solarmodule vom Markt ferngehalten werden, die gewisse Grenzwerte überschreiten. Ziel des Forschungsvorhabens ist es, nachhaltige Solarmodule, Herstellungs- und Recyclingverfahren zu entwickeln und im Produktionsmaßstab zu demonstrieren, die die geplante EU-Verordnung zum Ökodesgin und Energielabel überdurchschnittlich erfüllen. Insbesondere werden die folgenden Nachhaltigkeitsmerkmale entwickelt: (1) Recyclebarkeit und Einsatz von Sekundärrohstoffen, (2) geringer Material- und Energieverbrauch bei der Modulherstellung, (3) Vermeidung umweltbedenklichen Stoffe, (4) Reparierbarkeit des Solarmoduls, (5) Erhöhung des Jahresenergieertrages und der Modulzuverlässigkeit (Degradationsrate, Lebensdauer, Ausfall). Die Material- und Solarmodulentwicklungen werden ganzheitlich mit einer Lebenszyklusanalyse bewertet. Als Ziel gilt es, einen CO2-Fußabdruck von unter 20 g CO2eg/kWh zu erreichen und Konzepte aufzuzeigen, die den Bedarf an Blei, Antimon und Fluor im Modul bei gleichbleibenden Kosten eliminieren, das Recycling als Sekundärrohstoff ermöglichen, die Reparatur der Bypass-Dioden erlauben und eine geringe Degradation und eine hohe Lebensdauer aufweisen.
Zentrales Ziel des Gesamtvorhabens ist es nachhaltige Solarmodule zu entwickeln, welche die geplante EU-Verordnung zum Ökodesgin und zum Energielabel überdurchschnittlich erfüllen. Thematische Schwerpunkte zur Optimierung im Projekt sind (1) Recyclebarkeit, (2) Material- und Energieverbrauch, (3) Vermeidung umweltbedenklicher Stoffe, (4) Reparierbarkeit, (5) Ertrag und Zuverlässigkeit. Das vorgeschlagene Teilprojekt von SOLARWATT befasst sich mit der praktischen Umsetzung von Optimierungsmöglichkeiten, die im Rahmen des Gesamtprojektes erarbeitet werden. SOLARWATT wird gemeinsam mit den Partnern im Forschungsverbundvorhaben theoretische und experimentelle Fragestellungen bezüglich BOM, Verbindungstechnik und Moduldesign bearbeiten mit der Zielsetzung eine Optimierung bzgl. eines oder mehrere Schwerpunkte (1-5) zu erfüllen. Hierzu wird SOLARWATT im Rahmen des Teilprojektes durch Fertigung und Erprobung von Modul Prototypen beitragen. Ziel ist es innerhalb des Projektes Vorentscheidungen bzgl. BOM, Layout und Fertigungstechnologie zu erarbeiten, die nachfolgend eine risikoarme Überführung in eine Serienproduktion ermöglichen. Hierzu werden die vorgeschlagenen Optimierungen bezüglich Ihrer Eignung für SOLARWATT bezgl. Fertigbarkeit, Qualität, Zuverlässigkeit und Wirtschaftlichkeit unterworfen. Es wird innerhalb des Teilprojektes bewertet welche technischen Lösungen die größte Aussicht haben zu einer Steigerung der Wettbewerbsfähigkeit der SOLARWATT Produkte beizutragen.
Obwohl Photovoltaik (PV) eine nachhaltige Energiequelle ist, liegt der Fokus der Photovoltaikbranche heute eher auf Effizienzsteigerung und Kostensenkung als auf Nachhaltigkeit, Kreislaufwirtschaft, Reparaturfähigkeit und Lebensdauer einzelner Komponenten. Um die Klimaziele zu erreichen, muss die PV-Stromerzeugung in Deutschland deutlich ausgebaut werden. Das Ausbauziel der Bundesregierung bis 2030 liegt aktuell bei 216 GW installierte Leistung, bis 2045 müssen es rund 450 GW sein. Das entspricht einer Menge von ca. 20 Millionen Tonnen installierter PV-Module allein bis 2030. Ausgehend von einem jährlichen Ausschuss von 5 % der Module durch Defekte aber auch Repowering, ergeben sich ca. 1 Millionen Tonnen Elektroschrott pro Jahr. Um eine Kreislaufwirtschaft auch in der PV-Branche zu etablieren, müssen diese PV Modulen möglichst repariert anstatt recycelt werden. Das Forschungsprojekt RENEW setzt hier an. Ziele Teilvorhaben 2ndlifesolar: - Integration einer neuartigen ortsaufgelösten Hochspannungsisolationsprüfung in das bestehende Prüfumfeld zur Prüfung von gebrauchten PV-Modulen - Nutzung der HV-Prüfung zur Bewertung der Raparaturfähigkeit bisher als Abfall anfallender PV-Module - Entwicklung, Erprobung und Qualifizierung von Reparaturverfahren für bisher irreparable PV-Module mit Isolationsdefekten - Qualifizierung von reparierten PV-Modulen im industriellen Maßstab - Reduzierung des Abfallaufkommens an PV-Modulen mit schadhaften polyamidbasierten Rückseitenfolien durch geeignete Reparaturlösungen und die Weiternutzung von frühzeitig ausfallenden PV-Modulen ermöglichen - Begünstigung einer nachhaltige Kreislaufwirtschaft im PV-Bereich
Photovoltaik (PV) Kraftwerke sind aus einer Vielzahl von Erzeugungseinheiten aufgebaut. Das Zusammenspiel der eingesetzten Wechselrichter und der kraftwerksinternen Verkabelungen und Transformatoren ist entscheidend für die Stabilität und Zuverlässigkeit der PV-Kraftwerke. Immer wieder zeigen sich unerwünschte Resonanzeffekte oder hohe Oberschwingungspegel, die trotz umfangreicher Netzanschlussverfahren auftreten. Ziel der morEnergy ist die methodische Weiter- und Neuentwicklung von Verfahren der Netz- und Anlagenimpedanzbestimmung. Die Impedanzmessung erlaubt es das Netz und die am Netz angeschlossenen elektrischen Anlagen wie PV-Anlagen tiefergehend in seinen elektrischen Bestandteilen zu untersuchen. Durch die Weiterentwicklung hin zur Anlagenimpedanz-messung können in Zukunft vereinfacht Stabilitätsbewertungen von Wechselrichtersystemen in Wechselwirkung mit dem vorgelagerten Stromnetz vorgenommen werden. Hauptaugenmerk liegt auf der Entwicklung von neuartigen Methoden und Verfahren, welche einen mobilen Einsatz an bestehenden PV-Kraftwerken und realen Netzanschlüssen ermöglichen. Dabei sollen große Messdatenmengen zum Beispiel unter Zuhilfenahme von KI-basierter Algorithmen ausgewertet werden. Des Weiteren wird die morEnergy eine Konzeptentwicklung für ein neuartiges Healthmonitoringsystem von PV-Wechselrichtern vornehmen. Die Möglichkeit, die Anlagen und Netzimpedanz im laufenden Betrieb messen zu können, ist einzigartig. Dadurch werden für mE und die Partner neue Wege den Gesundheitszustand von leistungselektronischen Komponenten im PV-Park überwachen zu können, eröffnet. Ein solches Konzept existiert bisher nicht und es ermöglicht die Realisierung von innovativen und nachhaltigen Produkten für die Solarindustrie.
Im vorliegenden Projekt soll die Technologie von SunHydrogen zur photoelektrochemischen Wasserspaltung vom Laboraufbau zu einer Demonstrationsanlage weiter geführt werden, um damit die industrielle Fertigung im 1000 Stück-Maßstab vorzubereiten. Das Projekt zielt auf ein photoelektrochemisches Modul mit einer solar-to-hydrogen-Effizienz von mindestens 10 % und einer aktiven Fläche von etwa 100 cm2 pro Elektrode bei mindestens 12 Elektroden pro Modul. Von dem übergeordneten Ziel leiten sich u.a. Arbeitsinhalte in dem Bereich ‘Messtechnik’ ab, da der Mangel an geeigneter Messtechnik für photoelektrochemische Anwendungen ihre industrielle Umsetzung erschwert. Daher werden die Projektpartner im Bereich ‘Analytik’ Messgeräte und -verfahren entwickeln. Sie verfolgen das Ziel, eine effektive Produktionskontrolle sowie reproduzierbare Forschungs- und Entwicklungsarbeiten im Labor und unter Anwendungsbedingungen zu ermöglichen. Der Projektpartner Wavelabs wird Sonnensimulator-Messsysteme für die Untersuchung von photoelektrochemischen Systemen weiterentwickeln und dabei sowohl die Anwendung im Labor als auch im Rahmen der Produktionskontrolle adressieren. Die technologische Grundlage bilden LED-basierte Systeme für die Photovoltaik-Industrie. Diese können nur mit Einschränkungen für photoelektrochemische Messungen verwendet werden. Entwicklungsarbeiten sind beispielsweise erforderlich, um die zeitliche Stabilität des Spektrums und die spektrale Zusammensetzung des Spektrums an die veränderten Anforderungen anzupassen. Vergleichbare Systeme sind auf dem Markt bislang nicht verfügbar.
Mit diesem Teilprojekt soll die Glasmanufaktur Brandenburg sich auf die kommende Einstufung gemäß der Ökodesign-Richtlinie vorbereiten, welche den produktrelevanten CO2-Ausstoß und die Verwendung umweltschädlicher Materialien bewertet. Das Solarglas ist für Herstellung von Solarmodulen ein wichtiger Bestandteil, somit hat das Glas einen erheblichen Anteil bei der Bewertung gemäß der Ökodesign-Richtlinie. Folglich sind die Ziele im Projekt für die Aspekte Energieverbrauch, Recycling und Vermeidung von umweltschädlichen Materialien in der Glasproduktion in den entsprechenden Arbeitspaketen aufgegriffen. Die Energieeinsparung und die Wiederverwertbarkeit sollen mit der Verwendung von Sekundärrohstoffen aus dem Recycling und der Dickenreduzierung erreicht werden. Die Vermeidung umweltschädlicher Materialien betrifft die Gemengekomponente Antimon, welche reduziert oder ersetzt werden soll, ohne die Produkteigenschaften zu verlieren. Diese Arbeiten werden durch die Ertragsverbesserungen bei geringerer Degradation flankiert.
Origin | Count |
---|---|
Bund | 189 |
Land | 15 |
Wissenschaft | 2 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 176 |
Text | 21 |
Umweltprüfung | 3 |
unbekannt | 3 |
License | Count |
---|---|
geschlossen | 26 |
offen | 178 |
Language | Count |
---|---|
Deutsch | 186 |
Englisch | 55 |
Resource type | Count |
---|---|
Datei | 3 |
Dokument | 13 |
Keine | 114 |
Webseite | 84 |
Topic | Count |
---|---|
Boden | 77 |
Lebewesen & Lebensräume | 65 |
Luft | 54 |
Mensch & Umwelt | 204 |
Wasser | 33 |
Weitere | 195 |