API src

Found 621 results.

Trends der Niederschlagshöhe

<p>Seit 1881 hat die mittlere jährliche Niederschlagsmenge in Deutschland um rund 9 Prozent zugenommen. Dabei verteilt sich dieser Anstieg nicht gleichmäßig auf die Jahreszeiten. Vielmehr sind insbesondere die Winter deutlich nasser geworden, während die Niederschläge im Sommer geringfügig zurückgegangen sind.</p><p>Teilweise sehr regenreiche Jahre seit 1965</p><p>Die Zeitreihe der jährlichen Niederschläge in Deutschland (Gebietsmittel) zeigt einen leichten Anstieg, der mit einer Irrtumswahrscheinlichkeit von 5 % statistisch signifikant ist. Dieser Anstieg ist im Wesentlichen darauf zurückzuführen, dass bis etwa 1920 nur selten überdurchschnittlich niederschlagsreiche Jahre aufgetreten sind. Im Anschluss an eine Übergangsphase mit mehreren leicht überdurchschnittlich feuchten Jahren traten ab Mitte der 1960er Jahre dann auch einige sehr regenreiche Jahre auf (siehe Abb. „Mittlere jährliche Niederschlagshöhe in Deutschland 1881 bis 2024). Dies entspricht genau der Zeit, seit der die Auswirkungen des Klimawandels global deutlich zu beobachten sind. Im globalen Durchschnitt steigt mit den Temperaturen auch die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verdunstung#alphabar">Verdunstung</a>⁠ von Wasser an, was in der globalen Summe zu größeren Niederschlagsmengen führt, jedoch mit regional und saisonal sehr großen Unterschieden - von Dürren bis Überschwemmungen.</p><p>Seit 2011 wurden in Deutschland einige ausgesprochen trockene Jahre beobachtet. In den Jahren 2023 und 2024 wurde jedoch überdurchschnittlich viel Niederschlag registriert. Der Niederschlagsüberschuss im Jahr 2024 resultierte vor allem aus den Monaten Februar, Mai und September. Im Mai kam es in Rheinland-Pfalz und im Saarland in Folge von Schauern und Gewittern zu Überschwemmungen. Ende Mai und Anfang Juni führten viele Flüsse in Baden-Württemberg und Bayern nach langanhaltenden Niederschlägen Hochwasser.</p><p>Noch stärker als bei den mittleren Temperaturen ist dieser Trend also nicht gleichmäßig in allen Jahreszeiten ausgeprägt. Er beruht im Wesentlichen darauf, dass die mittleren Winterniederschläge zugenommen haben. Im Winter 2023/2024 lag mit 279,7 mm Niederschlag die Abweichung zum historischen Referenzzeitraum 1881-1910 bei +131,5 mm. Frühling und Herbst zeigen ebenfalls eine leichte, aber im Gegensatz zum Winter nicht signifikante Zunahme, während die Niederschläge im Sommer geringfügig zurückgegangen sind (siehe nachfolgende Tabellen und Abbildungen).</p><p>Bemerkenswert ist aus klimatologischer Sicht, dass mit den Jahren 2023 und 2024 die Serie von sehr trockenen Jahren unterbrochen wurde. Mit dem Juni bzw. September wurden jeweils die niederschlagsreichsten 12-Monatsperioden beobachtet. Am Ende des Jahres lagen die Niederschlagsmengen wieder unter dem Durchschnitt</p><p>Mit 902 mm belegt 2024 auf der Rangliste der nassesten Jahre seit 1881 den 12. Platz (siehe Karte „Jährliche Niederschläge in Deutschland im Jahr 2024").</p><p>Bei der Betrachtung der Einzelmonate sind erhebliche Unterschiede erkennbar: Im Jahresverlauf wiesen 8 Monate überdurchschnittliche Niederschlagsmengen auf (Januar, Februar, April, Mai, Juni, Juli, September, Oktober) und 4 Monate unterdurchschnittliche Niederschläge (März, August, November, Dezember). Über das Jahr ergibt sich ein Niederschlagsüberschuss von 14 %.</p><p>Und auch regional unterscheidet sich die Niederschlagsverteilung im Jahr 2024 sehr stark: Besonders die Bundesländer im Nordwesten (Schleswig-Holstein, Niedersachsen, Rheinland-Pfalz) erreichten Platzierungen unter den zehn nassesten Jahren, während Sachsen nur auf Platz 88 von 144 Jahren landete (siehe Karte „Veränderung der jährlichen Niederschläge in Deutschland im Jahr 2024).</p><p><em>Wir danken dem</em><a href="https://www.dwd.de/DE/Home/home_node.html"><em>Deutschen Wetterdienst</em></a><em>für die Bereitstellung der Daten.</em></p>

Flood risk in a changing climate (CEDIM)

Aims: Floods in small and medium-sized river catchments have often been a focus of attention in the past. In contrast to large rivers like the Rhine, the Elbe or the Danube, discharge can increase very rapidly in such catchments; we are thus confronted with a high damage potential combined with almost no time for advance warning. Since the heavy precipitation events causing such floods are often spatially very limited, they are difficult to forecast; long-term provision is therefore an important task, which makes it necessary to identify vulnerable regions and to develop prevention measures. For that purpose, one needs to know how the frequency and the intensity of floods will develop in the future, especially in the near future, i.e. the next few decades. Besides providing such prognoses, an important goal of this project was also to quantify their uncertainty. Method: These questions were studied by a team of meteorologists and hydrologists from KIT and GFZ. They simulated the natural chain 'large-scale weather - regional precipitation - catchment discharge' by a model chain 'global climate model (GCM) - regional climate model (RCM) - hydrological model (HM)'. As a novel feature, we performed so-called ensemble simulations in order to estimate the range of possible results, i.e. the uncertainty: we used two GCMs with different realizations, two RCMs and three HMs. The ensemble method, which is quite standard in physics, engineering and recently also in weather forecasting has hitherto rarely been used in regional climate modeling due to the very high computational demands. In our study, the demand was even higher due to the high spatial resolution (7 km by 7 km) we used; presently, regional studies use considerably larger grid boxes of about 100 km2. However, our study shows that a high resolution is necessary for a realistic simulation of the small-scale rainfall patterns and intensities. This combination of high resolution and an ensemble using results from global, regional and hydrological models is unique. Results: By way of example, we considered the low-mountain range rivers Mulde and Ruhr and the more alpine Ammer river in this study, all of which had severe flood events in the past. Our study confirms that heavy precipitation events will occur more frequently in the future. Does this also entail an increased flood risk? Our results indicate that in any case, the risk will not decrease. However, each catchment reacts differently, and different models may produce different precipitation and runoff regimes, emphasizing the need of ensemble studies. A statistically significant increase of floods is expected for the river Ruhr in winter and in summer. For the river Mulde, we observe a slight increase of floods during summer and autumn, and for the river Ammer a slight decrease in summer and a slight increase in winter.

Can the resistance and resilience of trees to drought be increased through thinning to adapt forests to climate change?

Recent and predicted increases in extremely dry and hot summers emphasise the need for silvicultural approaches to increase the drought tolerance of existing forests in the short-term, before adaptation through species changes may be possible. We aim to investigate whether resistance during droughts, as well as the recovery following drought events (resilience), can be increased by allocating more growing space to individual trees through thinning. Thinning increases access of promoted trees to soil stored water, as long as this is available. However, these trees may also be disadvantaged through a higher transpirational surface, or the increased neighbourhood competition by ground vegetation. To assess whether trees with different growing space differ in drought tolerance, tree discs and cores from thinning experiments of Pinus sylvestris and Pseudotsuga menziesii stands will be used to examine transpirational stress and growth reduction during previous droughts as well as their subsequent recovery. Dendroecology and stable isotopes of carbon and oxygen in tree-rings will be used to quantify how assimilation rate and stomatal conductance were altered through thinning. The results will provide crucial information for the development of short-term silvicultural adaptation strategies to adapt forest ecosystems to climate change. In addition, this study will improve our understanding of the relationship between resistance and resilience of trees in relation to extreme stress events.

Monsunvariabilität in SE-China - der Huguang-Maarsee (Huguangyan)

Südchina, insbes. die Provinz Guandong, ist eines der am dichtesten besiedelten Gebiete der Erde. Positive Konsequenz dieser Ballung ist eine äußerst dynamische Wirtschaftsentwicklung, aber gerade diese von subtropischem Monsunklima geprägte Region ist auch immer wieder Ausgangspunkt für sich schnell und zunehmend global ausbreitende epidemische Krankheiten wie zuletzt SARS. Mit der globalen Erwärmung einhergehende Klimaveränderungen könnten sich für diese Region insbesondere durch Veränderungen der Häufigkeit und Intensität tropischer Wirbelstürme, aber auch Änderungen der Niederschlagsmenge- und Intensität bemerkbar machen. Im Gegensatz zu den schon recht umfangreichen Datensätzen aus der Südchinesischen See (SCS) gibt es bisher jedoch nur sehr wenige terrestrische Paläoklimaarchive aus der Region, die Klimaveränderungen während des Holozäns, des Spätglazials oder Glazials hochauflösend dokumentieren. Wir haben deshalb einen an der nördlichen Küste der SCS gelegenen Maarsee ausgewählt, um über die Analyse von Proxydaten aus Seesedimenten solche Paläo-Klimavariationen zu untersuchen. Aus dem Sediment des Huguang-Maarsees wurden mittels Usinger-Präzisionsstechtechnik von einem Floss aus insgesamt 7 Sedimentsequenzen gewonnen, von denen die tiefste bis 57 m unter den Seeboden reicht. Die zeitliche Einstufung der Profile wurde mit Hilfe von 17 Radiokohlenstoff-Datierungen vorgenommen und ergab ein extrapoliertes Maximalalter von ca. 78.000 Jahren. Ein breites Spektrum aus sedimentologischen, geochemischen, paläo- und gesteinsmagnetischen sowie palynologischen Methoden kam sodann zum Einsatz, um die Paläo-Umweltbedingungen, die natürlich immer das entsprechende Klima widerspiegeln, während dieses Zeitraumes zu rekonstruieren. Überraschenderweise ergab sich ein von vielen bekannten Klimaprofilen der Nordhemisphäre (insbes. des Atlantikraumes, aber auch mariner Kerne aus dem Indik und Südostasien) abweichendes Muster. Im Gegensatz zu dem bekannten Grundmuster eines vergleichsweise stabilen Klimas während des Holozäns und stärkerer Schwankungen während des letzten Glazials weisen die Daten aus dem Huguang-Maarsee für das letzte Glazial im Zeitraum zwischen 15.000 und 40.000 Jahren auf relativ stabile Umweltbedingungen hin. Die älteren Bereiche zwischen 40.000 und ca. 78.000 Jahren haben durch Eintrag von umgelagertem Torf eine eher lokale Komponente und sind somit für den regionalen und globalen Vergleich ungeeignet. Das Holozän hingegen zeichnet sich durch hohe Schwankungsamplituden vieler Proxydaten (Karbonatgehalt, magnetische Suszeptibilität, organischer Kohlenstoff, Trockendichte, gesteinsmagnetische Parameter, Redox-Verhältnisse) aus, die auf ein recht variables Klima hinweisen. Besonders interessant ist die Übergangsphase vom Glazial zum Holozän, die bei etwa 15.000 Jahren vor heute in etwa zeitgleich mit dem beobachteten stärksten Meeresspiegelanstieg der Südchinesischen See einsetzt und eine abrupte Intensitätszunahme des Sommermonsuns anzeigt

Verschiedene Formen des Weisstannensterbens

Seit ueber 100 Jahren wird ein Weisstannensterben beschrieben. Es scheint nicht ein sondern mehrere Formen des Sterbens zu geben. Bisher zeichnet sich ab: 1. Eine primaer durch kalte Winter mit besonderen Witterungskonstellationen verursachte Krankheit; 2. Eine Form, bei der die Weisstannenstammlaus eine erhebliche Rolle spielt; 3. Eine Form die ueberwiegend auf verschiedene Insekten zurueck geht; 4. Eine Form, bei der der Wind, bzw. der Sturm ausloesende Wirkung hat. Alle Formen werden durch die seit Jahrzehnten erwaehnten Jahre mit warmer Witterung beguenstigt bzw. durch feucht-kuehle Sommer behoben.

Kühler Ort

Im Rahmen des Kölner Hitzeportals wird eine digitale Stadtkarte bereitgestellt, in die Bürger*innen ihre „Kühlen Orte“ eintragen können, welche einen angenehmen Aufenthalt bei sommerlicher Hitze bieten.

Innovationsraum: Erzeugung Biobasierter Phasenwechselmaterialien aus abfallwirtschaftlichen Prozessen zur Integration in einen thermischen Energie-Speicher-Schaum als nachhaltiger Dämmstoff für Gebäudeanwendungen, Teilprojekt F- Umsetzungsphase

Freilichtmuseen

Hier finden Sie eine Auswahl an Freilichtmuseen in Bayern. Die Daten werden durch die Bayerische Vermessungsverwaltung (BVV) bereitgestellt. Bei Fragen wenden Sie sich an den Kundenservice: service@geodaten.bayern.de - 089 2129-1111. Quelle: Bayerische Vermessungsverwaltung; Foto Themenbild: © Andreas P - Fotolia

Filtrationsleistung des Makrozoobenthos der Spree

Die Nahrungsgewinnung durch passive oder aktive Filtration bildet den haeufigsten Ernaehrungstyp der benthischen Wirbellosen der Spree (Schoenfelder pers Mitt). Eine Grossmuschel aus der Familie der Unioniden kann nach vorlaeufigen Ergebnissen mit ihrer Filtrationsleistung von 0.6 - 4 mg organischem Material pro Stunde in dieser Zeit groessenordnungsmaessig die Haelfte des Partikelgehalts in einem Liter Wasser entfernen. Abhaengig von der Siedlungsdichte der Muscheln kann somit ein fuer das Oekosystem bedeutsamer Eliminationseffekt entstehen. Eine Sedimentkartierung eines 6.6 km langen Spreeabschnitts oberhalb Freienbrink ergab, dass die Muscheln dort allerdings lediglich in zwei uferparallelen Siedlungsstreifen zu finden sind, die durch Feinsand-, Feinkies- und Totholzvorkommen charakterisiert sind. Der groesste Teil der Sohle dieses begradigten und befestigten Flussabschnitts wird von nahezu unbesiedeltem Treibsand eingenommen. Trotz der relativ geringen Populationsgroesse eliminieren die Muscheln in diesem Spreeabschnitt im Sommer pro Tag etwa 1/40 bis 1/7 der Partikelfracht. In einem anderen Flussabschnitt der Spree, der sogenannten 'Krummen Spree' bei Alt Schadow, besiedeln die Grossmuscheln einen groesseren Bereich des Flussquerschnitts, sodass ihre Individuenzahlen dort mit etwa 30 Ind m hoch Minus 2 um das 15 fache hoeher sind. Bei diesen Siedlungsdichten sind die Grossmuscheln in der Lage, das Flusswasser in etwa 10 - 60 Stunden rechnerisch vollstaendig klarzufiltrieren. Im Verlauf dieses 22 km langen Flussabschnitts wurden dadurch im Sommer 1994, abhaengig von bestimmten Randbedingungen, 50-95 Prozent des Phyto- und Zooplanktons eliminiert (Welker pers Mitt).

Forschungsprogramm Experimenteller Wohnungs- und Städtebau (ExWoSt), Modellprojekt Stadt Regensburg

Ausgangslage/Betroffenheit: Die Stadt Regensburg hat etwa 134.000 Einwohner (Erstwohnsitze) und ist damit die viertgrößte Stadt Bayerns. Unter den Modellvorhaben weist Regensburg das stärkste Bevölkerungswachstum auf - sowohl in der zurückliegenden Einwohnerentwicklung als auch in den Prognosen bis 2025, nach denen ein Anstieg der Bevölkerung um 5,4Prozent erwartet wird. Regensburg liegt am nördlichsten Punkt der Donau und den Mündungen der linken Nebenflüsse Naab und Regen. Es wird von den Winzerer Höhen, den Ausläufern des Bayrischen Waldes und dem Ziegetsberg umrandet, wodurch die Entstehung von Inversionswetterlagen begünstigt wird. Durch die topographische Pfortenlage weist die Stadt zudem eine hohe Nebelhäufigkeit auf und ist insbesondere in den Wintermonaten anfällig für Feinstaubbelastungen. Im Gegensatz zu vielen anderen Städten hat Regensburg einen relativ kompakt gegliederten Stadtkörper und eine insgesamt homogene Siedlungsstruktur. Prägend ist die historische Altstadt mit ca. 1.000 denkmalgeschützten Gebäuden. Diese gilt als einzige authentisch erhaltene, mittelalterliche Großstadt Deutschlands und ist seit 2006 Welterbe der UNESCO (Organisation der Vereinten Nationen für Erziehung, Wissenschaft und Kultur). Die Regensburger Altstadt wird als 'Steinerne Stadt' charakterisiert. Ihre historisch gewachsene dichte Baustruktur mit steinernen Plätzen und Gassen, wenig Bäumen im öffentlichen Raum und einer hohen Nutzungsdichte (Wohnen, Einkaufen, Arbeiten, Tourismus) erwärmt sich insbesondere im Sommer stärker als das Umland und wirkt als Hitzespeicher. So können die Temperaturunterschiede im Stadtgebiet bis zu 6 GradC betragen. Das Phänomen der Wärmeinsel, das sich im Zuge des fortschreitenden Klimawandels deutlicher ausprägt, impliziert einen sinkenden thermischen Komfort, löst zusätzliche Energiebedarfe aus und stellt u.U. veränderte Ansprüche an die Gestaltung von Freiflächen. Aufgrund der Lage an der Donau muss sich Regensburg ferner auf häufigere Schwüle und Gefährdung durch Hochwasser einstellen. Aus der Notwendigkeit zur Anpassung an den Klimawandel erwächst in Verbindung mit anderen Zielbildern einer nachhaltigen Siedlungsentwicklung ein umfassender planerischer Handlungsbedarf. Im Rahmen des Modellprojekts thematisiert die Stadt Regensburg den Widerspruch zwischen einer Stadtentwicklungs- und Bauleitplanung, die auf Flächensparsamkeit und Innenentwicklung ausgerichtet ist, und erforderlichen Anpassungsstrategien an den Klimawandel, die bei der besonderen städtebaulichen Kompaktheit der Stadt Regensburg tendenziell eine Auflockerung von Baustrukturen und Flächenentsiegelung beinhalten. Im Sinne einer klimaangepassten Stadtentwicklung galt es: - auf strategischer Ebene die Weichen für eine klimaangepasste Flächennutzung für die zukünftige Stadtentwicklung zu stellen - auf operativer Ebene Maßnahmen für restriktive bis persistente Stadt- und Freiraumstrukturen zu entwickeln.

1 2 3 4 561 62 63