Einer der global größten Kohlenstoffspeicher ist die organische Bodensubstanz (OBS), welche eine zentrale Quelle für die Pflanzennährstoffe Stickstoff (N) und Phosphor (P) darstellt. Bodenmikroorganismen sind die Hauptakteure beim Umsatz der OBS und damit ein zentrales Bindeglied zwischen Kohlenstoff- (C) und Nährstoffkreisläufen. Sie sind jedoch stark durch Phagen (also Viren, die Bakterien befallen) beeinflusst. In Ozeanen sterben täglich 20% der bakteriellen Zellen durch Phagen, was zu einem Umsatzpfad („viral shunt“) führt, der große Mengen organischer Substanz und damit assoziierter Nährstoffe aus bakterieller Biomasse freisetzt. Das erhöht die Produktivität der Ozeane und speichert C in bakteriellen Rückständen. Trotz ihrer hohen Abundanz in Böden wurden Phagen in der Bodenbiogeochemie kaum berücksichtigt. Meine Nachwuchsgruppe wird erstmals untersuchen wie die Biophysik des Mikrohabitats die Infektion durch Phagen und damit bakterielle Sterberaten steuert. Wir werden herausfinden, ob hierdurch ein vergleichbarer „viral shunt“ in Böden vorliegt und quantifizieren dessen Auswirkung auf Nährstoff- und CO2-Feisetzung sowie auch der Speicherung von C. Wir möchten gezielt über phänomenologische Beschreibungen hinausgehen und zugrundeliegende Mechanismen aufklären. Bodenmikrohabitate werden mit modernsten bildgebenden Verfahren zur Aufklärung mikroskaliger Strukturen charakterisiert: 3D Wasserverteilung im Habitat durch synchrotronbasierte Mikrotomographie, Verteilung der OBS mit Rasterelektronenmikroskopie und Mineralogie der Porenoberflächen mittels Raman-Mikrospektroskopie. Phagen aus Böden werden isoliert und ihre Phage-Habitat-Interaktionen erfasst, um so die Relevanz des Mikrohabitats für die Phagenausbreitung zu eruieren. Der Einfluss des Mikrohabitats auf die Infektionsrate und damit auf Stoffkreisläufe wird mittels der Kopplung molekularer Methoden mit Isotopenanwendungen untersucht werden, und zwar i) 18O-DNA Markierung (SIP) zur Erfassung der Phagenbildung sowie des bakteriellen Zellsterbens, ii) der Bestimmung der Abundanz relevanter funktioneller Gene und iii) der Quantifizierung der Mineralisationsraten durch Isotopenverdünnung. Der Einsatz isotopisch markierter Phagen (13C, 15N, 33P) wird die phageninduzierte Änderungen der Elementflüsse aufzeigen. Damit wird erstmal ein mechanistisches Verständnis erlangt, wie Bodenphagen in Interaktion mit ihrem Habitat biogeochemische Kreisläufe von globaler Bedeutung beeinflussen. Des Weiteren wird der Einfluss dynamischer Änderungen des Mikrohabitats auf Phagen untersucht sowie evolutionäre Anpassungen der Phagen an ihre Habitate. Detailliertes Prozessverständnis ist hier von höchster Relevanz um die Auswirkung anthropogener Aktivität oder des Klimawandels auf Bodenphagen vorherzusagen. Daher werden diese Erkenntnisse final in ein dynamisches Modell integriert, um erstmals die Vorhersage phageninduzierter Prozesse in Böden zu ermöglichen - für deren Einsatz in Landnutzung und Landwirtschaft.
In Innenräumen findet sich eine Vielzahl von Chemikalien, die aus Gegenständen, Materialien oder durch menschliche Aktivitäten freigesetzt werden und ein Risiko für aquatische Ökosysteme darstellen können, falls entsprechende Chemikalien in den Wasserkreislauf gelangen. Wir stellen die Hypothese auf, dass aromatische Amine (AA), die aus Innenräumen emittiert werden, in Oberflächengewässer eingetragen werden und dort signifikant zur Belastung und der damit verbundenen Mutagenität beitragen. Gewaschene Textilien, die durch Emissionsquellen in Innenräumen mit AA kontaminiert sind, wirken als Überträger dieser Substanzen in Abwässer. Die Berücksichtigung dieses Übertragungsweges kann uns helfen, das Auftreten von AA ohne klare Emissionsquellen in Oberflächengewässern besser zu verstehen. In vielen Studien wird berichtet, dass AAs, welche in Innenräumen beispielweise durch Rauchen und Grillen von Fleisch entstehen, die Hauptursache für Mutagenität in Oberflächengewässern und häuslichen Abwässern sind. Sie können durch gasförmige und Partikeldepostion auf Textilien adsorbiert werden. Daher wollen wir den Übertragungsweg von AA aus Innenräumen in Oberflächengewässer im Hinblick auf die folgenden vier Aspekte untersuchen: (i) Stoffgruppen-spezifisches Non-target-Screening zum Nachweis der gesamten Verbindungsklasse in allen Matrizes entlang des dargestellten Expositionspfades, d.h. in Extrakten von Textilien, Staub, Waschwasser, Abwasser und Oberflächenwasser; (ii) Instrumente zum Monitoring aromatischer Amine aus Abwässern und Oberflächengewässern mittels selektiver Anreicherung, um ihren Verbleib in Kläranlagen und das damit verbundene Risiko für Wasserorganismen zu entschlüsseln; (iii) Charakterisierung der Aufnahme AA durch Textilien durch gasförmige und Partikeldeposition und ihre Verteilung in Innenräumen durch Expositionsexperimente im Labor und realen Innenräumen und (iv) Anwendung aller entwickelten Instrumente und Methoden in Kombination mit diagnostischen Mutagenitätstests zur Aufklärung der angenommenen Emissionswege. Hierbei werden Textilbelastung in Innenräumen mit verschiedenen AA-Quellen berücksichtigt, Waschexperimente durchgeführt und Proben aus Kläranlagen und Abwasserauffangbecken entnommen, um die quellenbezogenen Muster und die wichtigsten AA zu identifizieren, die die beobachtete mutagene Aktivität verursachen. Mit diesem Ansatz wollen wir die Kenntnislücke zwischen Innenraumexpsosition und der Umweltexposition schließen. In diesem Projekt wird das Fachwissen eines deutschen und eines tschechischen Forschungsinstituts kombiniert. Es umfasst das Target-, Suspect- und Non-target-Screening nach organischen Schadstoffen in komplexen Umweltmischungen, die Detektion von Mutagenität und den zugrundeliegenden Chemikalien in Oberflächenwasser mit wirkungsorientierter Analytik und passiver Probenahme in verschiedenen Umweltmatrizes, sowie die Berücksichtigung von Verteilungsmechanismen von Verbindungen in Innenräumen.
Die Eindämmung der Ausbreitung von Antibiotikaresistenzgenen (ARGs) ist eine der größten zukünftigen Herausforderungen der internationalen Abwasserbehandlung. In der Abwasserreinigung sind Membranbioreaktoren (MBR) zur Entfernung von Bakterien etabliert. ARGs treten jedoch nicht nur im Inneren von Bakterien auf, sondern auch in Form von freier DNA, möglicherweise freigesetzt durch die MBR Belüftung. Transport- und Retentionsmechanismen dieser freien ARGs in MBRs sind noch nicht vollständig verstanden. Wir stellen die Hypothese auf, dass die Präsenz von Biofouling-Schichten auf der Membran die Retentionseigenschaften von MBRs für diese freien ARGs signifikant verändert. Während Biofouling die allgemeine Filtrationsleistung reduziert, erhöhen dickere Biofilmschichten und Porenverblockung die Wahrscheinlichkeit der Sorption, der Verweilzeit und des biologischen Abbaus von ARGs, wodurch freie ARGs effizienter entfernt werden. Eine weitere Hypothese ist, dass eine erhöhte Scherbeanspruchung zur Kompression und damit zu einer höheren Dichte der Biofoulingschicht und folglich zu einem verbesserten ARG-Rückhalt führt. Es werden Massentransferkoeffizienten für verschiedene Membran- und Schichteigenschaften bestimmt. Zur Überprüfung der Hypothesen wird eine MBR-Foulingsimulatorplattform entwickelt, die die Integration und Interpretation von Experimenten zum ARG-Transport und Rückhalt unter kontrollierten und reproduzierbaren Bedingungen ermöglicht. Die Plattform besteht im Kern aus einer Scherzelle in der mittels eines einstellbaren Rührers realistische Strömungsbedingungen und Schergradienten realisiert werden, die denen in einem kommerziellen MBR entsprechen. Die Experimente werden mit verschiedenen, kommerziell erhältlichen und zuvor charakterisierten Porenmembranen durchgeführt. ARGs werden dem Feed in Form von freien Plasmiden zugesetzt. Um die ARG-Log-Entfernungsraten zu erhalten, werden die Plasmide vor und nach der Membranpassage durch einen optimierten ddPCR-Multi-Target-Assay quantifiziert, der simultan die Bestimmung der Plasmidintegrität ermöglicht. Um die Auswirkungen des Membranfoulings auf die ARG-Entfernung aufzuklären, werden die MBR-Scherzellen mit einer Modell-Abwassergemeinschaft beimpft. Wir gehen davon aus, dass die vorrangige Art des Membranfoulings (Porenblockierung, Kuchenfiltration) aktiv verändert werden kann, indem physikalisch-chemische Membraneigenschaften und Scherbeanspruchungen verändert werden. Die physikalische Struktur der Foulingschichten wird in verschiedenen Alterungsstadien mit Hilfe eines optischen Kohärenztomographie-Systems (OCT) charakterisiert. Dies ermöglicht die Erzeugung und Prüfung repräsentativer, reproduzierbarer Biofouling-Schichten mit unterschiedlichen, definierten Eigenschaften zur ARG-Entfernung. Um die mit der MBR-Plattform gewonnenen Erkenntnisse zu validieren, werden die in realen MBR-Anlagen gefoulten Membranen charakterisiert, der Massentransfer geprüft und ihre ARG-Rückhalteeffizienz getestet.
Der interoperable INSPIRE-Datensatz beinhaltet Daten vom LBGR über die relative Bindungsstärke für Schwermetalle bis 1m Profiltiefe Brandenburg, transformiert in das INSPIRE-Zielschema Boden. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the relative sorption strength for heavy metals for the depth up to 1 m in the State of Brandenburg from the LBGR, transformed into the INSPIRE target schema Soil. The data set is provided via compliant view and download services.
Der interoperable INSPIRE-Datensatz beinhaltet Daten vom LBGR über die relative Bindungsstärke für Schwermetalle im Oberboden Brandenburg, transformiert in das INSPIRE-Zielschema Boden. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the relative sorption strength for heavy metals in the top soil in the State of Brandenburg from the LBGR, transformed into the INSPIRE target schema Soil. The data set is provided via compliant view and download services.
Der interoperable INSPIRE-Datensatz beinhaltet Daten vom LBGR über die relative Bindungsstärke für Schwermetalle für den grundwasserfreien Bodenraum Brandenburg, transformiert in das INSPIRE-Zielschema Boden. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the relative sorption strength for heavy metals for the soil space free of groundwater in the State of Brandenburg from the LBGR, transformed into the INSPIRE target schema Soil. The data set is provided via compliant view and download services.
Veranlassung Der gelöste und der partikuläre organische Kohlenstoff (dissolved organic carbon, DOC und particulate organic carbon, POC) sind zentrale Komponenten im Naturhaushalt von Gewässern. Die Akkumulation von organischem Kohlenstoff - beziehungsweise die damit verbundene hohe Sauerstoffzehrung - ist insbesondere in den Ästuaren ein wichtiger Belastungsfaktor für den Sauerstoffhaushalt und trägt damit zu deren schlechtem ökologischem Zustand bei. Die Bewertung der zu erwartenden Sauerstoffzehrung kann aber nur mit umfassender Kenntnis der Qualität der organischen Kohlenstoffgehalte in gelöster Form oder als Bestandteil der Schwebstoffe erreicht werden. Des Weiteren spielt die Zusammensetzung des organischen Materials eine wichtige Rolle bei der Sorption und dem Transport von Schadstoffen, sodass eine umfassende Beschreibung des organischen Kohlenstoffs auch die Vorhersage der Ausbreitung von Schadstoffen ermöglicht. Im Projekt OrgCarbon soll eine umfassende Charakterisierung des organischen Kohlenstoffs jenseits der traditionell erfassten Parameter (TOC, DOC und POC) stattfinden, da bekannt ist, dass sowohl POC als auch DOC eine komplexe, bisher wenig erforschte Vielzahl unterschiedlicher Stoffklassen beinhaltet. In einem ersten Schritt erfolgt eine Fraktionierung von partikulärem und gelöstem organischem Material, basierend auf der chemischen Zusammensetzung und mikrobiellen Abbaubarkeit. Wichtige Parameter wie Sauerstoffverbrauch, mikrobielle Atmung, chemische Zusammensetzung und die Herkunft des organischen Materials werden für jede Kohlenstofffraktion bestimmt. Durch die daraus resultierende Verbesserung des Verständnisses bezüglich organischem Kohlenstoff in Ästuaren und Flüssen zielt das OrgCarbon-Projekt darauf ab, zu besseren Umweltmanagement- und Naturschutzstrategien für die Bundeswasserstraßen beizutragen. Ziele Ein zentrales Ziel des OrgCarbon-Projekts ist es, eine Vielzahl interdisziplinärer Methoden zu testen, um die vielfältigen Eigenschaften des Kohlenstoffes zu erfassen. Es werden verschiedene chemisch-analytische Verfahren mit Messungen zur biologischen Aktivität und Abbaubarkeit des Kohlenstoffs sowie mit mineralogischen Untersuchungen kombiniert. Dadurch lässt sich ein Set an Methoden identifizieren, das zukünftig auch mit weniger Aufwand eine detaillierte Charakterisierung des Kohlenstoffs ermöglicht. Als Ergebnis von OrgCarbon angestrebt ist die Entwicklung eines standardisierten Protokolls, das den gesamten Prozess von der Probenahme über die Kohlenstofffraktionierung bis hin zur Analyse und Datenauswertung umfasst. Dieses ermöglicht es, die Qualität des organischen Kohlenstoffs sowie dessen Eigenschaften und Abbaubarkeit in Zukunft besser abzuschätzen und gemeinsam zu interpretieren. Dieses Protokoll soll in bestehende Messprogramme der BfG integriert werden, um regelmäßig die Herkunft, das Sorptionspotenzial für Schadstoffe sowie die Abbaubarkeit und die Sauerstoffzehrung von organischem Kohlenstoff zu bestimmen. Organischer Kohlenstoff spielt eine entscheidende Rolle in Ästuaren und Flüssen. Seine Zusammensetzung beeinflusst Prozesse wie die (mikro)biologische Produktivität, den Sauerstoffverbrauch, den Schadstofftransport und die Agglomeration von Schwebstoffen. Die Bestimmung erfolgt routinemäßig nur als Summenparameter (total organic carbon, TOC) weshalb über die Zusammensetzung des organischen Materials, dessen Abbauverhalten und Quellen meist wenig bekannt ist. Darüber hinaus reicht die Betrachtung des Gesamtkohlenstoffgehalts in vielen Fällen nicht aus, um eine Vergleichbarkeit von Schwebstoffen aus unterschiedlichen Quellen zu gewährleisten. Das OrgCarbon-Projekt widmet sich darum einer umfassenden Analyse des organischen Kohlenstoffs in Feldproben aus Ästuaren und Flüssen mit unterschiedlichen Kohlenstoffgehalten und Zusammensetzungen, wie der Tide-Ems und der Tide-Elbe. (Text gekürzt)
| Origin | Count |
|---|---|
| Bund | 855 |
| Land | 12 |
| Type | Count |
|---|---|
| Chemische Verbindung | 4 |
| Förderprogramm | 807 |
| Gesetzestext | 4 |
| Text | 30 |
| unbekannt | 17 |
| License | Count |
|---|---|
| geschlossen | 47 |
| offen | 811 |
| Language | Count |
|---|---|
| Deutsch | 785 |
| Englisch | 138 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Dokument | 29 |
| Keine | 570 |
| Webdienst | 6 |
| Webseite | 257 |
| Topic | Count |
|---|---|
| Boden | 684 |
| Lebewesen und Lebensräume | 594 |
| Luft | 483 |
| Mensch und Umwelt | 857 |
| Wasser | 579 |
| Weitere | 858 |