The cruise BGR95 from 19th November to 28th December 1995 with M.S. AKADEMIK NEMCHINOV was designed to acquire new marine geophysical data for a better understanding of the geological processes and structural variations of the Cretaceous-aged oceanic crust of the Angola Basin in the South Atlantic regarding its reflectivity pattern, its shape of the basement surfaces and its crustal thickness. These evaluations were extended onshore to the ‘Damara Igneous Province’. The aim of this study was the investigation of the rift-related volcanic-magmatic processes accompanying the initial stage of the opening of the South Atlantic Ocean. The survey was a co-operation of BGR, Alfred Wegener Institute for Polar and Marine Research (AWI), GeoForschungsZentrum Potsdam, University of Göttingen and Johann Wolfgang Goethe-University Frankfurt/Main. The M.S. AKADEMIK NEMCHINOV generated the seismic signals by a tuned airgun array of 3260 cu.in. (= 53.4 l) together with two AWI owned large volume guns of 2 x 2000 cu.in. (= 65.6 l), recorded the MCS signals with a 3000 m streamer and controlled the shot releases for the ocean bottom hydrophones (OBH’s) and the onshore seismic stations (PEDAS). A total of 5,114 km of multichannel seismic reflection data in parallel with magnetic and gravity measurements have been collected onboard the M.S. AKADEMIK NEMCHINOV. 1069.4 km of the seismic work was done on 3 combined refraction/wide angle offshore and onshore traverses. The offshore part was recorded by 7 ocean bottom hydrophones (OBH) operated by the M.V. POLAR QUEEN (Reichert et al., 1996). The registration onshore Namibia was performed by 25 mobile seismic landstations (PEDAS) on each profile (Schulze et al., 1996). First results are described in the offshore and onshore reports of these investigations (Reichert et al., 1996, and Schulze et al., 1996). The data clearly show distinct series of the seaward dipping reflector sequences (SRDS) and isochronous variations in the accretion of the oceanic crust. The onshore and offshore registrations show deep arrivals from diving and refracted waves in a range up to 200 to 400 km.
From 17th April to 6th June 2003 BGR conducted a marine geophysical cruise between 30°S and 38°S off the Atlantic coast of South Africa. The main research objective was to contribute to a better understanding of the initial breakup and the early opening of the South Atlantic. In continuation of our former work on the South Atlantic continental margins off Argentina, Brazil, Uruguay and Namibia marine geophysical research (multi-channel seismics, wide-angle refraction seismics, magnetics and gravity) was performed in cooperation with the Petroleum Agency South Africa (PASA). Multi-channel lines with a total lenght of 3,260 km, and additional 1,365km, with the other geophysical methods were acquired. Combined onshore/offshore refraction seismic work in cooperation with GeoForschungsZentrum Potsdam (Germany) and the Council for Geoscience (South Africa) was also part of the program.
During the second leg of cruise BGR78 from 22th of February to 29th of March 1978 with R/V EXPLORA the following measurements have been carried out as presite- and postsite surveys of DSDP sites: (1) in the region of the eastern Walvis Ridge 4,350 km multichannel seismic reflection profiles, 4,540 km magnetic measurements, 5,000 km gravimetric measurements and sonobuoy refraction measurements on 11 stations (2) on the Guinea Plateau 740 km multichannel seismic reflection profiles in parallel with gravimetric and magnetic measurements (3) between Cape Verde islands and Mauretania 980 km multichannel seismic reflection profiles in parallel with magnetic measurements, 1,480 km gravimetric measurements and sonobuoy refraction measurements on 2 stations. The geophysical measurements show that the structure of the Walvis Ridge is determined by two main tectonic directions (WSW-ENE and SSW-NNE). Presumably the genesis of the fracture zone in the Walvis Ridge area can be traced back to the sea-floor spreading with overprinting effects due to an inhomogeneity in the mantle ("hot spot"). Both DSDP drilling projects in this part of the Walvis Ridge led to a fragmentary knowledge because site 362 got stuck at a depth of 1.100 m in the Oligocene. BGR's measurements indicate a gap of at least 1.000 m of sediments, especially from the cretaceous period, down to the (acoustic) basement. Site 363 at a submarine high has gaps in the depositional sequence and stops at a depth of 700 m shortly above the basement. So for a better understanding of the geologic development of the Walvis Ridge, further DSDP drillings with a recovery of the complete sedimentary sequence and the following basement cores are necessary. Therefore BGR's measurements of this cruise propose new DSDP sites.