API src

Found 1 results.

Experimentelle Untersuchung und numerische Modellierung der Spanerfassung beim Nutsägen bzw. -fräsen von Holzwerkstoffen als Grundlage für deren Optimierung

Das Projekt "Experimentelle Untersuchung und numerische Modellierung der Spanerfassung beim Nutsägen bzw. -fräsen von Holzwerkstoffen als Grundlage für deren Optimierung" wird/wurde gefördert durch: AiF Projekt GmbH / Bundesministerium für Wirtschaft und Klimaschutz / IGF-Industrielle Gemeinschaftsforschung über Forschungskuratorium Textil e.V.. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Bereich Ingenieur­wissen­schaften, Institut für Naturstofftechnik, Professur für Holztechnik und Faserwerkstofftechnik.Maschinelle Zerspanungsprozesse von Holz und Holzwerkstoffen führen immer zur Bildung von Span- und Staubpartikeln, die kontinuierlich entfernt werden müssen. Eine unvollständige Erfassung der anfallenden Holzpartikel ist in vielerlei Hinsicht problematisch. Nicht erfasste Partikel erhöhen den Reinigungsaufwand von Maschinen, können den Werkzeugverschleiß erhöhen und in Folgeprozessen zu Qualitätseinbußen oder Maßabweichungen des Werkstückes führen. Die heute verfügbaren Möglichkeiten der numerischen Strömungssimulation zur Auslegung und Optimierung von Spanerfassungselementen werden bisher kaum genutzt, da es sich um einen komplexen Gesamtprozess handelt, für dessen Beschreibung bis heute keine validierten Modelle existieren. Das Forschungsprojekt zielt darauf ab, die heute fehlenden Voraussetzungen für eine computergestützte Auslegung von Spanerfassungselementen zu schaffen. Dies soll durch eine zweckmäßige Kombination experimenteller und numerischer Untersuchungen am Beispiel des Nutsägens mit einer Fokussierung auf die Prozessbereiche Spanemission, Spanflug, Spanerfassung und Spanabtransport erreicht werden. Mit geeigneten Modellen für die einzelnen Teilprozesse sollen bestehende Absauglösungen bezüglich ihres Optimierungspotentials analysiert werden. Zusätzlich besteht die Möglichkeit, durch die systematischen Untersuchungen eine standardisierte Konstruktionsmethodik abzuleiten, die zu effektiveren und effizienteren Absaugeinrichtungen führt. Das Projekt wird in Kooperation mit dem Institut für Strömungsmechanik der TU Dresden bearbeitet. Die Simulation der Zweiphasenströmung soll mit der kommerziellen Simulationssoft-ware Ansys Fluent realisiert werden. Ausgangsgrößen des Simulationsmodells sind die Partikeltrajektorien, aus denen sich beispielsweise der Erfassungsgrad berechnen lässt. Für die Simulation des Gesamtprozesses wird ein Euler-Lagrange-Ansatz verwendet. Dabei wird die Bewegung einzelner Partikel durch die kontinuierliche Fluidphase verfolgt, um das Gesamtverhalten zu modellieren. Die Strömung des Fluids wird durch die lokal gemittelten Navier-Stokes-Gleichungen beschrieben, die mit traditionellen Ansätzen der numerischen Strömungsmechanik (CFD) gelöst werden können. Bei der Verwendung eines Discrete Phase Models (DPM) werden Partikelwechselwirkungen vernachlässigt, da davon ausgegangen wird, dass die dispergierte Phase nur einen geringen Volumenanteil ( kleiner als 10 %) einnimmt. Dieses Modell hat einen moderaten Ressourcenbedarf für die Berechnung. Bei der Simulation von Kontaktereignissen (z. B. Partikel-Wand-Kontakt) wird die Bewegung diskreter Festkörper in dem Fluid durch die Diskrete-Elemente-Methode (DEM) berechnet, wobei die Newtonschen Bewegungsgleichungen auf jedes Partikel angewendet werden. Die Wechselwirkungen zwischen der Fluidphase und der Feststoffphase werden durch die Verwendung des dritten Newtonschen Gesetzes modelliert. (Text gekürzt)

1