API src

Found 982 results.

Related terms

TransHyDE_UP3 : Umsetzungsprojekt Helgoland, Teilvorhaben HYDROGENIOUS LOHC TECHNOLOGIES GMBH: Machbarkeitsstudie, Planung und Entwicklung großskaliger LOHC-Anlagen

Untersuchung von Solarzellen mit geeigneter Anpasselektronik, Wechselrichter und rechnergestuetzter Messwerterfassung

1) Im Rahmen des Forschungsprojektes wurde eine Anlage zur photovoltaischen Energiewandlung beschafft und auf dem Dach eines Laborgebaeudes der Fachhochschule Bochum installiert. Kenndaten und Leistungsmerkmale verschiedener Module werden untersucht, um Aussagen ueber Einsatzmoeglichkeiten am Standort Gelsenkirchen treffen zu koennen. Nachgeschaltete Anlagenkomponenten zur Speicherung und Wandlung der elektrischen Energie werden in bezug auf ihren Wirkungsgrad und auf Oberwellen oder weitere Stoersignale untersucht. Daneben dient die Anlage der Ausbildung von Studenten in diesem neuen Arbeitsgebiet der Energietechnik. Es ergeben sich Ausbildungs- und Entwicklungsmoeglichkeiten aus dem Bereich der Leistungselektronik und der Informationsverarbeitung.2) Die vorhandene Solaranlage besteht aus 16 Solarzellenmodulen mit je 50 Watt Peak-Leistung. Zur Zeit wird die maximale Leistung der Anlage auf 1600 Watt erweitert. Ueber einen angeschlossenen Rechner kann die Solaranlage wahlweise entweder im Inselbetrieb oder alternativ in Verbindung mit einem Wechselrichter im Netzparallelbetrieb arbeiten. Im Inselbetrieb sind die Module mit einem Laderegler verbunden, der sie je nach Ladezustand mit einem angeschlossenen Bleiakkumulator-Speicher oder einem Gleichstromverbraucher verbindet. Verbraucher koennen auch ueber einen Wechselrichter im Inselbetrieb mit der gespeicherten Energie des Akkus betrieben werden.

Schwerpunktprogramm (SPP) 1569: Erzeugung multifunktioneller anorganischer Materialien durch molekulare Bionik

norganische Funktionsmaterialien spielen innerhalb der Schlüsseltechnologien des 21. Jahrhunderts, etwa im Bereich der Informationstechnik oder der Energieerzeugung und -speicherung, eine zentrale Rolle. Dabei sind komplex strukturierte multifunktionelle Materialien auf rein anorganischer Basis sowie im Verbund mit organischen Anteilen zur Weiterentwicklung dieser Technologien von wesentlicher Bedeutung. Die Erzeugung solcher Materialien mit definierter Struktur und Stöchiometrie über die konventionelle Prozesstechnik, die in der Regel bei erhöhten Temperaturen und/oder Drücken sowie unter erheblichem verfahrenstechnischen Aufwand abläuft, stößt hierbei jedoch an ihre Grenzen. Demgemäß ist die Suche nach neuen Verfahren, die eine Generierung von diesen Materialien bei Umgebungsbedingungen und mit reduziertem prozesstechnischen Aufwand ermöglichen, derzeit Gegenstand weltweiter Forschungsanstrengungen. Für die Bildung von komplex strukturierten anorganischen Festkörpern bei Umgebungsbedingungen liefert die belebte Natur eindrucksvolle Beispiele. So entstehen durch Biomineralisationsprozesse Stoffe wie etwa Calciumphosphat oder -carbonat, deren Bildung genetisch determiniert ist und durch die Wechselwirkung mit Biomolekülen gesteuert wird, wobei unter anderem Selbstorganisationsprozesse eine Rolle spielen. Die hierdurch entstehenden anorganischen Materialien besitzen multifunktionelle Eigenschaften, wobei deren Eigenschaftsspektrum durch den Einbau von bioorganischen Komponenten erweitert wird. Wenngleich viele technisch relevante Materialien bei diesen natürlichen Prozessen keine Rolle spielen, ergeben sich hieraus unmittelbar aussichtsreiche Perspektiven zur Generierung neuer anorganischer Funktionsmaterialien durch spezifische molekulare Interaktionen zwischen bioorganischen und anorganischen Stoffen. Das Hauptziel dieses Schwerpunktprogramms ist daher die Übertragung von Prinzipien der Biomineralisation auf die Generierung von anorganischen Funktionsmaterialien und von deren Hybriden mit bioorganischen Anteilen. Zur Erreichung dieses Ziels werden Arbeiten durchgeführt (1) zur In-vitro- und In-vivo-Synthese anorganischer Funktionsmaterialien und deren Hybride mit bioorganischen Molekülen in Form von Schichten oder 3D-Strukturen, (2) zur Charakterisierung der Bildungsprozesse und der Struktur der Materialien sowie (3) zur Bestimmung und zum Design von deren physikalischen und chemischen Eigenschaften. Diese experimentellen Untersuchungen werden weiterhin durch Arbeiten zur Modellierung der Materialbildung, -struktur und -eigenschaften begleitet.

Charakterisierung, Transport und Deposition von Silica-Polymeren in ausgewählten monocotyledonen und dicotyledonen Holzgewächsen

Si-Einschlüsse in holzbildenden Pflanzen sind vielfach beschrieben und dienen für verschiedene chemische und biologische Fragestellungen als wichtiges Merkmal. Über Aufnahme, Transport und Deposition liegen jedoch nur lückenhafte Kenntnisse vor. Im Vorhaben sollen folgende Themenkomplexe bearbeitet werden: i) Aufnahme und Ferntransport, ii) Primärausscheidung, iii) Struktur und chemische Komposition. Als Objekte sind Bambus (Monocotyledone) sowie tropische Laubbaumarten (Dicotyledone) vorgesehen. Chemische Analysen (IR und Raman, simultane Thermoanalyse/STA, Thermogravimetrie/TG, Differential Thermoanalyse/DTA, Massenspektrometrie/MS, Si K-XANES-Spektroskopie) werden zur Identifizierung der Aufnahme- und Ferntransportform an Wurzelgewebe und Kapillarsaft durchgeführt sowie an Geweben der Deposition. Mit Licht- und Elektronenmikroskopie werden Si-Verbindungen in den Zielzellen lokalisiert, Kompartimenten zugeordnet (intrazellulärer Transport) und mit TEM/EDX und TEM/EELS charakterisiert. Für Bambus wird beispielhaft die extrazelluläre Deposition in der Zellwand untersucht, um Befunde zu Wechselwirkungen zwischen organischer Matrix und Si-Einlagerung zu erhalten. Folgende Ergebnisse werden erwartet: i) Identifizierung der Si-Transportform in Wurzel und Kapillarsaft, ii) Lokalisierung und Identifizierung deponierter Si-Verbindungen, iii) feinstrukturelle Charakterisierung Si-deponierender Zellen und nicht-deponierender Nachbarzellen.

Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Aufklärung von Degradationsmechanismen in Polymer-basierten Dual-Ionen-Batterien und Entwicklung von Strategien zur Leistungsoptimierung

Polymer-basierte Batterien gelten als aussichtsreiche Kandidaten für eine nachhaltige Energiespeicherung, was u.a. motiviert wird durch einen reduzierten Energieverbrauch bei der Herstellung, eine einfachere Recyclingfähigkeit sowie die Verwendung leicht zugänglicher Materialien und dem Austausch kritischer Metalle. Aktuell leiden Polymer-basierte Batterien jedoch unter diversen Herausforderungen hinsichtlich ihrer elektrochemischen Performanz, insbesondere einer geringen Energiedichte oder nicht ausreichender Zyklenstabilität. Zudem fehlt aktuell noch ein grundlegendes Verständnis bzgl. der Kapazitätsverluste der Zellen sowie der auftretenden Alterungsmechanismen an den Elektroden/Elektrolyt-Grenzflächen. In diesem Projekt soll ein Spezialtyp einer Polymer-basierten Batterie systematisch untersucht werden, eine sogenannte Polymer-basierte Dual-Ionen-Batterie (DIB), welche organische Materialien des n- und p-Typs zur simultanen Speicherung von Kationen und Anionen verwendet. Das DIB-System unterscheidet sich von klassischen Polymer-Batterien basierend auf dem Kationen- oder Anionen-'Rocking-Chair'-Prinzip, da hier nicht nur eine Ionensorte, sondern sowohl Kationen als auch Anionen beteiligt sind. Dieses Speicherprinzip bietet verschiedene Vorteile, wie u.a. eine hohe Variabilität möglicher Kation-Anion-Paare sowie typischerweise eine hohe Zellspannung, die durch geeignete Polymermaterialien erreicht werden kann. Zur Entwicklung Polymer-basierter DIB-Systeme mit verbesserter Energiedichte und Stabilität werden in diesem Projekt verschiedene Strategien adressiert: (I) Design neuartiger Polymermaterialien mit höherem Arbeitspotential für die positive Elektrode ('Spannungstuning'), (II) Entwicklung von Hybridsystemen wie Graphit / Polymer mit hoher Zellspannung, (III) Entwicklung von 'All-Polymer'-DIB-Systemen, mit verschiedenen Konzepten wie der Entwicklung ambipolarer Polymersysteme sowie sogenannter 'Reverse-All-Polymer-DIB-Systeme'. Die verschiedenen Polymer-DIB-Systeme sollen hinsichtlich ihrer elektrochemischen Performanz umfassend untersucht werden, wobei der Einfluss der Elektrolytformulierung und der gebildeten 'Interphasen' auf die reversible Kapazität und Stabilität während der Lade-/Entladezyklisierung im Vordergrund der Untersuchungen stehen. Zu diesem Zweck werden verschiedene ex-situ und in-situ Analysen durchgeführt, um wichtige und umfassende Einblicke in die mechanistischen Eigenschaften der Kationen- bzw. Anionen-Speicherung, die Stabilität der Polymermaterialien und die Rolle der 'Interphasen' zu erhalten. Es wird erwartet, dass die in diesem Projekt gewonnenen grundlegenden Erkenntnisse für die Entwicklung verbesserter polymerer Aktivmaterialien und optimierter Elektrolyte für Polymer-basierte DIB-Zellen mit hoher Energiedichte und Zyklenstabilität von großer Bedeutung sind.

Untersuchung der Energiestrategie Brandenburgs

Wird die Braunkohle im Land Brandenburg für eine sichere Energieversorgung im Jahr 2030 noch benötigt? Mit dieser zentralen Fragestellung fertigte das RLI gemeinsam mit der HTW Berlin eine Untersuchung über die Energiestrategie des Bundeslandes im Auftrag der Fraktion Bündnis 90/Die Grünen im Brandenburger Landtag an. Die Studie soll die Debatte um die anstehende Evaluation der Energiestrategie 2030 der Brandenburger Landesregierung inhaltlich unterstützen. Um die Auswirkungen der Strategie sowie Veränderungen der politischen und ökonomischen Rahmenbedingungen in Bezug auf die Braunkohlenutzung konkret bewerten zu können, wurde daher mit einem umfassenden Energiesystemmodell die mögliche Energieversorgung Brandenburgs 2030 berechnet. Das verwendete Modell berücksichtigt neben Wärmebedarf und -erzeugung alle Arten der Stromerzeugung und den prognostizierten Stromverbrauch. Diese Randbedingungen stellen sicher, dass in allen Szenarien der Strom- und Wärmebedarf zu jeder Zeit gedeckt werden kann. Darüber hinaus wurden die Lastflüsse für den notwendigen Stromtransport zwischen den Regionen in Brandenburg sowie den Nachbarregionen stundengenau analysiert, um einen möglichen, systemrelevanten Bedarf an Leitungsausbau auf der Übertragungsebene und Speicherung erkennbar zu machen. Dieser floss in die Beurteilung der Wirtschaftlichkeit der Szenarien mit ein. Das RLI unterstützt Transparenz und Nachvollziehbarkeit von wissenschaftlichen Ergebnissen. Die Simulationen dieser Studie basieren auf dem Open-Source Framework oemof zur Energiesystemmodellierung. Dieses ermöglicht es, verschiedenste Energiesysteme mit den gleichen Bausteinen abzubilden. Die Links zum Code und den Eingangsdaten der vorliegenden Studie finden Sie unter dem Reiter 'Open Source'.

Entwicklung und Einsatz von GNSS-Fernerkundungsverfahren für die Erdbeobachtung

Die Radiookkultations-(RO)-Technik verwendet auf niedrigfliegenden (Low Earth Orbiter, LEO) Satelliten installierte Empfänger, um GPS/GNSS-Signale zu empfangen und Bogenmessungen der Erdatmosphäre und Ionosphäre durchzuführen. Aufgrund des Erfolgs der FormoSat-3/COSMIC- (Constellation Observing System for Meteorology, Ionosphere and Climate, FS3/COSMIC) -Mission, bestehend aus sechs Mikro-LEO-Satelliten, hat das gemeinsame US- und taiwanesische RO-Team beschlossen, eine COSMIC-Folgemission (sog. FS7/COSMIC2) voranzubringen. Die GNSS-RO-Nutzlast mit Namen Tri-G GNSS Radio-occultation System (TGRS) wird mehrkanalige GPS-, GLONASS- und Galileo-Satellitensignale empfangen und in der Lage sein, mehr als 10.000 RO-Beobachtungen täglich zu verfolgen, nachdem sowohl schwache als auch starke Bahnneigungs-Konstellationen vollständig abgedeckt worden sind. Man geht davon aus, die dichteren RO-Szintillationsbeobachtungen zu nutzen, um die Struktur der Erdatmosphäre und -ionosphäre genau zu analysieren und zu modellieren.Zusätzlich könnte die spezielle Art von GNSS-Multipfadverzögerungen, die von der Erdoberfläche reflektiert werden, verwendet werden, um Erdoberflächenumgebungsdaten, wie Ozeanhöhen und Seegang, zu erfassen. Die Empfindlichkeit dieser Signalcharakteristika gegenüber Ausbreitungseffekten ist für verschiedene Arten der Umweltfernerkundung geeignet. Dies hat einen Bedarf deutlich gemacht, geeignete Empfänger zu entwerfen und zu entwickeln, die reflektierte und gestreute GPS/GNSS-Signale in Echtzeit erfassen und verarbeiten können, um die Speicherung riesiger Mengen an Rohdaten zu vermeiden. Wir schlagen auch vor, das feldprogrammierbare Gatterfeld (Field Programmable Gate Array, FPGA) auf die GPS/GNSS-Reflektometrieinstrumente anzuwenden, wobei eine hohe Synchronität und ein größtmöglicher Nutzen aus den verfügbaren Hardware-Ressourcen zu erzielen wäre. Mittels Simulink/Matlab kann das FPGA auch komplexe Delay-Doppler-Map- (DDM) -Daten in Echtzeit durch Korrelation der phasengleichen und Quadraturkomponenten der Basisbandsignale berechnen. Diese Studie wird neue Ziele und Ergebnisse der GNSS-Fernerkundung der Atmosphäre, Ionosphäre, und der Ozeane sowie neue Möglichkeiten für die zukünftige FS7/COSMIC2-Mission aufzeigen.Das Projekt wird am Institut für Geodäsie und Geoinformationstechnik TU Berlin in enger Kooperation mit Wissenschaftlern des GFZ, Potsdam und des GPS Science and Application Research Center (GPSARC) der NCU, Taiwan durchgeführt.Die Ziele des Projekts lassen sich wie folgt zusammenfassen:(1) Nutzung von GPS/GNSS-RO-Atmosphärendaten und Entwicklung hochentwickelter Algorithmen für die untere Troposphäre und klimatologische Untersuchungen,(2) Erfassung und Überwachung der sporadischen E(Es)-Schicht, Szintillationen und damit zusammenhängender Effekte einschließlich vertikaler Kopplungen und(3) Entwicklung eines Echtzeit-FPGA-basierten GPS/GNSS-Reflektometers für Anwendungen im Bereich von Meereshöhen- und Seegangsmessungen.

TransHyDE: Erforschung innovativer Speicher- und Transportlösungen, Teilvorhaben der Hamburger Hafen und Logistik AG (HHLA): Entwicklung beweglicher Speicher und Logistik

TransHyDE: Erforschung innovativer Speicher- und Transportlösungen, Teilprojekt GWI

EnOB: IoT-Based Operational Optimization for SusTainable EneRgy systems, Teilvorhaben: Platform deployment for real estate

1 2 3 4 597 98 99