Messstelle betrieben von STANDORT EMDEN.
In diesem Forschungsvorhaben wird eine umfassende pedologische Untersuchung der initialen Marschböden Spiekeroogs vorgeschlagen. Zum einen soll der Frage nachgegangen werden, welche Prozesse die von der Regel abweichenden Merkmale in diesen Böden hervorrufen. Auf der Grundlage dieser Ergebnisse sollen darüber hinaus weitere Erkenntnisse zu ehemaligen Bildungsbedingungen von Marschböden erzielt werden. Denn auch für die Brackmarschen kann ein relativ langsamer Sedimentzuwachs angenommen werden und somit im Gegensatz zu den bisherigen Auffassungen (Müller, 1954; Brümmer, 1968; Giani, 1983) eine Entwicklung aus kalkhaltigen Sedimenten, die aber bereits in der geo-pedogenen Phase entkalkten. Neben neuen Aspekten und Kenntnissen in der Diskussion über die Marschengenese werden wesentlich verbesserte Vorschläge zur Klassifikation erwartet.
Dieses Forschungsvorhaben soll in Zusammenarbeit mit der Abteilung Meeresforschung des Forschungsinstitutes Senckenberg, mit Hilfe methodisch neuer sedimenthydraulischer Messungen einen Beitrag zum Grundlagenverständnis des Stoffhaushaltes im System Wattenmeer leisten und physikalische Eingangsparameter und Grenzwerte für den Beginn von Erosion und Sedimenttransport für die Modellierung dieser Küstenzone liefern. In der beabsichtigten Kombination von Labor- und Feldmessungen sollen jene hydraulischen Grenzzustände erfasst werden, in deren Bereich das Watt den weitgehend stabilen Zustand verlässt. Weiterführende und hierauf aufbauende Modelluntersuchungen werden dem geplanten Sonderforschungsbereich 1739 an der Universität Oldenburg vorbehalten. Der Einsatz der Turbulenzsonde (ADV, Acoustic Doppler Velocimeter, Fa. SONTEC) bietet zum ersten Mal die Möglichkeit, sohlnahe turbulente Strömungen im Labor und im Gelände quantitativ und standardisiert zu erfassen. Im Marburger Strömungs- und Wellenkanal sollen zunächst an natürlichen, aber sterilisierten Wattsedimenten die Wechselwirkungen zwischen dem Turbulenzmuster in der bodennahen Strömung unter einfachen monochromatischen Wellen und dem Sediment untersucht werden. Zugleich soll damit das Messverfahren kalibriert und standardisiert werden. In einem zweiten Schritt soll vergleichend über unterschiedlichen, auch kohäsiven und biogenen fixierten natürlichen Sedimenten der kritische Strömungszustand beim Bewegungsbeginn erfasst werden. In sechs aus dem Rückseitenwatt der Nordsee-Insel Spiekeroog ausgewählten und bereits eingemessenen Meßfeldern mit für den Ablagerungsraum typischen faziellen Mustern wird unter verschiedenen Strömungs- und Wellenbedingungen (Ebb- und Flutstrom, verschiedene Wassertiefen, Seegang, Wellenklima) die ADV-Sonde für dreidimensionale Strömungsmessungen eingesetzt. Parallel zu den bodennahen turbulenten Strömungsverhältnissen soll das Einsetzen von Erosion und Suspensionsentwicklung aufgezeichnet werden. Der Einfluss von Mikroorganismen auf Textur und Stabilität der Sedimentoberfläche soll parallel zu den Messungen verfolgt werden.
Wellen- und tidebeeinflusste sandige Strände machen einen Großteil der weltweiten Küstenlinie aus und spielen eine wichtige Rolle für Kohlenstoff-, Nährstoff- und Metallkreisläufe. Während Flut strömt Meerwasser in den Sedimentkörper, ebenso wird organisches Material eingetragen. Im Sediment wird dieses von Mikroorganismen abgebaut, sodass bei Ebbe an Nährstoffen angereichertes Wasser zurück in den Küstenozean strömt, wo die rezirkulierten Nährstoffe zur Primärproduktion genutzt werden. Durch mikrobielle Abbauprozesse entwickeln sich Redoxgradienten, die den Porenwasser-Chemismus prägen. Strände können sich außerdem in einer Mischzone zwischen süßem Grundwasser und Salzwasser befinden (subterranes Ästuar), sodass Salinitätsgradienten die Sediment-Porenwasser-Interaktion beeinflussen. Süßwasser ist zudem eine Quelle für terrestrische gelöste Stoffe. Um die globale Rolle von Strandsystemen in Bezug auf Kohlenstoff-, Nährstoff- und Metallzyklen verstehen zu können, ist es notwendig, biogeochemische Prozesse in Strandsedimenten detailliert und an verschiedenen Stränden weltweit zu untersuchen. Da in diesem Forschungsbereich nur wenige Studien existieren und insbesondere die Quellen- oder Senkenfunktion dieser Systeme bezüglich redoxsensitiver Metalle noch weitgehend unbekannt ist, wird dieses Projekt einen wichtigen Beitrag zur Aufklärung der Metallzyklen in solchen Systemen liefern. Wir planen, biogeochemische Prozesse in den subterranen Ästuaren von zwei kontrastierenden Strandsystemen auf den Inseln Spiekeroog (NW Deutschland, mesotidal, siliziklastisch) und Mallorca (Spanien, mikrotidal, carbonatisch) zu untersuchen. Es sollen Hauptionen, DOC, O2, H2S, Nährstoffe (N, P, C, Si) und Spurenmetalle (Mn, Fe, U, Mo, V, Re) sowie Fe-Isotopenverhältnisse im Strandporenwasser analysiert werden. Wir planen ebenfalls die Sedimentzusammensetzung zu charakterisieren, da diese die Porenwasserzusammensetzung maßgeblich beeinflusst. An beiden Standorten sollen Transekte zwischen Düne und Niedrigwasserlinie bis in 5 m (Spiekeroog) bzw. 2 m (Mallorca) Tiefe hochaufgelöst beprobt werden. Der Fokus des Projekts liegt darin, Redox- und Salinitätsgradienten zu identifizieren sowie deren Auswirkungen auf die Porenwasserzusammensetzung zu interpretieren. Hydrochemische Modellierung anhand der erhobenen Daten soll zu einem besseren Verständnis der Effekte der Mischung von Grundwässern unterschiedlicher Zusammensetzung beitragen. Es sollen quantitative Aussagen zur Quellen- oder Senkenfunktion der Strände bezüglich essentieller Nährstoffe und redoxsensitiver Metalle erarbeitet werden. Fe-Isotopenverhältnisse dienen dazu, das limitierte Wissen über den Fe-Kreislauf in subterranen Ästuaren zu erweitern und die Fe-Isotopensignatur des Porenwasserflusses aus diesen Systemen besser zu definieren. Weiterhin wird diese Studie eine solide Datenbasis für die Modellierung des Porenwasser-Austroms von einzelnen Elementspezies aus permeablen Sedimenten in den Küstenozean liefern.
Durch DynaDeep soll ein Verständnis der Funktionsweise und Relevanz des Land-Meer Übergangs im Untergrund von Hochenergiestränden gewonnen werden. Wir nehmen an, dass dieser einen hoch dynamischen Bioreaktor und ein einzigartiges mikrobiologisches Habitat darstellt und Netto-Stoffflüsse in Richtung Meer stark beeinflusst. Um dieses Ziel zu erreichen, werden sechs Teilprojekte gemeinsam Felduntersuchungen und experimentelle Arbeiten durchführen und diese mit mathematischen Modellen integrativ kombinieren. P4 wird die Dynamik von Spurenmetallen und Metallisotopen im Zusammenhang mit biogeochemischen Prozessen im subterranen Ästuar (STE) auf Spiekeroog untersuchen. Wir werden die Hypothese testen, dass überlappende Redoxzonen, dynamische Änderungen mikrobieller Aktivität und räumlich-zeitliche Änderungen in Redox- und Salinitätsgrenzflächen eindeutige Spurenmetall- und Isotopensignaturen in hochenergetischen Stränden generieren. P4 wird Spurenmetallkonzentrationen (Fe, Mn, Co, Mo, Re, Tl, U, V, Seltenerdelemente) und Fe und Mo Isotope in (Poren-)Wasser und Sedimenten messen. Regelmäßige Feldprobenahmen werden Einblick in die räumlich-zeitlichen Änderungen von Spurenmetall- und Metallisotopen-Mustern unter sich ändernden Randbedingungen liefern. Inkubationsexperimente im Labor sollen genutzt werden, um die Mobilisations-, Retentions- und Fraktionierungsraten zu bestimmen, um die physikochemischen und mikrobiellen Änderungen im Detail zu verstehen, die diese Reaktionen im tiefen bis flachen Untergrund des STEs auf Spiekeroog antreiben. Spurenmetalle und zusätzlich Hauptionen, Nährstoffe und Gesamtalkalinität werden für mathematische Modellierungen (P1, P6), Bestimmung von Reaktionsraten (P2) und biogeochemische Studien in P3 und P5 zur Verfügung gestellt. Gemeinsam sollen die Daten genutzt werden, um zu beurteilen, wie die Transformation und Fraktionierung von Spurenmetallen und Metallisotopen mit der Quelle und dem Alter des Wassers, den Redoxbedingungen und den Eigenschaften von organischer Substanz und der mikrobiellen Gemeinschaft zusammenhängen.
Subterrane Ästuare sind die Übergangszonen zwischen terrestrischen Aquiferen und dem Meer, in denen sich meteorisches Süßwasser und zirkulierendes Meerwasser mischen und in denen es durch biogeochemische Reaktionen zur Veränderung der Grundwasserzusammensetzung kommt. Somit stellen diese Systeme effektive biogeochemische Reaktoren dar, die die Stoffflüsse in Richtung Meer wesentlich beeinflussen. Die Motivation für das Projekt DynaDeep ist die Tatsache, dass ein Verständnis des Ausmaßes und der Funktionsweise subterraner Ästuare notwendig ist, um die gegenwärtige Dynamik und zukünftige Entwicklung von Ökosystemfunktionen am Land-Meer Übergang zu erfassen. Bislang ist unklar, wie Hydro- und Morphodynamik die Grundwasserströmung beeinflussen. Außerdem wurden die sich daraus ergebenden Konsequenzen für biogeochemische Prozesse und für die Bedingungen als mikrobielles Habitat bislang nicht abgeschätzt. Wir nehmen an, dass der Untergrund von Hochenergiestränden in Bezug auf Grundwasserströmung und -transport sowie assoziierte biogeochemische Prozesse hoch dynamisch ist und von gängigen vereinfachten Modellvorstellungen abweicht. Dieses einmalige mikrobiologische Habitat unterscheidet sich vermutlich grundlegend von den normalerweise stabilen Lebensräumen im Untergrund. DynaDeep wird deshalb Grundwasserströmungsmuster als Funktion hydro- und morphodynamischer Randbedingungen untersuchen. Wir werden abiotische und biotische Umsatzraten organischer Substanz quantifizieren. Umsetzung und Fraktionierung von Spurenmetallen und Metallisotopen sind ebenso Gegenstand der Untersuchungen wie die Diversität und Funktionsweise der mikrobiellen Gemeinschaft. In einem integrativen Ansatz werden sechs Teilprojekte gemeinsam Felduntersuchungen durchführen sowie experimentelle Ansätze und mathematische Modelle entwickeln und nutzen. DynaDeep wird sich in einer ersten Phase zunächst auf einen Standort konzentrieren und ein “Subterranean Estuary Online Observatory” auf der Insel Spiekeroog aufbauen. Die Erkenntnisse werden anschließend in einer zweiten Phase an anderen Standorten überprüft und gegebenenfalls auf diese übertragen. Ultimatives Ziel ist es, die globale Bedeutung tiefer, dynamischer biogeochemischer Reaktoren im Untergrund von Hochenergiestränden für Küstenökosysteme und globale Stoffkreisläufe abzuschätzen.
Das UNESCO-Biosphärenreservat Niedersächsisches Wattenmeer setzt sich aus Kernzone, Pflegezone und Entwicklungszone zusammen. Die Kernzone wird durch Flächen der Ruhezone des Nationalparks, die Pflegezone durch Flächen der Zwischenzone des Nationalparks und die Entwicklungszone durch Flächen der Erholungszone des Nationalparks gebildet. Die Entwicklungszone ist auch das von der UNESCO anerkannte, außerhalb des Nationalparks liegende Gebiet der Kommunen, die ihren Willen zur Zugehörigkeit zur Entwicklungszone erklärt haben. Das sind Stand Juni 2023: die Samtgemeinde Hage, die Gemeinde Jemgum, die Stadt Norden, die Stadt Nordenham, die Gemeinde Sande, die Gemeinde Schortens, die Gemeinde Spiekeroog, die Gemeinde Zetel, die Stadt Jever, die Stadt Wilhelmshaven, die Gemeinde Geestland nur mit den Ortsteilen Imsum und Langen die Stadt Cuxhaven nur mit den Cuxhaven Küstenheiden (Duhner Heide, DBU Naturerbe, Werner Wald)
The Time Series Station Spiekeroog (TSS) was setup in 2002, in the tidal inlet between the East Frisian Islands of Langeoog and Spiekeroog in the Southern German Bight, at position 53°45′01.0″ N, 007°40′16.3″ E. The aim was to ensure the continuous measurement of physical, biological, chemical and meteorological parameters, even under extreme weather conditions such as storms, ice, and storm surges. The TSS was financed as part of the Deutsche Forschungsgemeinschaft (DFG) research unit BioGeoChemistry of Tidal Flats and the Ministry for Science and Culture of the Land of Lower Saxony (MWK). Here, air temperature, air pressure, relative humidity, wind speed and wind direction were measured in the year 2024. All raw data were revised and corrected for steps as range, outliers and stationarity checks. A detailed description of the Time Series Station Spiekeroog, its structure and instrumentation can be found in Zielinski et al. (2022) and in Reuter et al. (2009).
Origin | Count |
---|---|
Bund | 78 |
Land | 83 |
Schutzgebiete | 9 |
Wissenschaft | 660 |
Zivilgesellschaft | 2 |
Type | Count |
---|---|
Daten und Messstellen | 664 |
Ereignis | 1 |
Förderprogramm | 26 |
Taxon | 2 |
Text | 60 |
Umweltprüfung | 2 |
WRRL-Maßnahme | 8 |
unbekannt | 31 |
License | Count |
---|---|
geschlossen | 64 |
offen | 711 |
unbekannt | 18 |
Language | Count |
---|---|
Deutsch | 135 |
Englisch | 673 |
Resource type | Count |
---|---|
Archiv | 21 |
Bild | 11 |
Datei | 644 |
Dokument | 16 |
Keine | 72 |
Webdienst | 5 |
Webseite | 45 |
Topic | Count |
---|---|
Boden | 304 |
Lebewesen und Lebensräume | 770 |
Luft | 185 |
Mensch und Umwelt | 788 |
Wasser | 793 |
Weitere | 793 |