Das Ziel der Open Hybrid LabFactory ist die Entwicklung von Materialien und Produktionstechniken für den wirtschaftlichen und funktionalen Leichtbau, um im Rahmen eines 'demokratisierten Leichtbaus' Fahrzeugkarosserien herzustellen, die nicht nur die Nachhaltigkeitsaspekte der Mobilität fördern, sondern auch die wirtschaftliche Produktion von z.B. Klein- und Mittelklassefahrzeugen in der Großserie ermöglichen. Inhalt des Verbundprojektes ProVorPlus ist die Entwicklung einer großserientauglichen Produktionstechnologie zur Herstellung von flächigen faserverstärkten Thermoplast-Metall-Hybrid Bauteilen. Mit Hilfe einer Vorkonfektionierung werden inline komplexe Vorformlinge erzeugt, die anschließend in einem gemeinsamen Um- und Urformprozess zu funktionsintegrierten und lastpfadgerechten Bauteilen endkonsolidiert werden. ProVorPlus entwickelt spritzgießnahe Produktionstechniken für den wirtschaftlichen und funktionalen Leichtbau. Der Arbeitsplan des Projektes ProVorPlus besteht aus den sechs Arbeitspaketen Bauteilkonstruktion und Prozessauslegung, Materialcharakterisierung, Bauteilherstellung durch Pressen, Bauteilherstellung durch Spritzguss, und dem Gesamtprozess. Als Spezialist für die Maschinen- und Verfahrenstechnologie wir ENGEL zu Beginn des Projektes bei der Konzeptionierung des Demonstratorbauteils unterstützen und dann im weiteren Projektverlauf anhand von Versuchsbauteilen die Stellgrößen für die qualitätsbeeinflussenden Prozessparameter ermitteln. Hierbei ist vor allem die variotherme Prozessführung zu beachten. Weiterhin wird ENGEL als Anbieter für Gesamtsysteme die Zusammenführung der Einzelprozesse zu einem verketteten Gesamtprozess koordinieren und diesen dann anschließend auf die Eignung für die Großserie analysieren.
In dem beantragten Forschungsvorhaben möchten die Projektpartner Fraunhofer UMSICHT, Evonik, FKuR und IKV ein vermarktungsfähiges, flammgeschütztes PLA-Compound mit hoher Wärmeformbeständigkeit und Schlagzähigkeit für technische Spritzgussanwendungen entwickeln, welches als Alternative zu konventionellen Kunststoffen wie ABS oder PC in technischen Spritzgussbauteilen eingesetzt werden kann. Das Forschungsvorhaben adressiert alle relevanten materialtechnischen Schwachstellen von PLA. Die sich gegenseitig, zum Teil auch negativ, beeinflussenden Effekte, wie etwa Flammschutzausrüstung vs. Versprödung, werden ganzheitlich betrachtet. Mögliche Einflüsse durch die Verfahrenstechnik des Spritzgießens werden mit einbezogen, damit sowohl aus Material- als auch aus Prozesssicht wirtschaftlich und technisch tragfähige Lösungen erarbeitet werden können. Der Anwendungsfokus dieses PLA-Compounds liegt dabei zunächst auf technischen Produkten des Elektronik- und Bausektors.
In dem beantragten Forschungsvorhaben möchten die Projektpartner Fraunhofer UMSICHT, Evonik, FKuR und IKV ein vermarktungsfähiges, flammgeschütztes PLA-Compound mit hoher Wärmeformbeständigkeit und Schlagzähigkeit für technische Spritzgussanwendungen entwickeln, welches als Alternative zu konventionellen Kunststoffen wie ABS oder PC in technischen Spritzgussbauteilen eingesetzt werden kann. Das Forschungsvorhaben adressiert alle relevanten materialtechnischen Schwachstellen von PLA. Die sich gegenseitig, zum Teil auch negativ, beeinflussenden Effekte, wie etwa Flammschutzausrüstung vs. Versprödung, werden ganzheitlich betrachtet. Mögliche Einflüsse durch die Verfahrenstechnik des Spritzgießens werden mit einbezogen, damit sowohl aus Material- als auch aus Prozesssicht wirtschaftlich und technisch tragfähige Lösungen erarbeitet werden können. Der Anwendungsfokus dieses PLA-Compounds liegt dabei zunächst auf technischen Produkten des Elektronik- und Bausektors.
Das Hauptanliegen des geplanten Forschungsprojektes beinhaltet die Erweiterung des Einsatzbereiches von naturfaserverstärkten Bio-Kunststoff-Verbunden für High-Performance-Produkte. Belastungsgerechte Laminataufbauten aus quasi-endlos faserverstärkten Einzelschichten sollen hierbei als partielle Verstärkungen über einen Hybrid-Spritzgussprozess sowie einer nachgeschalteten selektiven Strahlenvernetzung in hochbelastbare Strukturbauteile integriert werden. Hierfür werden verschiedene Material-, Technologie-, Auslegungs- und Recyclingkonzepte am Beispiel einer Sitzschale kritisch erforscht und in eine praxisnahe Strukturanwendung überführt. Im Erfolgsfall des Projektes liegen somit wichtige Erkenntnisse sowie Verarbeitungs- und Designmethoden für die Anwendung von naturfaserverstärkten Bio-Kunststoff-Verbunden in Strukturbauteilen vor.
Das Hauptanliegen des geplanten Forschungsprojektes beinhaltet die Erweiterung des Einsatzbereiches von naturfaserverstärkten Bio-Kunststoff-Verbunden für High-Performance-Produkte. Belastungsgerechte Laminataufbauten aus quasi-endlos faserverstärkten Einzelschichten sollen hierbei als partielle Verstärkungen über einen Hybrid-Spritzgussprozess sowie einer nachgeschalteten selektiven Strahlenvernetzung in hochbelastbare Strukturbauteile integriert werden. Hierfür werden verschiedene Material-, Technologie-, Auslegungs- und Recyclingkonzepte am Beispiel einer Sitzschale kritisch erforscht und in eine praxisnahe Strukturanwendung überführt. Im Erfolgsfall des Projektes liegen somit wichtige Erkenntnisse sowie Verarbeitungs- und Designmethoden für die Anwendung von naturfaserverstärkten Bio-Kunststoff-Verbunden in Strukturbauteilen vor.
Das Hauptanliegen des geplanten Forschungsprojektes beinhaltet die Erweiterung des Einsatzbereiches von naturfaserverstärkten Bio-Kunststoff-Verbunden für High-Performance-Produkte. Belastungsgerechte Laminataufbauten aus quasi-endlos faserverstärkten Einzelschichten sollen hierbei als partielle Verstärkungen über einen Hybrid-Spritzgussprozess sowie einer nachgeschalteten selektiven Strahlenvernetzung in hochbelastbare Strukturbauteile integriert werden. Hierfür werden verschiedene Material-, Technologie-, Auslegungs- und Recyclingkonzepte am Beispiel einer Sitzschale kritisch erforscht und in eine praxisnahe Strukturanwendung überführt. Im Erfolgsfall des Projektes liegen somit wichtige Erkenntnisse sowie Verarbeitungs- und Designmethoden für die Anwendung von naturfaserverstärkten Bio-Kunststoff-Verbunden in Strukturbauteilen vor.
Das Hauptanliegen des geplanten Forschungsprojektes beinhaltet die Erweiterung des Einsatzbereiches von naturfaserverstärkten Bio-Kunststoff-Verbunden für High-Performance-Produkte. Belastungsgerechte Laminataufbauten aus quasi-endlos faserverstärkten Einzelschichten sollen hierbei als partielle Verstärkungen über einen Hybrid-Spritzgussprozess sowie einer nachgeschalteten selektiven Strahlenvernetzung in hochbelastbare Strukturbauteile integriert werden. Hierfür werden verschiedene Material-, Technologie-, Auslegungs- und Recyclingkonzepte am Beispiel einer Sitzschale kritisch erforscht und in eine praxisnahe Strukturanwendung überführt. Im Erfolgsfall des Projektes liegen somit wichtige Erkenntnisse sowie Verarbeitungs- und Designmethoden für die Anwendung von naturfaserverstärkten Bio-Kunststoff-Verbunden in Strukturbauteilen vor. Die erarbeiteten Ergebnisse sollen nach Projektabschluss der Öffentlichkeit über wissenschaftliche sowie industrienahe Fachzeitschriften, Lehre und Messeauftritte zugänglich gemacht werden. Darüber hinaus ist, basierend auf den gewonnenen Erkenntnissen zu biobasierten strukturrelevanten Bauteilen, die Initiierung von Anschlussprojekten, industriellen Aufträgen sowie die Entwicklung marktreifer Produkte geplant.
Naturfaserverstärkte Biokunststoffverbunde und innovative Herstellungsverfahren für Leichtbau-Hybridformteile mit hohen Struktur- und Sicherheitsanforderungen (regScha) Das Hauptanliegen des geplanten Forschungsprojektes beinhaltet die Erweiterung des Einsatzbereiches von naturfaserverstärkten Bio-Kunststoff-Verbunden für High-Performance-Produkte. Belastungsgerechte Laminataufbauten aus quasi-endlos faserverstärkten Einzelschichten sollen hierbei als partielle Verstärkungen über einen Hybrid-Spritzgussprozess sowie einer nachgeschalteten selektiven Strahlenvernetzung in hochbelastbare Strukturbauteile integriert werden. Hierfür werden verschiedene Material-, Technologie-, Auslegungs- und Recyclingkonzepte am Beispiel einer Sitzschale kritisch erforscht und in eine praxisnahe Strukturanwendung überführt. Im Erfolgsfall des Projektes liegen somit wichtige Erkenntnisse sowie Verarbeitungs- und Designmethoden für die Anwendung von naturfaserverstärkten Bio-Kunststoff-Verbunden in Strukturbauteilen vor.
Innerhalb des Teilvorhabens wurde ein Projekt bearbeitet, bei dem mit Hilfe chemisch-angepasster Haftvermittlersysteme das verbesserte Anwendungspotenzial von Cellulose-Endlosfasern zur Herstellung von Naturfaser-verstärkten Kunststoffverbunden auf Basis thermo- oder duroplastischer Matrixsystemen untersucht werden sollte. Da eine gute Haftvermittlung zwischen Faser und Matrix die mechanischen Kennwerte des resultierenden Verbundes verbessert, sollten die Cellulosefasern kontinuierlich und qualitativ gleichmäßig durch entsprechende Haftvermittlersysteme beschichtet werden. Daran anschließend wurden die beschichteten Fasern sowohl durch kunststofftechnische Prozesse in entsprechende thermoplastische als auch mittels VARI-Technologie in eine duroplastische Matrix eingebracht. Gerade im Bereich der thermoplastischen Matrices wurden bislang Cellulose-Kurz- oder Langfasern (kleiner 30 mm) verwendet. Diese wurden dazu diskontinuierlich den verwendeten Haftvermittler- Suspensionen hinzugegeben, in diesen gerührt und zum Trocknen entnommen. Dieses zeit- und energieintensive Verfahren eignet sich jedoch ausschließlich zur Modifizierung kurzer Fasern für den Extrusion- und Spritzgussprozess, ist jedoch für Endlosfasern ungeeignet. Daher war eines der Ziele des betrachteten Projektes die Optimierung des Beschichtungsprozesses zur Gewährleistung eines homogenen Haftvermittlerauftrags auf die Faser. Ebenfalls galt es, den für die Weiterverarbeitung der beschichteten Fasern notwendigen nachgeschalteten Trocknungsprozess direkt in den Prozessablauf einzubringen, um eine erneute thermische Behandlung und damit potenzielle Schädigung der Fasern zu verhindern. In dem Vorhaben wurden acht verschiedene Haftvermittlersysteme kontinuierlich auf die Cellulosefaser aufgebracht. Anschließend erfolgte das Einbringen in die jeweilige Matrix sowie die Bestimmung der mechanischen Eigenschaften des Compounds bzw. Komposits.
Ziel ist, einerseits Staerke aus verschiedenen Naturprodukten so aufzubereiten und durch Additive auszuruesten, dass dieser nachwachsende Rohstoff in gaengigen Verarbeitungsmaschinen wie Extrudern und Spritzgiessmaschinen zu Fertigartikeln verarbeitet werden kann, und andererseits die Optimierung und Auslegung der dazu notwendigen Verarbeitungstechniken. Ergebnisse: Staerke aus nachwachsenden Rohstoffen wie Mais oder Markerbsen wurde durch natuerliche Weichmacher und Trenn- bzw. Gleitmittel so modifiziert, dass eine gute Verarbeitbarkeit im konventionellen Einschneckenextruder sowie im Spritzgussverfahren gegeben ist. Die so hergestellten Fertigteile weisen gute mechanische Eigenschaften auf. Hergestellt wurden Artikel aus diesen Materialien fuer Anwendungen im Bereich der Gastronomie und im Verpackungssektor, da die Artikel nach Gebrauch kompostiert werden koennen.
| Origin | Count |
|---|---|
| Bund | 27 |
| Type | Count |
|---|---|
| Förderprogramm | 27 |
| License | Count |
|---|---|
| offen | 27 |
| Language | Count |
|---|---|
| Deutsch | 27 |
| Englisch | 2 |
| Resource type | Count |
|---|---|
| Keine | 12 |
| Webseite | 15 |
| Topic | Count |
|---|---|
| Boden | 23 |
| Lebewesen und Lebensräume | 21 |
| Luft | 17 |
| Mensch und Umwelt | 27 |
| Wasser | 12 |
| Weitere | 27 |