Neue Studien zeigen, dass die Emissionen eines der wichtigsten Fluochlorkohlenwasserstoffe (FCKWs), des CFC--11, seit 2012 wieder ansteigen, was eine ernste Bedrohung für die Ozonschicht bedeutet. Allerdings sind die Abschätzungen der FCKW Emissionen mit großen Unsicherheiten behaftet. Die größte Unsicherheit stammt von Änderungen der stratosphärischen Zirkulation und deren Darstellung in derzeitigen atmosphärischen Modellen und Reanalysen. Die Methodiken, um diese Zirkulationsänderungen in Modellen besser einzuschränken, sind unzureichend.Ziel des Projekts ist es den Einfluß von Jahr-zu-Jahr Variabilität und dekadischen Änderungen im stratosphärischen Transport auf troposphärische Änderungen langlebiger Spurenstoffe, mit Fokus auf FCKWs, besser zu verstehen. Dazu werden neue Methodiken entwickelt und verbessert, um das stratosphärische Altersspektrum abzuleiten, die Verteilung der Transportzeit durch die Stratosphäre. In einem ersten Schritt wird die Methoden-Evaluierung im Modell durchgeführt. Drei verschiedene Methodiken zur Berechnung des Altersspektrums aus Mischungsverhältnissen chemischer Spezies werden verglichen. Diese Methodiken basieren auf (i) einer inversen Gauss-Funktions Parametrisierung, (ii) einer verbesserten Parametrisierung, und (iii) einer direkten Inversions-Methode. Für einen "proof of concept" werden die Resultate aller drei Methoden mit Altersspektren aus dem Lagrangeschen Atmosphären-Modell CLaMS verglichen, die im Modell exakt mit einer Pultracer-Methode berechnet werden. Im zweiten Schritt werden die Methodiken angewendet auf hochaufgelöste in-situ Spurengas-Messdaten aus Luftproben von Flugzeug-Messungen und von neuesten AirCore Messungen. Die Kombination von neuartigen Simulations- und Berechnungs-Methoden mit neuesten Messdaten zur Bestimmung des stratosphärischen Altersspektrums wird zu bisher nicht dagewesenen Einschränkungen des stratosphärischen Transports in Modellen führen. Durch Vergleich der Modell-Altersspektren aus Simulationen die mit verschiedenen meteorologischen Reanalysen angetrieben wurden, einschließlich der neuesten ERA5 Reanalyse und älterer Produkte (ERA-Interim, MERRA-2, JRA-55), soll die Robustheit der Modell-Darstellung stratosphärischer Transportänderungen abgeschätzt werden. Schließlich werden die Variabilitäten im stratosphärischen Transport untersucht und quantifiziert, sowie die Effekte dieser Variabilität auf die Spurengaszusammensetzung der unteren Stratosphäre und auf troposphärische Trends. Die aus dem Projekt resultierenden verbesserten Methodiken zur Abschätzung troposphärischer Spurenstoff-Budgets sollen der wissenschaftlichen Community zugänglich gemacht werden, und werden einen wichtigen Schritt darstellen hin zu einer verbesserten Berechnung von Emissionen langlebiger ozonzerstörender Substanzen und Treibhausgase.
Zusammensetzung und zeitliche Veränderungen der mikrobiellen Lebensgemeinschaften von Rhizoplane, Rhizosphäre und des Bodenkörpers eines extensiv genutzten Grünlandes sollen unter derzeitigem und erhöhtem atmosphärischen CO2-Partialdruck im Langzeitversuch (unter Einbindung und Verzahnung in das beantragte Vorhaben des Instituts für Pflanzenökologie der JLU-Gießen; Prof.Dr. H.-J. Jäger) untersucht werden. Dabei sollen molekularbiologische und z.T. klassisch kulturelle Verfahren zum Einsatz kommen. Untersuchungen zur Zusammensetzung der mikrobiellen Lebensgemeinschaften sollen mittels der in situ-Hybridisierung mit unterschiedlich spezifischen 16S bzw. 23S rRNA gerichtete Oligonukleotidsonden erfolgen (Gesamtzellzahlenbestimmug mittels DAPI Färbung). Dabei sollen mit Bezug auf das o.g. Parallelprojekt die Nitrifikanten und methanogenen Organismen quantifiziert und hinsichtlich ihrer Zusammensetzung beschrieben werden (Spurengasmessungen erfolgen parallel durch die AG Jäger). Eine Quantifizierung (und nachgehende weitgehende Qualifizierung) der Nitrifikanten, der methano- und der methylotrophen Organismen soll mittels des Most Probable Number (MPN) Verfahrens erfolgen. Zusätzlich soll die Bestimmung des Gehaltes an mikrobiellem C und N nach Fumigationextraktion erfolgen, um Zusammenhänge zwischen der direkt ermittelten Zellzahl und dem Gehalt an Kohlenstoff und Stickstoff in der mikrobiellen Biomasse zu erfassen.
Spektro-Radiometer im Millimeterwellenbereich erlauben wichtige Spurengase wie Ozon, Kohlenmonoxyd, Wasserdampf, Chlormonoxyd sowie Atmosphaerenparameter wie Temperatur und Druck ueber grosse Abstaende als Funktion der Hoehe in Strato- und Mesosphaere (ca. 10 bis 80 km) zu messen. Es werden Langzeitbeobachtungen vom Boden aus gemacht sowie mit Flugzeuggetragenen Instrumenten ueber grosse Abstaende (Meridian) geflogen, um sowohl zeitliche Entwicklung wie geographische Verteilung zu studieren. Ein Space-Shuttle-getragenes Experiment fuer globale Beobachtung ist in Vorbereitung. Das Ziel ist die Verbesserung des Verstaendnisses der Atmosphaeren-Chemie sowie die Verfolgung langzeitiger Veraenderungen durch natuerliche und anthropogene Einfluesse.
In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.
Zielsetzung: Distickstoffmonoxid (N2O), allgemein bekannt unter dem Trivialnamen Lachgas, zählt neben Kohlenstoffdioxid (CO2) und Methan (CH4) zu den Spurengasen in der Atmosphäre, die maßgeblich zu den anthropogen bedingten Klimaveränderungen beitragen. Eine Hauptquelle für das Lachgas stellen landwirtschaftlich und gartenbaulich genutzte Böden dar. Im Zuge der Applikation von stickstoffhaltigen organischen und mineralischen Düngern werden mikrobielle Umsetzungen forciert, die zur N2O-Bildung führen. In dem geplanten Projekt soll ein neuer Ansatz zur Reduktion von Lachgasemissionen im Freilandgemüsebau entwickelt werden. Nach der Einarbeitung von leicht zersetzbaren Ernterückständen wird Lachgas mit besonders hoher Rate aus Böden freigesetzt. Ziel ist es, diese unerwünschten N-Abflüsse durch eine Optimierung des Nacherntemanagements zu minimieren. Mögliche Ansatzpunkte hierfür liegen in der Anwendung von Nitrifikationsinhibitoren, der Einarbeitungstechnik und in dem Einarbeitungstermin der Ernterückstände. Die vorgesehenen Maßnahmen sollen gleichzeitig auch zu einer Verringerung weiterer Stickstoffverluste durch Denitrifikation und Auswaschung von Nitrat beitragen. Insgesamt wird das Ziel verfolgt, die Stickstoffeffizienz bei der Erzeugung von Gemüse im Freiland zu erhöhen und damit die ökologische und ökonomische Nachhaltigkeit der Anbauprozesse zu verbessern.
Zielsetzung: Bestimmung der globalen Verteilung der oben genannten Gase in der Atmosphaere. Schwerpunkt liegt auf der Erfassung eines moeglichen Unterschiedes der Konzentration des betreffenden Gases zwischen der Troposphaere und Stratosphaere sowie zwischen den beiden Hemisphaeren. Aus den Messungen lassen sich wichtige Rueckschluesse auf moegliche Abbau- bzw. Produktionsprozesse ziehen. Methoden: Einbau von Messgeraeten in Flugzeuge und Messungen; Sammeln von Luftproben in der Stratosphaere mit Hilfe von Ballonen und Analyse im Labor; Einsatz von z.T. selbst entwickelten Messgeraeten.
Die stratosphärische Ozonschicht absorbiert die UV-C und UV-B Sonnenstrahlung und schützt damit Pflanzen, Tiere und Menschen vor Strahlenschäden. Durch anthropogen emittierte Fluorchlorkohlenwasserstoffe (FCKWs) wird die Ozonschicht abgebaut. Da FCKWs seit dem Montrealer Protokoll stark zurückgegangen sind, werden halogenierte Verbindungen wie Chlormethan (CH3Cl), die aus natürlichen Quellen freigesetzt werden, für den Abbau der Ozonschicht in der Stratosphäre zunehmend relevant. CH3Cl ist das am häufigsten vorkommende chlorhaltige Spurengas in der Erdatmosphäre, das für etwa 17% der durch Chlor katalysierten Ozonzerstörung in der Stratosphäre verantwortlich ist. Daher wird CH3Cl vornehmlich die zukünftigen Gehalte an stratosphärischem Chlor bestimmen. Die aktuellen Schätzungen des globalen CH3Cl-Budgets und die Verteilung der Quellen und Senken sind sehr unsicher. Ein besseres Verständnis des atmosphärischen CH3Cl-Budgets ist daher das Hauptziel dieses Projektes.Die Analyse stabiler Isotopenverhältnisse von Wasserstoff (H), Kohlenstoff (C) und Chlor (Cl) hat sich zu einem wichtigen Werkzeug zur Untersuchung des atmosphärischen CH3Cl-Budgets entwickelt. Das zugrundeliegende Konzept besteht darin, dass das atmosphärische Isotopenverhältnis einer Verbindung wie CH3Cl gleich der Summe der Isotopenflüsse aus allen Quellen angesehen werden kann, korrigiert um den gewichteten durchschnittlichen kinetischen Isotopeneffekt aller Abbauprozesse. Dadurch ist es möglich, die Bedeutung wichtiger Quellen und Senken mit bekannten Isotopensignaturen zu entschlüsseln. Eine Grundvoraussetzung für detaillierte Hochrechnungen des globalen Budgets ist die Bestimmung der durchschnittlichen Isotopenverhältnisse von H, C und Cl des troposphärischen CH3Cl. Aufgrund der relativ geringen Konzentration von atmosphärischem CH3Cl von ~550 ppbv stellt dies eine große messtechnische Herausforderung dar. Daher liegt der Schwerpunkt dieses Antrags auf der erfolgreichen Entwicklung von Dreifachelement-Isotopenmethoden zur genauen Messung von atmosphärischem CH3Cl.Im ersten Schritt wird ein Probenahmesystem für große Luftmengen konstruiert und für die Messungen der stabilen Isotopenverhältnisse von CH3Cl optimiert. Das Probenahmegerät wird zunächst im Labor getestet und dann zum Sammeln von Luftproben an drei verschiedenen Orten eingesetzt: an der Universität Heidelberg, am Hohenpeißenberg und im Schneefernerhaus. Die Probenahmen werden über einen Zeitraum von einem Jahr durchgeführt, um möglichst auch saisonale Schwankungen zu erfassen. Die Isotopenverhältnisse der Proben werden mit modernsten massenspektrometrischen Methoden im Labor gemessen. Die Ergebnisse aller Standorte und Zeitpunkte werden in der Gesamtheit evaluiert, um die durchschnittlichen stabilen H-, C und Cl-Isotopenwerte einschließlich ihrer saisonalen Schwankungen darzustellen. Abschließend werden die Daten hinsichtlich ihrer Anwendbarkeit für komplexe numerische Modelle kritisch diskutiert.
In diesem Projekt sollen zeitlich hoch aufgelöste Spurengasmessungen und Messungen der Größenspektren der Aerosolpartikel an einem Verkehrsstandort zu einer deutlichen Weiterentwicklung unseres Verständnisses der Dynamik der Konzentrationen von Luftschadstoffen im städtischen Umfeld sowie der Emissionen aus dem Straßenverkehr beitragen. Neue, schnelle Techniken sollen das bereits gut entwickelte Grundlagenwissen zu Emissionsverhältnissen NO / NO2 / NOx einzelner Fahrzeuge und Fahrzeuggruppen entwickeln, den Einfluss auf die Ozonchemie und die Interaktion mit dem vorhandenen Ozon studieren, Emissionsverhältnisse NH3 / CO2 und NOx / CO2 unter realen Bedingungen quantifizieren, und vor allem die Emissionen der Aerosopartikel in einem weiten Größenspektrum (einige nm bis über 1 mym Durchmesser) detailliert quantifizieren. Dies bedeutet und ermöglicht eine neuartige Analyse der Emissionen von Partikeln im echten Straßenverkehr. Die vorgeschlagenen Konzepte und Messungen ergänzen sich mit anderen modernen Konzepten der Analyse von Luftverschmutzung und Emissionen wie z.B. multi-Sensoren-Anwendungen, Einsatz mobiler Plattformen, oder Eddy-Kovarianz. Hier wird Grundlagenforschung vorgeschlagen, die in Ergänzung mit anderen Anwendungen und Konzepten einschließlich Modellierung zu einer deutlichen Verbesserung unseres Verständnisses der städtischen Umwelt führen wird. Das Herzstück der experimentellen Forschung ist eine 18-monatige Messreihe am Straßenrand, die allerdings von zwei Intensivmesskampagnen (IOPs) um Kenntnisse zur räumlichen Representativität und zur chemischen Zusammensetzung der Partikel im Größenspektrum ergänzt werden.
Außer dem bekannten Treibhausgas Kohlendioxid (CO2) existieren weitere stark klimawirksame Spurengase biologischen Ursprungs, z.B. Lachgas (N2O) und Methan (CH4), die mikrobiell im Boden produziert (N2O, CH4) oder im Falle des Methans auch verbraucht (oxidiert) werden. Die steigende atmosphärische CO2-Konzentration kann sich über die Pflanzen in vielfacher Weise auf die bodenmikrobiellen, Spurengasproduzierenden Prozesse auswirken. So ist beispielsweise nachgewiesen worden, dass der Wasserverbrauch der Pflanzen unter erhöhtem CO2 häufig sinkt und die Abgabe von leicht zersetzbarem Kohlenstoff an den Boden (Wurzelexudation) steigt. Beides könnte die Denitrifikation und damit die N2O-Produktion begünstigen, ebenso die Methanproduktion, wenn im Boden anaerobe Bedingungen (z.B. durch Überflutung) eintreten. Steigende Bodenfeuchte würde zugleich die Sauerstoff-abhängige Methanoxidation im Oberboden hemmen. Zu diesem Thema existieren bislang weltweit nur Kurzzeit- und Laborstudien. Im hier vorgestellten Projekt werden im Freilandexperiment die Langzeitauswirkungen steigender atmosphärischer CO2-Konzentrationen über das System Pflanze-Boden auf die Flüsse der klimawirksamen Spurengase N2O und CH4 in einem artenreichen Dauergrünland untersucht. Hierzu gelangt ein im Institut für Pflanzenökologie neuentwickeltes Freiland-CO2-Anreicherungssystem (FACE) zur Anwendung, bei dem die CO2-Konzentration in drei Anreicherungsringen seit Mai 1998 um etwa 20 Prozent gegenüber den drei Kontrollringen erhöht wurde. Über die Jahresbilanzierungen der Spurengasflüsse sowie über begleitende Prozessstudien soll geklärt werden, wie und auf welche Weise erhöhtes CO2 auf die N2O- und CH4-Spurengasflüsse rückwirkt. Die ersten Ergebnisse zeigen deutlich, dass in einem etablierten artenreichen Ökosystem wie dem untersuchten Feuchtgrünland zuerst die unterirdischen Prozesse auf die steigenden CO2-Konzentrationen reagierten (Bestandesatmung). Die oberirdische Biomasse zeigte erst nach etwa 1,5 Jahren der CO2-Anreicherung einen signifikanten Zuwachs gegenüber den Kontrollflächen. Im Jahr 1997, vor dem Beginn der CO2 -Anreicherung, waren sowohl die N2O-Emissionen als auch die CH4 Flüsse auf den (späteren) Anreicherungs- und den Kontrollflächen fast identisch. Seit Beginn der Anreicherung hingegen sind die N2O-Emissionen vor allem während der Vegetationsperiode dramatisch angestiegen: auf 278 Prozent der Emissionen der Kontrollflächen. Die Methanoxidation war rückläufig unter erhöhtem CO2: Mittlerweile oxidieren die CO2 Anreicherungsflächen 20 Prozent weniger CH4 als die Kontrollflächen (Jahr 2000), wobei auch hier der größte Unterschied während der Vegetationsperiode auftrat. Eine erhöhte Bodenfeuchte kommt als Erklärung nicht in Frage, da sich diese nicht geändert hat.
Die aus der Emission von Schadstoffen aus Schweineställen resultierende Umweltbelastung ist vor allem auf Geruch, Staub, Methan, Kohlendioxid, Ammoniak, Schwefelwasserstoff und über 100 weitere Spurengase zurückzuführen. Zur Minderung dieser Emissionen dient eine Abgasreinigungsanlage, die modular aus einer chemischen Wäsche und einer Biofiltration im Pilotanlagen-Maßstab zusammengesetzt ist. In dem beantragten Projekt werden durch experimentelle und theoretische Untersuchungen die Erlangung von Kenntnissen über grundlegende Zusammenhänge dabei und die weiterführende Minimierung der Schad- und Geruchsstoffkonzentrationen im Abgas angestrebt. Die experimentellen Untersuchungen zur genaueren Charakterisierung des Anlagenverhaltens und der ablaufenden Prozesse gliedern sich in zwei Schwerpunktbereiche: Der erste umfasst die Prozesse im chemischen Wäscher, insbesondere Staubeintrag, -beschaffenheit, -Abscheidegrad und Adsorptionsvermögen des Staubes - dabei steht der Zusammenhang zwischen Staubeintrag und Geruchsminderungsgrad im Mittelpunkt - sowie die Parameterbestimmung für eine Modellierung und Simulation. Der zweite Schwerpunkt liegt auf dem Bereich Langzeitmonitoring der Abgasreinigungsanlage - insbesondere hinsichtlich der Wirkungsgradabhängigkeiten und der Einflussgrößen auf die Verfahrensstabilität. Die Modellierung und Simulation der gesamten Reinigungsanlage durch Adaption verfahrensspezifischer Zusammenhänge soll Vorhersagen für verschiedene apparative Ausgangssituationen und verfahrenstechnische Einstellungen liefern.
| Origin | Count |
|---|---|
| Bund | 1324 |
| Land | 478 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Ereignis | 2 |
| Förderprogramm | 842 |
| Text | 6 |
| unbekannt | 478 |
| License | Count |
|---|---|
| geschlossen | 10 |
| offen | 1319 |
| Language | Count |
|---|---|
| Deutsch | 1254 |
| Englisch | 177 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 477 |
| Dokument | 121 |
| Keine | 643 |
| Webseite | 209 |
| Topic | Count |
|---|---|
| Boden | 719 |
| Lebewesen und Lebensräume | 730 |
| Luft | 886 |
| Mensch und Umwelt | 1329 |
| Wasser | 1191 |
| Weitere | 1310 |