Neue Studien zeigen, dass die Emissionen eines der wichtigsten Fluochlorkohlenwasserstoffe (FCKWs), des CFC--11, seit 2012 wieder ansteigen, was eine ernste Bedrohung für die Ozonschicht bedeutet. Allerdings sind die Abschätzungen der FCKW Emissionen mit großen Unsicherheiten behaftet. Die größte Unsicherheit stammt von Änderungen der stratosphärischen Zirkulation und deren Darstellung in derzeitigen atmosphärischen Modellen und Reanalysen. Die Methodiken, um diese Zirkulationsänderungen in Modellen besser einzuschränken, sind unzureichend.Ziel des Projekts ist es den Einfluß von Jahr-zu-Jahr Variabilität und dekadischen Änderungen im stratosphärischen Transport auf troposphärische Änderungen langlebiger Spurenstoffe, mit Fokus auf FCKWs, besser zu verstehen. Dazu werden neue Methodiken entwickelt und verbessert, um das stratosphärische Altersspektrum abzuleiten, die Verteilung der Transportzeit durch die Stratosphäre. In einem ersten Schritt wird die Methoden-Evaluierung im Modell durchgeführt. Drei verschiedene Methodiken zur Berechnung des Altersspektrums aus Mischungsverhältnissen chemischer Spezies werden verglichen. Diese Methodiken basieren auf (i) einer inversen Gauss-Funktions Parametrisierung, (ii) einer verbesserten Parametrisierung, und (iii) einer direkten Inversions-Methode. Für einen "proof of concept" werden die Resultate aller drei Methoden mit Altersspektren aus dem Lagrangeschen Atmosphären-Modell CLaMS verglichen, die im Modell exakt mit einer Pultracer-Methode berechnet werden. Im zweiten Schritt werden die Methodiken angewendet auf hochaufgelöste in-situ Spurengas-Messdaten aus Luftproben von Flugzeug-Messungen und von neuesten AirCore Messungen. Die Kombination von neuartigen Simulations- und Berechnungs-Methoden mit neuesten Messdaten zur Bestimmung des stratosphärischen Altersspektrums wird zu bisher nicht dagewesenen Einschränkungen des stratosphärischen Transports in Modellen führen. Durch Vergleich der Modell-Altersspektren aus Simulationen die mit verschiedenen meteorologischen Reanalysen angetrieben wurden, einschließlich der neuesten ERA5 Reanalyse und älterer Produkte (ERA-Interim, MERRA-2, JRA-55), soll die Robustheit der Modell-Darstellung stratosphärischer Transportänderungen abgeschätzt werden. Schließlich werden die Variabilitäten im stratosphärischen Transport untersucht und quantifiziert, sowie die Effekte dieser Variabilität auf die Spurengaszusammensetzung der unteren Stratosphäre und auf troposphärische Trends. Die aus dem Projekt resultierenden verbesserten Methodiken zur Abschätzung troposphärischer Spurenstoff-Budgets sollen der wissenschaftlichen Community zugänglich gemacht werden, und werden einen wichtigen Schritt darstellen hin zu einer verbesserten Berechnung von Emissionen langlebiger ozonzerstörender Substanzen und Treibhausgase.
Die Konzentrationen vieler natürlicherweise in der bodennahen Atmosphäre vorhandener Luftinhaltsstoffe sind aufgrund vielfältiger menschlicher Aktivitäten wie Einsatz fossiler Energieträger, industrielle Produktion und Intensivierung der Landwirtschaft in den letzten Jahrzehnten beträchtlich angestiegen. Der globale Anstieg klimawirksamer Spurengase wie Kohlenstoffdioxid (CO2), Methan (CH4), Distickstoffoxid (N2O), FCKW und Ozon (O3) soll nach Modellrechnungen bei anhaltenden bzw. weiter steigenden Emissionen im Verlauf des nächsten Jahrhunderts zu Veränderungen des globalen und regionalen Klimas führen. Weiterhin ist auch ein Anstieg der bodennahen UV-B-Strahlung nicht auszuschließen, sofern sich der Abbau der stratosphärischen Ozonschicht weiter fortsetzt. Gleichzeitig können Organismen und Ökosysteme unmittelbar durch die steigenden CO2- und O3-Konzentrationen beeinflusst werden. Ziel dieses Projektes ist es deshalb, die Auswirkungen des sich ändernden chemischen (insbesondere steigende CO2- und O3-Konzentrationen) und physikalischen (steigende globale Lufttemperaturen) Klimas auf Flora, Fauna und Boden eines extensiv genutzten Grünland-Ökosystems beispielhaft zu erfassen. Aufgrund der relativ geringen Häufigkeit und Intensität der Bewirtschaftungsmaßnahmen und der langen Lebensdauer bietet sich das Dauergrünland unter Wiesennutzung als besonders geeignetes System zur Abschätzung der langfristigen Auswirkungen von Klimaveränderungen im Ökosystem an. Das Vorhaben lässt sich in folgende Schwerpunkte gliedern: - Kontinuierliche Bestimmung der Konzentrationen von Luftinhaltsstoffen in der Umgebungsluft (insbesondere Ozon, CO2 und Stickstoffoxide) - Kontinuierliche Bestimmung des Austausches klimarelevanter Spurengase in der Grenzschicht Biosphäre/Atmosphäre (insbesondere CO2, H2O, Ozon, N2O, Methan) - Zeitreihenuntersuchungen auf Dauerbeobachtungsflächen - Experimentelle Manipulation der Konzentration von Luftinhaltsstoffen ( CO2, Ozon) in der Umgebungsluft zur Abschätzung ihrer langfristigen Auswirkungen auf Flora, Fauna und Boden des Ökosystems.
Zusammensetzung und zeitliche Veränderungen der mikrobiellen Lebensgemeinschaften von Rhizoplane, Rhizosphäre und des Bodenkörpers eines extensiv genutzten Grünlandes sollen unter derzeitigem und erhöhtem atmosphärischen CO2-Partialdruck im Langzeitversuch (unter Einbindung und Verzahnung in das beantragte Vorhaben des Instituts für Pflanzenökologie der JLU-Gießen; Prof.Dr. H.-J. Jäger) untersucht werden. Dabei sollen molekularbiologische und z.T. klassisch kulturelle Verfahren zum Einsatz kommen. Untersuchungen zur Zusammensetzung der mikrobiellen Lebensgemeinschaften sollen mittels der in situ-Hybridisierung mit unterschiedlich spezifischen 16S bzw. 23S rRNA gerichtete Oligonukleotidsonden erfolgen (Gesamtzellzahlenbestimmug mittels DAPI Färbung). Dabei sollen mit Bezug auf das o.g. Parallelprojekt die Nitrifikanten und methanogenen Organismen quantifiziert und hinsichtlich ihrer Zusammensetzung beschrieben werden (Spurengasmessungen erfolgen parallel durch die AG Jäger). Eine Quantifizierung (und nachgehende weitgehende Qualifizierung) der Nitrifikanten, der methano- und der methylotrophen Organismen soll mittels des Most Probable Number (MPN) Verfahrens erfolgen. Zusätzlich soll die Bestimmung des Gehaltes an mikrobiellem C und N nach Fumigationextraktion erfolgen, um Zusammenhänge zwischen der direkt ermittelten Zellzahl und dem Gehalt an Kohlenstoff und Stickstoff in der mikrobiellen Biomasse zu erfassen.
Wechselwirkungen zwischen dem Ozean und der Troposphäre sind für viele Prozesse in beiden Systemen wichtig. Ein Schlüsselprozess stellt der Austausch von Spurengasen zwischen der Atmosphäre und dem Ozean dar. Die Emission von Dimethylsulfid (DMS) stellt die größte natürliche Quelle für reduzierten Schwefel in die Atmosphäre dar. Dort kann DMS zu Schwefeldioxid, Schwefelsäure oder Methansulfonsäure oxidiert werden. Diese Verbindungen sind wichtige Vorläufersubstanzen für sekundäre Aerosole, die den natürlichen Strahlungshaushalt und die Wolkenbildung beeinflussen können. Die chemische Prozessierung, d.h. die sekundäre Bildung und Oxidation von DMS-Oxidationsprodukten, ist jedoch noch immer schlecht verstanden. Daher ist die Implementierung in aktuelle Multiphasenchemiemechanismen und Klimamodellen begrenzt, wodurch die aktuellen Vorhersagen noch sehr unsicher sind. Um die bestehenden Lücken in unserem Verständnis der DMS-Multiphasenchemie weiter zu schließen, zielt das Projekt ADOniS darauf ab, (i) fortgeschrittene Laboruntersuchungen zur Gas- und Flüssigphasenchemie von DMS-Oxidationsprodukten durchzuführen, (ii) ein fortgeschrittenes Multiphasen-DMS-Chemiemodul zu entwickeln und (iii) Prozess- und 3D-Modelluntersuchungen durchzuführen. Die vorgeschlagenen detaillierten Laboruntersuchungen konzentrieren sich auf die OH-Oxidation von Gasphasenprodukten der ersten Generation, Hydroperoxymethylthioformat (HPMTF) und Dimethylsulfoxid (DMSO), sowie auf die Bildung von DMS-Oxidationsprodukten der zweiten Generation. Die detaillierten mechanistischen Untersuchungen werden mit einem Freistrahl-Strömungsreaktor durchgeführt. Weitere kinetische und mechanistische Untersuchungen werden sich auf die Chemie von DMS-Oxidationsprodukten in der wässrigen Phase konzentrieren. OH Radikalreaktionen von HPMTF-Surrogaten werden mit Hilfe eines Laser Flash Photolysis - Long Path Absorption (LFP-LPA) Systems untersucht. Weiterhin wird die Oxidation von MSA/MS- durch OH(aq) und die Oxidation von MSIA/MSI- durch O3(aq) in wässriger Phase untersucht. Ferner soll die Aufnahme von wichtigen DMS-Oxidationsprodukten an verschiedenen Aerosolpartikeln durch Kammerstudien untersucht werden. Die Bildung von DMS-Oxidationsprodukten in der Gasphase und deren Aufnahme auf injizierten Aerosolpartikeln wird mit einem CI-APi-TOF Massenspektrometer gemessen. Basierend auf den Ergebnissen der Laborstudien wird ein fortschrittliches DMS-Reaktionsmodul entwickelt und anschließend im Multiphasenchemiemodell SPACCIM für detaillierte Prozessstudien eingesetzt. Die gewonnenen Erkenntnisse über die wichtigsten DMS-Oxidationswege werden dann die Grundlage für eine aktualisierte Behandlung DMS in globalen Klimachemiemodellen (CCMs), hier ECHAM-HAMMOZ, bilden. Schließlich werden Simulationen mit ECHAM-HAMMOZ die Auswirkungen des verbesserten DMS-Mechanismus auf die globale atmosphärische DMS-Chemie untersuchen und die Auswirkungen auf das Klima und die zukünftige Sensitivität bewerten.
Spektro-Radiometer im Millimeterwellenbereich erlauben wichtige Spurengase wie Ozon, Kohlenmonoxyd, Wasserdampf, Chlormonoxyd sowie Atmosphaerenparameter wie Temperatur und Druck ueber grosse Abstaende als Funktion der Hoehe in Strato- und Mesosphaere (ca. 10 bis 80 km) zu messen. Es werden Langzeitbeobachtungen vom Boden aus gemacht sowie mit Flugzeuggetragenen Instrumenten ueber grosse Abstaende (Meridian) geflogen, um sowohl zeitliche Entwicklung wie geographische Verteilung zu studieren. Ein Space-Shuttle-getragenes Experiment fuer globale Beobachtung ist in Vorbereitung. Das Ziel ist die Verbesserung des Verstaendnisses der Atmosphaeren-Chemie sowie die Verfolgung langzeitiger Veraenderungen durch natuerliche und anthropogene Einfluesse.
Im Rahmen des Projektes werden die Gestehungskosten fuer die Gasdruckregelung ueber den gesamten Lebenszyklus der GDRA bilanziert und auf der Basis von Messwerten der EVG mbH verifiziert. Das vorgeschlagene Rechenverfahren integriert explizit die Kosten fuer die Gasvorwaermung und greift die Struktur der VDI 2067 bzw. VDI 6025 auf. Neben der Kostenbetrachtung wurde parallel der Bezug zum Primaerenergiebedarf und den Treibhausgasemissionen, bewertet im CO2-Massstab hergestellt. Das Problem der Erdgasvorwaermung wird separat behandelt. Optimierungsmoeglichkeiten im Bereich der Waermebereitstellung werden abgeleitet.
Zielsetzung: Untersuchungen ueber den Einfluss mikrobiologischer Prozesse im Boden und Oberflaechenwasser der Ozeane auf CO, H2, CFCl3, CF2Cl2, CCl4, Hg, H2CO, N2O und CH4. Bestimmung der Abbauraten und Produktionsraten als Funktion der Bodenart und Bodentemperatur. Messung der im Wasser geloesten Gasanteile im Ozean und Bestimmung ihrer vertikalen Verteilung bis in Wassertiefen von 1000 m. Methoden: in situ-Messungen am Boden sowie an verschiedenen Stellen der Ozeane; Laboruntersuchungen mit verschiedenen Mikroorganismen.
In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.
Kontinuierliche Messung des bodennahen Ozons in verschiedenen Hoehen ueber Grund (bis zu 30 m). Bestimmung der Jahres-, Monat- und Tagesgaenge. Erforschung des Zusammenhangs mit meterologischen Groessen. Untersuchung der Ursachen gefundener kurzzeitiger Extremwerte (bis 500 nb) des natuerlichen Ozons. Untersuchung der Zusammenhaenge zwischen bodennahem Ozon und anthropogenen Spurengasen (z.B. SO2).
Bisherige Ansätze zu Modellierung von Lachgasemissionen haben noch zu keinen zufriedenstellenden Ergebnissen geführt bzw. die Validierung von Modellen steht noch aus, da u.a. die Bestimmung der Gasdiffusion im Oberboden sowie der Gasübergang in Atmosphäre schwierig bestimmbar ist. Wir stellen für diesen Schritt einen empirischen Modellansatz zur Vorhersage von Lachgasemissionen aus oberflächennahen N2O-Gehalten des Bodens vor, der im Rahmen des Projektes zu einer allgemeinen Anwendbarkeit weiterentwickelt werden soll. Hierbei werden über empirische Transferfaktoren, die in Abhängigkeit von Bodenart, Wassergehalt und Temperatur ermittelt werden, die Emissionen aus Gasgehalten im Boden berechnet. Zur einfachen Bestimmung des N2O-Gehaltes im Oberboden steht ein in unserem Hause entwickeltes neuartiges Bodenprobenahmegerät zur Verfügung. Die Einfachheit der Probenahme und gleichzeitige Erfassung von Gas im Boden sowie den steuernden Größen Nmin und DOC, erlaubt zudem ein Monitoring der Spurengasemissionen auf regionaler Ebene sowie die Validierung bestehender Modelle.
| Origin | Count |
|---|---|
| Bund | 1324 |
| Land | 478 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Ereignis | 2 |
| Förderprogramm | 842 |
| Text | 6 |
| unbekannt | 478 |
| License | Count |
|---|---|
| geschlossen | 10 |
| offen | 1319 |
| Language | Count |
|---|---|
| Deutsch | 1254 |
| Englisch | 177 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 477 |
| Dokument | 121 |
| Keine | 643 |
| Webseite | 209 |
| Topic | Count |
|---|---|
| Boden | 719 |
| Lebewesen und Lebensräume | 730 |
| Luft | 886 |
| Mensch und Umwelt | 1329 |
| Wasser | 1191 |
| Weitere | 1310 |