Spektro-Radiometer im Millimeterwellenbereich erlauben wichtige Spurengase wie Ozon, Kohlenmonoxyd, Wasserdampf, Chlormonoxyd sowie Atmosphaerenparameter wie Temperatur und Druck ueber grosse Abstaende als Funktion der Hoehe in Strato- und Mesosphaere (ca. 10 bis 80 km) zu messen. Es werden Langzeitbeobachtungen vom Boden aus gemacht sowie mit Flugzeuggetragenen Instrumenten ueber grosse Abstaende (Meridian) geflogen, um sowohl zeitliche Entwicklung wie geographische Verteilung zu studieren. Ein Space-Shuttle-getragenes Experiment fuer globale Beobachtung ist in Vorbereitung. Das Ziel ist die Verbesserung des Verstaendnisses der Atmosphaeren-Chemie sowie die Verfolgung langzeitiger Veraenderungen durch natuerliche und anthropogene Einfluesse.
Die stratosphärische Ozonschicht absorbiert die UV-C und UV-B Sonnenstrahlung und schützt damit Pflanzen, Tiere und Menschen vor Strahlenschäden. Durch anthropogen emittierte Fluorchlorkohlenwasserstoffe (FCKWs) wird die Ozonschicht abgebaut. Da FCKWs seit dem Montrealer Protokoll stark zurückgegangen sind, werden halogenierte Verbindungen wie Chlormethan (CH3Cl), die aus natürlichen Quellen freigesetzt werden, für den Abbau der Ozonschicht in der Stratosphäre zunehmend relevant. CH3Cl ist das am häufigsten vorkommende chlorhaltige Spurengas in der Erdatmosphäre, das für etwa 17% der durch Chlor katalysierten Ozonzerstörung in der Stratosphäre verantwortlich ist. Daher wird CH3Cl vornehmlich die zukünftigen Gehalte an stratosphärischem Chlor bestimmen. Die aktuellen Schätzungen des globalen CH3Cl-Budgets und die Verteilung der Quellen und Senken sind sehr unsicher. Ein besseres Verständnis des atmosphärischen CH3Cl-Budgets ist daher das Hauptziel dieses Projektes.Die Analyse stabiler Isotopenverhältnisse von Wasserstoff (H), Kohlenstoff (C) und Chlor (Cl) hat sich zu einem wichtigen Werkzeug zur Untersuchung des atmosphärischen CH3Cl-Budgets entwickelt. Das zugrundeliegende Konzept besteht darin, dass das atmosphärische Isotopenverhältnis einer Verbindung wie CH3Cl gleich der Summe der Isotopenflüsse aus allen Quellen angesehen werden kann, korrigiert um den gewichteten durchschnittlichen kinetischen Isotopeneffekt aller Abbauprozesse. Dadurch ist es möglich, die Bedeutung wichtiger Quellen und Senken mit bekannten Isotopensignaturen zu entschlüsseln. Eine Grundvoraussetzung für detaillierte Hochrechnungen des globalen Budgets ist die Bestimmung der durchschnittlichen Isotopenverhältnisse von H, C und Cl des troposphärischen CH3Cl. Aufgrund der relativ geringen Konzentration von atmosphärischem CH3Cl von ~550 ppbv stellt dies eine große messtechnische Herausforderung dar. Daher liegt der Schwerpunkt dieses Antrags auf der erfolgreichen Entwicklung von Dreifachelement-Isotopenmethoden zur genauen Messung von atmosphärischem CH3Cl.Im ersten Schritt wird ein Probenahmesystem für große Luftmengen konstruiert und für die Messungen der stabilen Isotopenverhältnisse von CH3Cl optimiert. Das Probenahmegerät wird zunächst im Labor getestet und dann zum Sammeln von Luftproben an drei verschiedenen Orten eingesetzt: an der Universität Heidelberg, am Hohenpeißenberg und im Schneefernerhaus. Die Probenahmen werden über einen Zeitraum von einem Jahr durchgeführt, um möglichst auch saisonale Schwankungen zu erfassen. Die Isotopenverhältnisse der Proben werden mit modernsten massenspektrometrischen Methoden im Labor gemessen. Die Ergebnisse aller Standorte und Zeitpunkte werden in der Gesamtheit evaluiert, um die durchschnittlichen stabilen H-, C und Cl-Isotopenwerte einschließlich ihrer saisonalen Schwankungen darzustellen. Abschließend werden die Daten hinsichtlich ihrer Anwendbarkeit für komplexe numerische Modelle kritisch diskutiert.
Außer dem bekannten Treibhausgas Kohlendioxid (CO2) existieren weitere stark klimawirksame Spurengase biologischen Ursprungs, z.B. Lachgas (N2O) und Methan (CH4), die mikrobiell im Boden produziert (N2O, CH4) oder im Falle des Methans auch verbraucht (oxidiert) werden. Die steigende atmosphärische CO2-Konzentration kann sich über die Pflanzen in vielfacher Weise auf die bodenmikrobiellen, Spurengasproduzierenden Prozesse auswirken. So ist beispielsweise nachgewiesen worden, dass der Wasserverbrauch der Pflanzen unter erhöhtem CO2 häufig sinkt und die Abgabe von leicht zersetzbarem Kohlenstoff an den Boden (Wurzelexudation) steigt. Beides könnte die Denitrifikation und damit die N2O-Produktion begünstigen, ebenso die Methanproduktion, wenn im Boden anaerobe Bedingungen (z.B. durch Überflutung) eintreten. Steigende Bodenfeuchte würde zugleich die Sauerstoff-abhängige Methanoxidation im Oberboden hemmen. Zu diesem Thema existieren bislang weltweit nur Kurzzeit- und Laborstudien. Im hier vorgestellten Projekt werden im Freilandexperiment die Langzeitauswirkungen steigender atmosphärischer CO2-Konzentrationen über das System Pflanze-Boden auf die Flüsse der klimawirksamen Spurengase N2O und CH4 in einem artenreichen Dauergrünland untersucht. Hierzu gelangt ein im Institut für Pflanzenökologie neuentwickeltes Freiland-CO2-Anreicherungssystem (FACE) zur Anwendung, bei dem die CO2-Konzentration in drei Anreicherungsringen seit Mai 1998 um etwa 20 Prozent gegenüber den drei Kontrollringen erhöht wurde. Über die Jahresbilanzierungen der Spurengasflüsse sowie über begleitende Prozessstudien soll geklärt werden, wie und auf welche Weise erhöhtes CO2 auf die N2O- und CH4-Spurengasflüsse rückwirkt. Die ersten Ergebnisse zeigen deutlich, dass in einem etablierten artenreichen Ökosystem wie dem untersuchten Feuchtgrünland zuerst die unterirdischen Prozesse auf die steigenden CO2-Konzentrationen reagierten (Bestandesatmung). Die oberirdische Biomasse zeigte erst nach etwa 1,5 Jahren der CO2-Anreicherung einen signifikanten Zuwachs gegenüber den Kontrollflächen. Im Jahr 1997, vor dem Beginn der CO2 -Anreicherung, waren sowohl die N2O-Emissionen als auch die CH4 Flüsse auf den (späteren) Anreicherungs- und den Kontrollflächen fast identisch. Seit Beginn der Anreicherung hingegen sind die N2O-Emissionen vor allem während der Vegetationsperiode dramatisch angestiegen: auf 278 Prozent der Emissionen der Kontrollflächen. Die Methanoxidation war rückläufig unter erhöhtem CO2: Mittlerweile oxidieren die CO2 Anreicherungsflächen 20 Prozent weniger CH4 als die Kontrollflächen (Jahr 2000), wobei auch hier der größte Unterschied während der Vegetationsperiode auftrat. Eine erhöhte Bodenfeuchte kommt als Erklärung nicht in Frage, da sich diese nicht geändert hat.
Im Rahmen des Projektes werden die Gestehungskosten fuer die Gasdruckregelung ueber den gesamten Lebenszyklus der GDRA bilanziert und auf der Basis von Messwerten der EVG mbH verifiziert. Das vorgeschlagene Rechenverfahren integriert explizit die Kosten fuer die Gasvorwaermung und greift die Struktur der VDI 2067 bzw. VDI 6025 auf. Neben der Kostenbetrachtung wurde parallel der Bezug zum Primaerenergiebedarf und den Treibhausgasemissionen, bewertet im CO2-Massstab hergestellt. Das Problem der Erdgasvorwaermung wird separat behandelt. Optimierungsmoeglichkeiten im Bereich der Waermebereitstellung werden abgeleitet.
Zielsetzung: Untersuchungen ueber den Einfluss mikrobiologischer Prozesse im Boden und Oberflaechenwasser der Ozeane auf CO, H2, CFCl3, CF2Cl2, CCl4, Hg, H2CO, N2O und CH4. Bestimmung der Abbauraten und Produktionsraten als Funktion der Bodenart und Bodentemperatur. Messung der im Wasser geloesten Gasanteile im Ozean und Bestimmung ihrer vertikalen Verteilung bis in Wassertiefen von 1000 m. Methoden: in situ-Messungen am Boden sowie an verschiedenen Stellen der Ozeane; Laboruntersuchungen mit verschiedenen Mikroorganismen.
In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.
Kontinuierliche Messung des bodennahen Ozons in verschiedenen Hoehen ueber Grund (bis zu 30 m). Bestimmung der Jahres-, Monat- und Tagesgaenge. Erforschung des Zusammenhangs mit meterologischen Groessen. Untersuchung der Ursachen gefundener kurzzeitiger Extremwerte (bis 500 nb) des natuerlichen Ozons. Untersuchung der Zusammenhaenge zwischen bodennahem Ozon und anthropogenen Spurengasen (z.B. SO2).
Bisherige Ansätze zu Modellierung von Lachgasemissionen haben noch zu keinen zufriedenstellenden Ergebnissen geführt bzw. die Validierung von Modellen steht noch aus, da u.a. die Bestimmung der Gasdiffusion im Oberboden sowie der Gasübergang in Atmosphäre schwierig bestimmbar ist. Wir stellen für diesen Schritt einen empirischen Modellansatz zur Vorhersage von Lachgasemissionen aus oberflächennahen N2O-Gehalten des Bodens vor, der im Rahmen des Projektes zu einer allgemeinen Anwendbarkeit weiterentwickelt werden soll. Hierbei werden über empirische Transferfaktoren, die in Abhängigkeit von Bodenart, Wassergehalt und Temperatur ermittelt werden, die Emissionen aus Gasgehalten im Boden berechnet. Zur einfachen Bestimmung des N2O-Gehaltes im Oberboden steht ein in unserem Hause entwickeltes neuartiges Bodenprobenahmegerät zur Verfügung. Die Einfachheit der Probenahme und gleichzeitige Erfassung von Gas im Boden sowie den steuernden Größen Nmin und DOC, erlaubt zudem ein Monitoring der Spurengasemissionen auf regionaler Ebene sowie die Validierung bestehender Modelle.
Zielsetzung: Erforschung der Kreislaeufe der o.g. Gase in der Atmosphaere. Dazu gehoert u.a. die Bestimmung der Verteilung dieser Gase in der Atmosphaere, die Erfassung moeglicher Quellen und Senken sowie Bestimmung der Abbau- bzw. Produktionsraten. Da kommerziell verfuegbare Geraete, die zu diesen Untersuchungen benoetigt werden, nicht ueber die ausreichende Empfindlichkeit verfuegen, muessen Nachweismethoden und Messgeraete selbst entwickelt werden.
Zielsetzung: Distickstoffmonoxid (N2O), allgemein bekannt unter dem Trivialnamen Lachgas, zählt neben Kohlenstoffdioxid (CO2) und Methan (CH4) zu den Spurengasen in der Atmosphäre, die maßgeblich zu den anthropogen bedingten Klimaveränderungen beitragen. Eine Hauptquelle für das Lachgas stellen landwirtschaftlich und gartenbaulich genutzte Böden dar. Im Zuge der Applikation von stickstoffhaltigen organischen und mineralischen Düngern werden mikrobielle Umsetzungen forciert, die zur N2O-Bildung führen. In dem geplanten Projekt soll ein neuer Ansatz zur Reduktion von Lachgasemissionen im Freilandgemüsebau entwickelt werden. Nach der Einarbeitung von leicht zersetzbaren Ernterückständen wird Lachgas mit besonders hoher Rate aus Böden freigesetzt. Ziel ist es, diese unerwünschten N-Abflüsse durch eine Optimierung des Nacherntemanagements zu minimieren. Mögliche Ansatzpunkte hierfür liegen in der Anwendung von Nitrifikationsinhibitoren, der Einarbeitungstechnik und in dem Einarbeitungstermin der Ernterückstände. Die vorgesehenen Maßnahmen sollen gleichzeitig auch zu einer Verringerung weiterer Stickstoffverluste durch Denitrifikation und Auswaschung von Nitrat beitragen. Insgesamt wird das Ziel verfolgt, die Stickstoffeffizienz bei der Erzeugung von Gemüse im Freiland zu erhöhen und damit die ökologische und ökonomische Nachhaltigkeit der Anbauprozesse zu verbessern.
| Origin | Count |
|---|---|
| Bund | 1324 |
| Land | 478 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Ereignis | 2 |
| Förderprogramm | 842 |
| Text | 6 |
| unbekannt | 478 |
| License | Count |
|---|---|
| geschlossen | 10 |
| offen | 1319 |
| Language | Count |
|---|---|
| Deutsch | 1254 |
| Englisch | 177 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 477 |
| Dokument | 121 |
| Keine | 643 |
| Webseite | 209 |
| Topic | Count |
|---|---|
| Boden | 719 |
| Lebewesen und Lebensräume | 730 |
| Luft | 886 |
| Mensch und Umwelt | 1329 |
| Wasser | 1191 |
| Weitere | 1310 |