Verschiedene atmosphärische Prozesse werden durch die Wasseraufnahmefähigkeit (Hygroskopizität) von Aerosolpartikel angetrieben, wie z.B. die Lichtstreuung der Partikel, die Bildung von Wolkentröpfchen, die Aktivierung von Wolkenkondensationskeimen (CCN), die Veränderung des hydrologischen Zyklus sowie der Strahlungsantrieb der Wolken. Trotz seiner entscheidenden Rolle für die Atmosphäre und das Klima gibt es immer noch eine große Diskrepanz im Wissen über den Beitrag des organischen Aerosols, das einen größeren Teil der Submikrometer-Partikelmassenkonzentration darstellt, zur gesamten Hygroskopizität. Der folgende Projektantrag schlägt einen ganz neuen Ansatz zur Parametrisierung der hygroskopischen Eigenschaften von organischen Aerosolpartikeln vor, der ein chemisches Online-Funktionskonzept verwendet, das auf der Analyse der organischen Massenspektren aus den Messungen des High Resolution-Time of Flight-Aerosol Mass Spectrometer (HR-ToF-AMS) basiert. Die Entwicklung dieser Parametrisierung wird auf einer Kombination von Humidified Hygroscopic Tandem Differential Analyzer (HTDMA) und HR-ToF-AMS Messungen in einem dualen, aber komplementären Ansatz basieren. Dazu wird ein intensives Laborscreening von chemischen Verbindungen mit gezielten funktionellen Gruppen und einer Mischung aus verschiedenen organischen Standards durchgeführt werden. Gleichzeitig wird ein maschineller Lernansatz auf der Grundlage früherer TROPOS-Feldkampagnen durchgeführt werden, der Messungen beider Instrumente integriert. Ein Vergleich zwischen den beiden Ansätzen wird für die endgültige Validierung in der Studie durchgeführt werden. Diese Parametrisierung wird dann in zwei Feldkampagnen validiert, die jeweils einer bestimmten Art von organischem Aerosol gewidmet sind: eine von biogenem Aerosol dominierte Umgebung in Melpitz (Deutschland) und eine von städtischem Aerosol dominierte Umgebung in SIRTA (Frankreich), wo beide Instrumente im Rahmen dieses Projekts eingesetzt werden sollen. Die Online-Hygroskopizität des Umgebungsaerosols wird durch die Kombination von HR-ToF-AMS (organisches und anorganisches Aerosol) und optischen Messungen des Aethalometers (äquivalenter schwarzer Kohlenstoff) abgeschätzt und dann mit der vom HTDMA gemessenen verglichen. Unter Ausnutzung der Vorteile der hochauflösenden und einheitlichen Massenspektrenauflösung des HR-ToF-AMS und des Vorhandenseins des Aerosol Chemical Speciation Monitor (ACSM) an beiden ausgewählten Feldstandorten wird die Methode auch für das ACSM optimiert. Infolgedessen wird eine automatische Routine für beide Instrumente (HR-ToF-AMS und ACSM) entwickelt, die in das ACSM-Netzwerk des Aerosols, Clouds, and Trace gases Research Infrastructure Network (ACTRIS) implementiert wird, um eine einzigartige Möglichkeit für eine zeitnahe und langfristige Messung der Aerosol-Hygroskopizität über Europa zu bieten.
Im Rahmen des Forschungsvorhabens soll ein prozessorientiertes Modell zur Beschreibung von biogeochemischen Stoffumsetzungen in landwirtschaftlich genutzten Böden derart weiterentwickelt werden, daß es zur Prognose von CH4- und N2O-Spurengasemissionen aus dem Reisanbau eingesetzt werden kann. Insbesondere soll die numerische Beschreibung der in der CH4- und N2O-Produktion und Konsumption involvierten mikrobiologischen Prozesse Methanogenese, Methan-Oxidation, Nitrifikation und Denitrifikation und deren Abhängigkeit von Änderungen des Redoxpotentials im Boden implementiert bzw. verbessert werden. Zudem sollen die verschiedenen Mechanismen, die zur Emission von Spurengasen aus dem Reisanbau beitragen (Diffusion, Gasblasenbildung bei Überstauung, Pflanzentransport) sowie die Auswirkung von radialen Sauerstoffverlusten der Reiswurzeln auf die mikrobiologischen Prozesse in einer durch Anaerobiosis dominierten Umgebung in das Modell implementiert werden.
Unsere Motivation liegt in der Tatsache, dass die dynamische Verbindung zwischen dem marinen Oberflächenfilm (engl. sea-surface microlayer, SML) und der darunterliegenden oberflächennahen Wasserschicht über Konvektion zu heterogenen Eigenschaften der SML führt. Dies wiederum steuert das Ausmaß der bio-photochemischen Reaktionen und des Gasaustausches zwischen dem Ozean und der Atmosphäre. Die Konvektion wird durch Verdunstung angetrieben, die die SML abkühlt und es salzhaltiger macht. Infolgedessen wird die SML dichter, sinkt ab und wird durch das darunterliegende Wasser ersetzt. Die auftriebsgetriebene Konvektion wurde jedoch bei der Erforschung der SML und des Gasaustausches als dynamisches Bindeglied zwischen der Atmosphäre und dem Ozean vernachlässigt. Unser Hauptziel ist es, ein mechanistisches Verständnis der Dynamik zwischen der SML und der oberflächennahen Wasserschicht zu beschreiben. Ein mechanistisches Verständnis der Konvektion ist wichtig, da das Ausmaß der bio-photochemischen Reaktionen und Austauschprozessen von Spurengasen, Energie und Impuls letztlich durch Austauschprozesse zwischen der SML und der oberflächennahen Wasserschicht und schließlich mit tieferen Schichten bestimmt wird. Wir werden einen experimentellen Aufbau mit mehreren profilierenden Mikroelektroden und einem optischen Schlierensystem entwickeln, um die Konvektion unter verschiedenen externen Antrieben zu untersuchen. Wir werden den Effekt der horizontalen Strömung aufgrund von Gradienten der Oberflächenspannung (d.h. Marangoni-Effekt) untersuchen. Wir werden auch an dem gemeinsamen Mesokosmen-Experiment BASS teilnehmen, um den Einfluss biogener Tenside auf den konvektiven Transportmechanismus zwischen der SML und der oberflächennahen Wasserschicht zu untersuchen. Im gemeinsamen Feldexperiment BASS werden wir der Frage nachgehen, inwieweit Variationen der klein-skaligen Konvektion durch die Variabilität sub-mesoskaligen (1 km-10 km) und hydrodynamischen Prozessen nahe der Meeresoberfläche beeinflusst werden. Wir werden zwei Forschungskatamarane und eine Flotte von Treibbojen einsetzen, die mit Leitfähigkeits- und Temperatursensoren ausgestattet sind, um Dichteanomalien zwischen der SML und oberflächennahen Wasserschicht zu untersuchen. Wir werden externe ozeanische und atmosphärische Einflüsse beobachten, um die Dichteanomalien zu beschreiben. Schließlich werden wir die gewonnenen Erkenntnisse aus den Laborexperimenten, der Mesokosmos-Studie und der Feldstudie nutzen, um einen mathematischen Rahmen zur Beschreibung von Temperatur- und Salzgehaltsprofilen und deren Schwankungen unter dem Einfluss definierter ozeanischer und atmosphärischer Einflüsse zu entwickeln.
Dimethylsulfid (DMS) ist ein klimarelevantes Spurengas marinen Ursprungs, das in der Atmosphäre als Vorstufe von Kondensationskernen bei der Wolkenbildung dient. Das Südpolarmeer wurde als Region mit erheblicher DMS Freisetzung aus dem Ozean in die Atmosphäre erkannt. Schwerpunkte der DMS Produktion wurden in der Nähe des Antarktischen Kontinentes und in der Zone der saisonalen Eisschmelze ermittelt. Modellsimulationen haben gezeigt, dass Störungen der DMS Flüsse vom Ozean in die Atmsophäre die Wolkenbedeckung beeinflussen und so zu Veränderungen im Strahlungshaushalt der Atmosphäre führen können. Das Prozessverständnis für marine DMS Emissionen und ihre Vorhersage sind somit entscheidend für Szenarien zukünftiger Klimabedingungen. DMS wird im Oberflächenozean durch den bakteriellen Abbau von Dimethylsulfoniumpropionat (DMSP) freigesetzt, das wiederum durch Phytoplankton produziert wird. Der bakterielle DMSP-Abbau folgt zwei konkurrierenden enzymatischen Stoffwechselwegen: dem Demethylierungsweg und dem Spaltungsweg. Da nur der Spaltungsweg zur Produktion von DMS führt, ist ein verbessertes Verständnis von Umweltfaktoren und genetischen Voraussetzungen, die die Balance zwischen den beiden Stoffwechselwegen kontrollieren, von großer Bedeutung um die Regulation der biologischen DMS Flüsse vom Ozean in die Atmosphäre abzuschätzen. Während die globalen Auswirkungen des DMSP Umsatzes im Ozean schon vor mehr als 30 Jahren erkannte wurden, ist es durch neue Methoden der Molekularbiologie und der „Omics“ Techniken erst kürzlich möglich geworden relevante Gene des bakteriellen DMSP Stoffwechsels zu identifizieren und Einsicht in ihre phylogenetische Verteilung zu gewinnen. Bisherige Erkenntnise zum bakteriellen Umsatz von DMSP in marine Systemen basieren weitgehend auf Studien aus mittleren und niederen Breiten, während die polaren Ozeane kaum untersucht wurden. Die Analyse der Bakteriengemeinschaften im Weddellmeer mittels Amplicon Sequenzierung des 16S rRNA Gens hat hohe Abundanzen potentiell DMS produzierender Bakteriengruppen wie der Roseobacter Gruppe und SAR11 gezeigt.Im vorgeschlagenen Projekt möchten wir modernen Methode der Moleklularbiologie in Kombination mit bioinformatischen Werkzeugen anwenden um im Weddellmeer(1) die Umweltkontrolle des bakteriellen DMSP Abbaus zu analysieren(2) die Diversität und Taxonomie DMSP abbauender Bakterien zu untersuchen(3) das genetische Inventar für DMSP Transformationen zu analysieren und(4) Stoffwechsel und ökologische Strategien von Schlüsselarten zu charakterisieren.Hierzu werden Seewasserproben analysiert, die am Östlichen Weddellmeer Eisschelf, am Filchner-Ronne Eisschelf und im Weddellwirbel genommen wurden. Die zu erwartenden Ergebnisse werden das mechanistische Verständnis des bakteriellen DMSP Abbaus im Weddellmeer verbessern und zu verlässlichen Prognosen von marinen DMS Emissionen im Südpolarmeer unter zukünftigen Klimaszenarien beitragen.
Es werden spektroskopische und laserchemische Untersuchungen an umweltbedeutsamen Substanzen, die z.B. als atmosphaerische Spurengase vorkommen, durchgefuehrt. Stoffe: z.B. Stickoxide, fluorierte und/oder chlorierte Kohlenwasserstoffe, Ozon u.a.
Im Rahmen des Projektes werden die Gestehungskosten fuer die Gasdruckregelung ueber den gesamten Lebenszyklus der GDRA bilanziert und auf der Basis von Messwerten der EVG mbH verifiziert. Das vorgeschlagene Rechenverfahren integriert explizit die Kosten fuer die Gasvorwaermung und greift die Struktur der VDI 2067 bzw. VDI 6025 auf. Neben der Kostenbetrachtung wurde parallel der Bezug zum Primaerenergiebedarf und den Treibhausgasemissionen, bewertet im CO2-Massstab hergestellt. Das Problem der Erdgasvorwaermung wird separat behandelt. Optimierungsmoeglichkeiten im Bereich der Waermebereitstellung werden abgeleitet.
Zielsetzung: Untersuchungen ueber den Einfluss mikrobiologischer Prozesse im Boden und Oberflaechenwasser der Ozeane auf CO, H2, CFCl3, CF2Cl2, CCl4, Hg, H2CO, N2O und CH4. Bestimmung der Abbauraten und Produktionsraten als Funktion der Bodenart und Bodentemperatur. Messung der im Wasser geloesten Gasanteile im Ozean und Bestimmung ihrer vertikalen Verteilung bis in Wassertiefen von 1000 m. Methoden: in situ-Messungen am Boden sowie an verschiedenen Stellen der Ozeane; Laboruntersuchungen mit verschiedenen Mikroorganismen.
In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.
Kontinuierliche Messung des bodennahen Ozons in verschiedenen Hoehen ueber Grund (bis zu 30 m). Bestimmung der Jahres-, Monat- und Tagesgaenge. Erforschung des Zusammenhangs mit meterologischen Groessen. Untersuchung der Ursachen gefundener kurzzeitiger Extremwerte (bis 500 nb) des natuerlichen Ozons. Untersuchung der Zusammenhaenge zwischen bodennahem Ozon und anthropogenen Spurengasen (z.B. SO2).
| Origin | Count |
|---|---|
| Bund | 1315 |
| Land | 479 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Ereignis | 2 |
| Förderprogramm | 832 |
| Text | 6 |
| unbekannt | 479 |
| License | Count |
|---|---|
| geschlossen | 10 |
| offen | 1310 |
| Language | Count |
|---|---|
| Deutsch | 1246 |
| Englisch | 175 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 478 |
| Dokument | 121 |
| Keine | 635 |
| Webseite | 207 |
| Topic | Count |
|---|---|
| Boden | 711 |
| Lebewesen und Lebensräume | 722 |
| Luft | 876 |
| Mensch und Umwelt | 1320 |
| Wasser | 1184 |
| Weitere | 1303 |