Die aus der Emission von Schadstoffen aus Schweineställen resultierende Umweltbelastung ist vor allem auf Geruch, Staub, Methan, Kohlendioxid, Ammoniak, Schwefelwasserstoff und über 100 weitere Spurengase zurückzuführen. Zur Minderung dieser Emissionen dient eine Abgasreinigungsanlage, die modular aus einer chemischen Wäsche und einer Biofiltration im Pilotanlagen-Maßstab zusammengesetzt ist. In dem beantragten Projekt werden durch experimentelle und theoretische Untersuchungen die Erlangung von Kenntnissen über grundlegende Zusammenhänge dabei und die weiterführende Minimierung der Schad- und Geruchsstoffkonzentrationen im Abgas angestrebt. Die experimentellen Untersuchungen zur genaueren Charakterisierung des Anlagenverhaltens und der ablaufenden Prozesse gliedern sich in zwei Schwerpunktbereiche: Der erste umfasst die Prozesse im chemischen Wäscher, insbesondere Staubeintrag, -beschaffenheit, -Abscheidegrad und Adsorptionsvermögen des Staubes - dabei steht der Zusammenhang zwischen Staubeintrag und Geruchsminderungsgrad im Mittelpunkt - sowie die Parameterbestimmung für eine Modellierung und Simulation. Der zweite Schwerpunkt liegt auf dem Bereich Langzeitmonitoring der Abgasreinigungsanlage - insbesondere hinsichtlich der Wirkungsgradabhängigkeiten und der Einflussgrößen auf die Verfahrensstabilität. Die Modellierung und Simulation der gesamten Reinigungsanlage durch Adaption verfahrensspezifischer Zusammenhänge soll Vorhersagen für verschiedene apparative Ausgangssituationen und verfahrenstechnische Einstellungen liefern.
Regelmaessige, taegliche Messung des Gesamtozongehaltes der Atmosphaere, Messung des Vertikalprofils des Ozons mittels Ballonsondierungen mit Radiosonden. Erforschung des Verhaltens des atmosphaerischen Ozons und der Zusammenhaenge zwischen atmosphaerischem Ozon und meterologischen Groessen. Untersuchungen zur Frage einer Aenderung der Ozonschicht der freien Atmosphaere durch anthropogene Einfluesse, besonders durch Fluorkohlenwasserstoffe (hierfuer muss die Sondierungsfolge auf 3-2 mal pro Woche erhoeht werden).
Untersuchungen ueber die Verteilung von Spurenstoffen in der Atmosphaere werden im Institut fuer Chemie (ICH3) durchgefuehrt. Es erfolgt die Aufklaerung der Produktions- und Abbauprozesse und Modellrechnung zur Voraussage von Auswirkungen anthropogener Stoerungen. Folgende Themen werden schwerpunktmaessig bearbeitet: a) Entwicklung von Messverfahren fuer Radikale und Messungen in der Troposphaere und Stratosphaere mit folgenden Methoden: Laserresonanzfluoreszenz (fuer OH), vergleichende Absorptionsspektroskopie auf langen optischen Wegen (fuer OH), Matrix-Isolation und Elektronenspinresonanzspektroskopie (fuer HO2, NO2, RO2). b) Messung von langlebigen Spurengasen in der Atmosphaere mit gaschromatischen Methoden (z.B. CO, CH4, H2, N2O, CFCl3, CF2Cl2, CO2). c) Erarbeitung von chemischen und physikalisch-optischen Methoden zur Messung von kurzlebigen Spurengasen wie SO2, HNO3, NH4, CH2O, NO2 und Bestimmung ihrer Depositionsrate auf natuerliche bewachsene Boeden. d) Untersuchungen zum Isotopengehalt verschiedener Spurengase zur Aufklaerung ihres atmosphaerischen Kreislaufs (z.B. D in H2 und CH4, 13C in CO, CH4). Besondere Bedeutung hat die Messung von 14C im atmosphaerischen CO, weil sie Daten zur mitteleren globalen OH-Radikalkonzentration liefert. e) Entwicklung eines ein- und zweidimensionalen Modells zur Interpretation der Radikalmessungen, zur Untersuchung von Abbauprozessen in der Troposphaere und zur Voraussage der anthropogenen Stoerung der Ozonschicht.
Direkte Transportwege von der Troposphäre in die untere Stratosphäre von Wasserdampf und troposphärischen Spurengasen(z.B. ozonzerstörender Substanzen, wie beispielsweise sehr kurzlebige halogenierte Spurenstoffe)beeinflussen die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre außerhalb der Tropen (ExUTLS). Sogar relativ kleine Änderungen in Ozon und Wasserdampf in dieser Region, haben große Auswirkungen auf das Klima an der Erdoberfläche. Verschiedene direkte Transportwege werden derzeit diskutiert, wie z. B. quasi-horizontaler Transport aus der tropischen Tropopausen Region, horizontaler Transport aus dem Gebieten des asiatischen Monsuns und durch Konvektion induzierte Einträge. Jedoch ist unser derzeitiges Verständnis für diese Transportprozesse und ihre relativen Beiträge unvollständig. Im Rahmen unseres Projekts AMOS, möchten wir die zugrunde liegenden Transportprozesse für verschiedene vergangene (TACTS/ESMVal) und zukünftige HALO-Kampagnen (PGS, WISE) identifizieren und quantifizieren unter Berücksichtigung ihrer jahreszeitlichen und jährlichen Variabilität. Der Schwerpunkt unseres Projekts ist die WISE-Kampagne, die Transportvorgänge, die die chemische Zusammensetzung in der ExUTLS bestimmen, untersuchen wird. Im Rahmen unseres Projekts werden HALO Messungen mit mehrere (Kurz- und Langzeit-) Simulationen mit dem Lagrangen Modell CLaMS kombiniert. Die Implementierung von künstlichen Markern in CLaMS, mit denen man die Herkunft der Luftmassen bestimmen kann, zusammen mit hochaufgelösten HALO-Messungen von verschiedenen Kampagnen ist ein einzigartiges Werkzeug, um die verschiedenen Transportwege und Mischungsprozesse zu identifizieren. Im Rahmen von AMOS können deshalb die Auswirkungen dieser verschiedenen Transportprozesse auf die chemischen Zusammensetzung der unteren Stratosphäre quantifiziert werden.
Entwicklung von Kuehlzellen mit Huellstromkuehlung und deren Einsatz fuer Tiefsttemperatur- Gasspektroskopie athmosphaerischer Spurengase.
Im Rahmen des Projektes werden die Gestehungskosten fuer die Gasdruckregelung ueber den gesamten Lebenszyklus der GDRA bilanziert und auf der Basis von Messwerten der EVG mbH verifiziert. Das vorgeschlagene Rechenverfahren integriert explizit die Kosten fuer die Gasvorwaermung und greift die Struktur der VDI 2067 bzw. VDI 6025 auf. Neben der Kostenbetrachtung wurde parallel der Bezug zum Primaerenergiebedarf und den Treibhausgasemissionen, bewertet im CO2-Massstab hergestellt. Das Problem der Erdgasvorwaermung wird separat behandelt. Optimierungsmoeglichkeiten im Bereich der Waermebereitstellung werden abgeleitet.
In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.
Bisherige Ansätze zu Modellierung von Lachgasemissionen haben noch zu keinen zufriedenstellenden Ergebnissen geführt bzw. die Validierung von Modellen steht noch aus, da u.a. die Bestimmung der Gasdiffusion im Oberboden sowie der Gasübergang in Atmosphäre schwierig bestimmbar ist. Wir stellen für diesen Schritt einen empirischen Modellansatz zur Vorhersage von Lachgasemissionen aus oberflächennahen N2O-Gehalten des Bodens vor, der im Rahmen des Projektes zu einer allgemeinen Anwendbarkeit weiterentwickelt werden soll. Hierbei werden über empirische Transferfaktoren, die in Abhängigkeit von Bodenart, Wassergehalt und Temperatur ermittelt werden, die Emissionen aus Gasgehalten im Boden berechnet. Zur einfachen Bestimmung des N2O-Gehaltes im Oberboden steht ein in unserem Hause entwickeltes neuartiges Bodenprobenahmegerät zur Verfügung. Die Einfachheit der Probenahme und gleichzeitige Erfassung von Gas im Boden sowie den steuernden Größen Nmin und DOC, erlaubt zudem ein Monitoring der Spurengasemissionen auf regionaler Ebene sowie die Validierung bestehender Modelle.
Zielsetzung: Erforschung der Kreislaeufe der o.g. Gase in der Atmosphaere. Dazu gehoert u.a. die Bestimmung der Verteilung dieser Gase in der Atmosphaere, die Erfassung moeglicher Quellen und Senken sowie Bestimmung der Abbau- bzw. Produktionsraten. Da kommerziell verfuegbare Geraete, die zu diesen Untersuchungen benoetigt werden, nicht ueber die ausreichende Empfindlichkeit verfuegen, muessen Nachweismethoden und Messgeraete selbst entwickelt werden.
| Origin | Count |
|---|---|
| Bund | 1322 |
| Land | 478 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Ereignis | 2 |
| Förderprogramm | 840 |
| Text | 6 |
| unbekannt | 478 |
| License | Count |
|---|---|
| geschlossen | 10 |
| offen | 1317 |
| Language | Count |
|---|---|
| Deutsch | 1252 |
| Englisch | 177 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 477 |
| Dokument | 121 |
| Keine | 641 |
| Webseite | 209 |
| Topic | Count |
|---|---|
| Boden | 719 |
| Lebewesen und Lebensräume | 730 |
| Luft | 885 |
| Mensch und Umwelt | 1327 |
| Wasser | 1191 |
| Weitere | 1308 |