Das Projekt "Schwerpunktprogramm (SPP) 1704: Flexibilität entscheidet: Zusammenspiel von funktioneller Diversität und ökologischen Dynamiken in aquatischen Lebensgemeinschaften; Flexibility Matters: Interplay Between Trait Diversity and Ecological Dynamics Using Aquatic Communities as Model Systems (DynaTrait), Teilprojekt: Die Effekte von Variation in Nährstoffstöchiometrie in Algen auf Herbivorengemeinschaften" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.Schwankungen in der Verfügbarkeit von Licht und Nährstoffen im Phytoplankton führen zu Unterschiede in der Nährstoffstöchiometrie der Algen. Diese Variabilität wird weiter beeinflusst durch Wachstumsratender Algen. In den meisten Fällen führt schnelles Wachstum zu einem bestimmten optimalen Nährstoffgehalt in Algen, während Algen die langsamer wachsen eine viel größere Variabilität in Nährstoffzusammensetzung vorweisen. Diese Muster wurden bis jetzt vor allem auf Populationsebene nachgewiesen, und bis jetzt ist es unklar, ob dies auch gilt innerhalb von Populationen, zwischen einzelnen Algenzellen. So ist es eine offene Frage, ob der Zusammenhang zwischen Wachstumsrate und Nährstoff Stöchiometrie von Algen eine Populationsresponse oder auch eine Response einzelner Zellen ist. Zooplankton verzeichnet in der Regel eine deutlich konstantere Nährstoffstöchiometrie als Algen und damit ein stärkeres Maß an Homöostase. Verschiedene Lebensstadien der gleichen Spezies können jedoch völlig unterschiedliche Ernährungsbedürfnisse haben. Zum Beispiel haben die schnellere wachsende Nauplien in Copepoden, einen höheren Bedarf an Phosphor als ältere Stadien. Infolgedessen, hat eine von jüngeren Stadien dominierte Population eine unterschiedliche optimale Nahrung als wenn die Population von älteren Stadien dominiert wird. In dieser Studie werden wir prüfen ob Variation in Populationswachstum in Mikroalgen zu Änderungen in der Nährstoffstöchiometrie der Algen führt, sowohl zwischen Populationen als auch zwischen Individuen innerhalb von Populationen. Wir untersuchen dann den Effekt dieser durch unterschiedliche Wachstumsraten induzierten Veränderungen in Nährstoffzusammensetzung auf das Wachstum und die Dynamik der Weidegänger. Wenn die Variation in Nährstoffstöchiometrie mit langsamer Algenwachstum zunimmt, dann entsteht hier durch potentiell ein Gradient verschiedener Nahrungsqualitäten. Wir wissen, dass viele Herbivoren ihre Nahrung sehr selektiv zu sich nehmen. Also, wenn langsameres Wachstum ein breiteres Spektrum an verschiedenen Nährstoffstöchiometrie in den Algen als Konsequenz hat, entstehen hier durch potentiell mehrere Nischen für unterschiedliche Arten oder Lebensstadien. Im Idealfall würde im Falle der Copepoden, die Nauplien hohe P-Algen aus der Population aufnehmen, während die älteren Stadien selektiv die Algen fressen würden die mehr Stickstoff enthalten. So würde die Konkurrenz für eine Ressource eingeschränkt werden, da es innerhalb einer langsam wachsenden Population mehr als eine Ressource geben würde. Letztlich könnte dies bedeuten, dass Systeme mit langsamer wachsenden Primärproduzenten eine höhere Vielfalt von Sekundärproduzenzen aufrechterhalten könnte als jene in dem Algenwachstum höher ist.
Das Projekt "Anwendung der substoechiometrischen Isotopenverduennungsanalyse auf die Bestimmung von Spuren an Sulfat und Chlorid in Luft und Wasser" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Freiburg, Lehrstuhl für Analytische Chemie.
Das Projekt "Untersuchung des Diesel/Gas-Verfahrens bezueglich seiner Eignung zur Verbesserung der Abgasqualitaet" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Institut für Verbrennungskraftmaschinen und Fahrzeugantriebe.Der Wirkungsgrad von Dieselmotoren ist wegen des thermodynamisch guenstigeren Arbeitsprozesses besser als jener von Ottomotoren. Darueberhinaus erfolgt die Verbrennung des Kraftstoffes wesentlich schadstoffaermer, abgesehen vom nachstoechiometrischen Bereich, in dem das Dieselverfahren zur Russbildung neigt. Ersetzt man die eingespritzte Dieselkraftstoffmenge weitgehend durch der Ansaugluft beigemischtes Brenngas - der Dieselkraftstoff dient dann nur noch zur Zuendung des Gemischs -, so kann die Feststoffemission und damit auch die Emission biologisch aktiver bzw. krebserregender benzolloeslicher Substanzen stark vermindert werden. Einer verfahrensbedingt hoeheren Emission unverbrannter Abgaskomponenten kann durch verschiedene motorische Massnahmen, wie Drosselung der Ansaugluft, Gemischvorwaermung, partielle Rueckfuehrung gekuehlter bzw. besser ungekuehlter Abgase begegnet werden. Die Gaszugabe ermoeglicht eine verstaerkte Abgasrueckfuehrung und so eine weitergehende Verminderung der Stickoxidemission. Im obersten Lastbereich kann die Verschiebung der Russgrenze zur Leistungs- und Wirkungsgradsteigerung genutzt werden. Das Gesamtkonzept dieses Verfahrens bezieht in seiner letzten Phase die Installation eines Vergasungsreaktors direkt am Motor ein mit dem Ziel, fuer mobile Zwecke aus fluessigen Kraftstoffen direkt das notwendige Brenngas herzustellen.
Das Projekt "Sonderforschungsbereich (SFB) 1211: Evolution der Erde und des Lebens unter extremer Trockenheit, Teilprojekt B05: Böden der Atacama Wüste: Reservoir und Fingerabdruck des Lebens" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES), Bereich Bodenwissenschaften, Allgemeine Bodenkunde und Bodenökologie.Böden als Habitat und Reservoir für Pflanzen und Mikroorganismen interagieren äußerst sensitiv mit den unterschiedlichen Lebenswesen, insbesondere unter extremen Bedingungen. Im Rahmen des Projektes gilt es, (i) die organische Materie in Bodenprofilen, sowie entlang potentieller Ausbreitungskorridore zu identifizieren und qualifizieren, (ii) das Vorkommen organischer Materie, Veränderungen des Nährstoffhaushaltes sowie physikalischer Bodeneigenschaften entlang Trajektorien des Mikroklimas und der gegenwärtigen sowie historischen Verbreitung in Verbindung zu bringen und (iii) die Veränderungen der Eigenschaften organischer Materie, des Nährstoffgehalts und stöchiometrischer Dynamiken im Boden mit einer rasch steigenden Wasserverfügbarkeit, zu erörtern.
Das Projekt "Wechselwirkungen zwischen N2-Fixierung und Denitrifizierung in einem Erdsystem-Modell mit flexibler Stöchiometrie und deren Einfluss auf das marine Stickstoffinventar in einem sich wandelnden Klima" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Der Schlüssel zu Verständnis und Projektion des künftigen Stickstoffinventars des Ozeans und der Veränderung der Biologischen Pumpe im globalen Klimawandel liegt in der Frage, wie und wie stark die Fixierung von atmosphärischem Stickstoff und die Denitrifizierung im Ozean gekoppelt sind. Während in bisherigen Modellstudien Stickstofffixierung und Denitrifizierung eng gekoppelt sind, zeigt ein neu entwickeltes optimalitätsbasiertes Ökosystemmodell mit flexibler Stöchiometrie (OPEM) im globalen UVic-ESCM eine deutlich schwächere Kopplung. In diesem Projekt sollen die Faktoren und Mechanismen, die die Kopplung steuern, identifiziert und ihre Veränderung in ver- schiedenen Klimaszenarien untersucht werden. Hierzu wird OPEM in einem vorindustriellen Szenario, einem Szenario der Maximalphase der letzen Eiszeit und einem heutigen Szenario angewendet und die Sensitivität der Modellergebnisse in Bezug auf das ozeanische Stickstoffinventar und die biolo- gische Kohlenstoffpumpe bewertet. Das Ziel des Projekts ist es, die Steuerungsprozesse des marinen Stickstoffinventars genauer abzubilden, um bessere Projektionen der biogeochemischen Kreisläufe im Ozean und ihrer Auswirkungen auf den CO2-Gehalt der Atmosphäre zu ermöglichen.
Das Projekt "Erprobung der FT-IR Spektroskopie zur Auswertung von Stickstoff/Kohlenstoff, Phosphat/Kohlenstoff und Silizium/Kohlenstoff-Verhältniswerten in ausgewählten Phytoplanktonzellen" wird/wurde gefördert durch: Bundesanstalt für Gewässerkunde. Es wird/wurde ausgeführt durch: Universität Leipzig, Institut für Biologie I, Abteilung Pflanzenphysiologie.
Das Projekt "Steuergrößen von Wasserqualität und ihrer Dynamik in Einzugsgebieten: Eine Deutschland-weite Analyse mit daten-getriebenen Modellen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Themenbereich Wasserressourcen und Umwelt, Department Hydrogeologie.Eine sichere Wasserversorgung ist eines der Nachhaltigkeitsziele der Vereinten Nationen in der Agenda 2030. In Mitteleuropa und Deutschland sind hohe Nährstoffeinträge in Grund- und Oberflächenwässer und schließlich auch in die marinen Systeme nach wie vor einem Problem für aquatische Ökosysteme und die Sicherung der Wasserversorgung. Auf der räumlichen Skala von Flusseinzugsgebieten interagieren dabei eine Vielzahl von Eintragspfaden und Prozessen, die ein mechanistisches Verständnis und klare Ursache-Wirkungs-Beziehungen erschweren. In den letzten Dekaden wurden große Anstrengungen unternommen, Kläranlage zu ertüchtigen und damit Einträge von Phosphor und Stickstoff deutlich zu reduzieren. Andererseits sind diffuse Einträge aus der Landwirtschaft immer noch bedeutend und aufgrund der langen Transportzeiten von der Quelle zur Vorflut schwer zu managen. Es ist momentan schwer abzuschätzen, wie schnell sich Maßnahmen zur Verringerung von Stickstoffüberschüssen in der Landwirtschaft auf die Wasserqualität und ihre zeitlich-räumliche Variabilität in der Vorflut auswirken. In diesem Antrag wird ein einzigartiger Datensatz von Wasserqualität und -quantität über ganz Deutschland hinweg verwendet und einer systematischen Daten-getriebenen Analyse unterzogen. Der Datensatz basiert auf dem langjährigen Monitoring von Wasserqualität der einzelnen Bundesländer und wurde vom UFZ zusammengestellt. In der Analyse dieser Daten werden Muster in der Konzentrationsvariabilität aber auch den Beziehungen zwischen Konzentration und Abfluss verwendet, um Rückschlüsse auf dominante Prozesse und Eintragspfade im Einzugsgebiet zu schließen. Die Arbeit ist dabei auf drei Ziele fokussiert: (a) Die Klassifikation der Einzugsgebiete hinsichtlich ihres Nährstoff-Exportregimes für Daten ab dem Jahr 2010. (b) Die zeitliche Entwicklung der Stickstoff:Phosphor-Stöchiometrie für längere Zeitreihen im Wechselspiel von Punkt- und diffusen Quellen. (c) Die Langzeit-Trajektorien des Nährstoffexports aus Einzugsgebieten und einer möglichen Entwicklung zu chemostatischen Verhältnissen mit geringer Konzentrationsvariabilität aufgrund flächiger landwirtschaftlicher Einträge. Dabei ermöglichen innovative daten-getriebene Methoden und der einzigartige Datensatz einen neuen Blick auf die Steuergrößen von Nährstoffexporten im mitteleuropäischen anthropogen überprägten Landschaftsbild. Die Ergebnisse ebnen zum einen den Weg für komplexitätsreduzierte Wasserqualitäts-Modelle auf der Skala von Einzugsgebieten. Zum anderen haben die Ergebnisse Relevanz für weitere Fachgebiete, wie der aquatischen Ökologie und des Umweltmanagements.
Das Projekt "Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Der ökonomische Kompromiss zwischen Wurzelhaaren und extraradikalen Mykorrhizahyphen entlang eines Landnutzungsgradienten (HAIRphae)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Programmbereich 2: Landnutzung und Governance, Arbeitsgruppe Nachhaltige Grünlandsysteme.Die Ökonomie von Pflanzen wird als Kompromiss zwischen Nährstoffaufnahme und -erhalt angesehen. Wurzeln sind in unserem Verständnis der gesamten Pflanze jedoch immer noch unterrepräsentiert. Wurzeltraits scheinen aufgrund ihrer Interaktion mit Bodenbiota multidimensional zu sein. Kompromisse zwischen der Investition in die Oberfläche der Wurzel bzw. der arbuskulären Mykorrhiza Pilze (AMF) wurden bislang anhand der spezifischen Wurzellänge untersucht. Allerdings sind auch Wurzelhaare dafür bekannt die Phosphoraufnahme zu erhöhen. Diese sind bislang in Konzepten der Wurzelökonomie nicht enthalten. In Gewächshausversuchen zeigte sich, dass Wurzelhaarlänge und -häufigkeit negativ mit der AMF-Kolonisation korrelieren. Dieser Gradient zwischen einer Strategie zur Vergrößerung der Wurzelhaaroberfläche und der AMF-Symbiose erwies sich als unabhängig von der spezifischen Wurzellänge, was auf eine bislang unberücksichtigte Varianz in Wurzeltraits hindeutet. Studien zeigen, dass die AMF-Oberfläche - gemessen als extraradikale Hyphenlänge - mit der Landnutzungsintensität zunimmt, wobei die Bodennährstoff-Stöchiometrie einen Einfluss haben könnte. Daher sind zur Untersuchung der Komplexität des Wurzel-Pilz-Oberflächen-Gradienten Daten von Flächen mit unterschiedlichen Böden erforderlich. In diesem Projekt möchte ich das Konzept eines Wurzel-Pilz-Oberflächen-Gradienten unter Beachtung von Wurzelhaaren und extraradikalen Hyphen erstmals testen. Ich werde Individuen der dominantesten Pflanzenarten im Feld (VIP-Ebene) entlang eines Landnutzungsgradienten untersuchen. Dabei gehe ich von einer Verlagerung hin zu AMF Oberfläche mit zunehmender Landnutzungsintensität aus. Aufgrund von Artenüberschneidungen zwischen den Feldern werde ich sowohl inter- als auch intraspezifische Muster testen können. Die AMF-Gemeinschaft in der Rhizosphäre wird analysiert, um zu testen, ob Veränderungen in der Hyphenlänge auf Veränderungen der AMF-Lebensgemeinschaft zurückzuführen sind. In einem mechanistischen Gewächshausexperiment wird die direkte Wirkung der Bodennährstoff-Stöchiometrie untersucht. Die AMF-Gemeinschaft in der Rhizosphäre sowie der Wurzel soll analysiert werden, um Veränderungen der AMF-Lebensgemeinschaft sowie die Plastizität von Pilzarten bei der Biomasseallokation zu testen. Die Daten werden mit morphologischen, anatomischen und chemischen Wurzeltraits aus früheren Projekten der Biodiversitäts-Exploratorien kombiniert, um die Erkenntnisse in bestehende pflanzenökonomische Konzepte zu integrieren. Der Rahmen der Exploratorien ermöglicht es, dieses verbesserte Verständnis von Wurzeltraits mit Ökosystemprozessen wie Pflanzenproduktivität, Nährstoffkreisläufen oder Bodenaggregation zu verbinden. Dieses Projekt wird das mechanistische Verständnis von Wurzelökonomie verbessern und dazu beitragen, deren Bedeutung für die Vorhersage von Veränderungen in Pflanzengemeinschaften und Ökosystemen bei zunehmender Landnutzung und globalem Wandel zu untersuchen.
Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Einfluss des globalen Klimawandels auf die Stöchiometrie und zwischenartlichen Wechselwirkungen in Küstengemeinschaften des antarktischen Planktons" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Die Westantarktische Halbinsel erfährt große Veränderungen der Klimabedingungen, die mit einer abnehmenden Dauer und Ausdehnung des Meereises, Änderungen der Saisonalität, einer zunehmenden Temperaturvariabilität mit zunehmender Meeresoberflächentemperatur (SST) und einer Verringerung der Salinität in Küstengebieten verbunden sind. Dadurch verändern sich auch die klimatischen Bedingungen und die Verfügbarkeit essentieller Nährstoffe wie Eisen, Stickstoff und Phosphor. Das Projekt zielt darauf ab, die interaktiven Auswirkungen mehrerer Umweltstressoren auf antarktische Planktongemeinschaften zu untersuchen. Um die zugrundeliegenden Mechanismen zu verstehen, werden Labor- und On-Board-Experimente in Kombination mit einer Feldstudie durchgeführt, um die Reaktion des Phytoplanktonwachstums, der Biomasseakkumulation und der Partikelstöchiometrie auf faktorielle Manipulationen der Temperatur (Anstieg des Mittelwerts und der Variabilität) und der Nährstoffverhältnisse zu untersuchen. Die Variation dieser Parameter führt zu einer Umweltheterogenität, die die Phytoplanktonpopulationen und damit die Struktur des Nahrungsnetzes stark beeinflusst. Das zweite Ziel ist es daher, die Folgen von Änderungen der Temperatur und der Nährstoffverfügbarkeit auf Produzentenniveau für die Konsumenten in Bezug auf Ressourceneffizienz, Biomasse und Stöchiometrie zu verstehen. Die Originalität des Projekts beruht auf dem Ansatz, die interaktiven Auswirkungen sich ändernder Ressourcen und Umweltparameter auf eine Planktongemeinschaft zu bewerten, die ein hochproduktives Nahrungsnetz in einer Kaltwasserumgebung antreibt und einen starken Einfluss auf die globale Biogeochemie hat. Insgesamt wird das Projekt dazu beitragen, unser mechanistisches Verständnis zu verbessern, wie zukünftige Änderungen der Umweltbedingungen entlang der Westantarktische Halbinsel die Planktongemeinschaften, ihre trophischen Beziehungen und ihre Funktion verändern. Dies ist entscheidend für Vorhersagen, wie das antarktische Nahrungsnetz in Zukunft auf sich ändernde Umweltbedingungen reagieren wird.
Das Projekt "Schwerpunktprogramm (SPP) 1569: Erzeugung multifunktioneller anorganischer Materialien durch molekulare Bionik" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Materialwissenschaft, Lehrstuhl für Chemische Materialsynthese.norganische Funktionsmaterialien spielen innerhalb der Schlüsseltechnologien des 21. Jahrhunderts, etwa im Bereich der Informationstechnik oder der Energieerzeugung und -speicherung, eine zentrale Rolle. Dabei sind komplex strukturierte multifunktionelle Materialien auf rein anorganischer Basis sowie im Verbund mit organischen Anteilen zur Weiterentwicklung dieser Technologien von wesentlicher Bedeutung. Die Erzeugung solcher Materialien mit definierter Struktur und Stöchiometrie über die konventionelle Prozesstechnik, die in der Regel bei erhöhten Temperaturen und/oder Drücken sowie unter erheblichem verfahrenstechnischen Aufwand abläuft, stößt hierbei jedoch an ihre Grenzen. Demgemäß ist die Suche nach neuen Verfahren, die eine Generierung von diesen Materialien bei Umgebungsbedingungen und mit reduziertem prozesstechnischen Aufwand ermöglichen, derzeit Gegenstand weltweiter Forschungsanstrengungen. Für die Bildung von komplex strukturierten anorganischen Festkörpern bei Umgebungsbedingungen liefert die belebte Natur eindrucksvolle Beispiele. So entstehen durch Biomineralisationsprozesse Stoffe wie etwa Calciumphosphat oder -carbonat, deren Bildung genetisch determiniert ist und durch die Wechselwirkung mit Biomolekülen gesteuert wird, wobei unter anderem Selbstorganisationsprozesse eine Rolle spielen. Die hierdurch entstehenden anorganischen Materialien besitzen multifunktionelle Eigenschaften, wobei deren Eigenschaftsspektrum durch den Einbau von bioorganischen Komponenten erweitert wird. Wenngleich viele technisch relevante Materialien bei diesen natürlichen Prozessen keine Rolle spielen, ergeben sich hieraus unmittelbar aussichtsreiche Perspektiven zur Generierung neuer anorganischer Funktionsmaterialien durch spezifische molekulare Interaktionen zwischen bioorganischen und anorganischen Stoffen. Das Hauptziel dieses Schwerpunktprogramms ist daher die Übertragung von Prinzipien der Biomineralisation auf die Generierung von anorganischen Funktionsmaterialien und von deren Hybriden mit bioorganischen Anteilen. Zur Erreichung dieses Ziels werden Arbeiten durchgeführt (1) zur In-vitro- und In-vivo-Synthese anorganischer Funktionsmaterialien und deren Hybride mit bioorganischen Molekülen in Form von Schichten oder 3D-Strukturen, (2) zur Charakterisierung der Bildungsprozesse und der Struktur der Materialien sowie (3) zur Bestimmung und zum Design von deren physikalischen und chemischen Eigenschaften. Diese experimentellen Untersuchungen werden weiterhin durch Arbeiten zur Modellierung der Materialbildung, -struktur und -eigenschaften begleitet.