Das Vorhaben umfasst im Wesentlichen die Verlängerung des bestehenden, von Osten kommenden bisherigen Stumpfgleises A und des nördlich davon liegenden Stumpfgleises B sowie den Anschluss neuer Weichen in das Streckengleis der Deutschen Bahn (DB) 5634 Landshut Hauptbahnhof – Bayerisch Eisenstein am Westkopf des Werkes 2.40 der Antragstellerin in Dingolfing. Das Werk befindet sich links, also nördlich der Strecke etwa bei Bahn-km 27,44. Die bisherigen Abstellgleise A und B liegen außerhalb des Werksgeländes, links der Strecke 5634, in paralleler Lage von ca. Bahn-km 27,32 bis ca. Bahn-km 27,65 im Westkopf des Bahnhofs Dingolfing, das Gleis A etwa 6,61 bis 8,14 m nördlich des Streckengleises und das Gleis B etwa 4,50 m nördlich des Gleises A. Die Verlängerung der Gleise, die eine neue gesamte Nutzlänge von jeweils etwa 839 m pro Gleis erhalten sollen, soll bei etwa Bahn-km 26,57 westlich der Brücke der Industriestraße über die Bahnlinie wieder an das Streckengleis der DB angeschlossen werden.
Zusätzlich umfasst das Vorhaben ein neues Abstellgleis für die Abstellung von E-Loks und die mobile Instandhaltung schadhafter Waggons sowie als Sicherungslänge für die Ausfahrt aus Gleis B Richtung Landshut. Das Gleis zweigt im Westen bei etwa Bahn-km 26,60 vom geplanten verlängerten Gleis A ab und führt rund weitere 185 m nach Westen, wo es kurz vor dem Finkenweg, der bei Bahn-km 26,347 die Bahnstrecke höhengleich quert, mit einem Bremsprellbock endet.
Alle neuen Gleise werden in Schotteroberbau verlegt.
Die neuen Gleise sowie der Anlagenbestand bis zur Anschlussweiche im Bahnhof Dingolfing werden elektrifiziert. Es sind Flach- und Winkelmaste aus Stahl nach dem Regelwerk der DB geplant. Zur Freihaltung der Oberleitung ist ein Rückschnitt der vorhandenen Vegetation vor-gesehen. Unter den Brücken der Industriestraße – Kreisstraße DGF 16 - bei Bahn-km 26,85 einschließlich Geh- und Radweg bei Bahn-km 26,89, der Landshuter Straße – Staatsstraße 2074 - bei Bahn-km 27,67 einschließlich Geh- und Radweg bei Bahn-km 27,71 und der Brumather Straße bei Bahn-km 28,13 ist eine Kettenwerksabsenkung vorgesehen. Die Mindest-fahrdrahthöhe beträgt durchgehend 5,05 m über Schienenoberkante. Für die Einbindung der Gleise der Antragstellerin in die bestehende Oberleitung der DB-Gleise muss auch deren Oberleitung auf einer Länge von etwa 880 m umgebaut werden.
Zusätzlich ist für die neuen Gleise eine Gleisfeldbeleuchtung durch etwa 14 m hohe Stahlrohrmasten geplant sowie zusätzlich im Bereich der Unterquerung der Industriestraße eine bodennahe Beleuchtung entlang der Schienen.
Das Vorhaben beinhaltet darüber hinaus den Bau von zwei maximal 1 m hohen Winkelstützwänden zur Abfangung des Gleiskörpers von etwa Bahn-km 26,54 bis 26,70 und von etwa Bahn-km 26,90 bis 26,94 sowie einer Winkelstützwand bei der Brücke der Industriestraße, um die Breite zur Durchführung der zwei Gleise einschließlich der Elektrifizierung unter dem Bauwerk zu gewährleisten; außerdem von drei Rangiererwegen zwischen Streckengleis und Gleis A, zwischen Gleis A und Gleis B sowie nördlich des Gleises B. Überwege sollen aus glasfaserverstärkten Kunststoffplatten hergestellt werden. An mehreren Weichen sollen Weichenheizungen eingebaut werden. Auch werden die Berührungsschutze an der Brücke der Industriestraße bei Bahn-km 26,85 einschließlich Geh- und Radweg bei Bahn-km 26,89 über die Bahnlinie erweitert. Mehrere Spartenleitungen und Kabel müssen als Folge der Baumaßnahme umverlegt werden.
Naturschutzrechtliche Ausgleichsmaßnahmen sind auf zwei Flächen im Eigentum der Antragstellerin im Westen und Nordwesten des Werks sowie einer externen Ökokontofläche im Landkreis Traunstein geplant.
Eine umzäunte und befestigte Baustelleneinrichtungsfläche ist unmittelbar nördlich der Neubaugleise etwa 100 m westlich der Unterquerung der Industriestraße vorgesehen.
Die Bauarbeiten sollen tagsüber von 7 bis 20 Uhr an Werktagen stattfinden. In Abstimmung mit der Eisenbahninfrastrukturbetreiberin kann die Bahnstrecke während der Durchführung der Baumaßnahmen zeitweise gesperrt werden. Der Asphaltoberbau der Feuerwehrumfahrung muss bauzeitlich vorübergehend zurückgebaut und im Anschluss wiederhergestellt werden.
Das Projekt SteelBlade beschäftigt sich mit der Entwicklung und Konstruktion eines Onshore Rotorblattes für Windenergieanlagen, das für den Einsatz des Werkstoffs Stahl optimiert wird. Leichtbau- und Optimierungsmethoden aus der Luft- und Raumfahrt sowie dem Fahrzeugbau sollen den effizienten Einsatz des Werkstoffes sichern. Durch eine gleichzeitige Akustik-Optimierung der Struktur kann die Umweltbelastung durch Schallemissionen für Mensch und Tier kontrolliert und gesenkt werden. Der Fokus bei der Entwicklung des Stahlrotorblattes liegt auf der Konstruktion der inneren Struktur sowie der Auslegung einer Blattaußenhülle, die auf Basis aerodynamischer Gesichtspunkte entwickelt wird. Die Konstruktion des Stahlrotorblattes erfolgt durch konsequente Leichtbaumethodik, um das Gesamtgewicht des Stahlblattes auf dem Niveau des GFK-Blattes zu halten. Um die Anwendbarkeit der Neuentwicklung zu gewährleisten, wird Novicos insbesondere das akustische Verhalten mitbetrachten, insbesondere vor dem Hintergrund des geänderten Körperschalltransfers sowie geringerer Dämpfung des Werkstoffs Stahl. Aufgrund der sehr großen Systeme, sowie der Relevanz des Doppler-Effektes bei rotierenden schallemittierenden Oberflächen, wird der Einfluss der neu entwickelten Blattkonstruktion auf die WEA-Schallemission mithilfe der Boundary-Elemente-Methode (BEM) bestimmt. Im Rahmen dieses Projektes wird Novicos das schnelle BEM-Verfahren der hierarchischen Matrizen mit geschachtelten Clusterbasen an die speziellen Anforderungen der Schallemissionssimulation von Windenergieanlagen anpassen. Dies umfasst Berücksichtigung der Bodeneigenschaften sowie des Doppler-Effekts wie die Ausnutzung von WEA-Oberflächensymmetrien zur Verringerung des Rechenaufwands. Basierend auf den Erweiterungen des schnellen BEM-Lösers wird Novicos die Konstruktionsvarianten des Rotorblattes für die betrachteten WEA-Konzepte analysieren und unter akustischen Gesichtspunkten bewerten.
In hydrology, the relationship between water storage and flow is still fundamental in characterizing and modeling hydrological systems. However, this simplification neglects important aspects of the variability of the hydrological system, such as stable or instable states, tipping points, connectivity, etc. and influences the predictability of hydrological systems, both for extreme events as well as long-term changes. We still lack appropriate data to develop theory linking internal pattern dynamics and integral responses and therefore to identify functionally similar hydrological areas and link this to structural features. We plan to investigate the similarities and differences of the dynamic patterns of state variables and the integral response in replicas of distinct landscape units. A strategic and systematic monitoring network is planned in this project, which contributes the essential dynamic datasets to the research group to characterize EFUs and DFUs and thus significantly improving the usual approach of subdividing the landscape into static entities such as the traditional HRUs. The planned monitoring network is unique and highly innovative in its linkage of surface and subsurface observations and its spatial and temporal resolution and the centerpiece of CAOS.
Die Korrosionsschaeden an Denkmaelern aus Kupfer und Kupferlegierungen, Eisen (Gusseisen, Schmiedeeisen, Corten-Stahl, Edelstahl, Baustahl), Blei, Zink und Aluminium werden untersucht. Aus den gefundenen Schaeden lassen sich geeignete Restaurierungsmassnahmen ableiten. Die verfuegbaren Konservierungsprodukte, z.B. Lacke zum Schutz der Oberflaeche, Korrosionsinhibitoren werden durch Bewitterungsversuche ueberprueft.
Der interoprable INSPIRE-Viewdienst (WMS) Production and Industrial Facilities gibt einen Überblick über die Anlagen nach Bundesimmissionsschutzgesetz (BImSchG) in Brandenburg. Der Datenbestand beinhaltet die Punktdaten zu BImSchG-Betriebsstätten und BImSchG-Anlagen (ohne Anlagenteile).
Datenquelle ist das Anlageninformationssystem "LIS-A". Gemäß der INSPIRE-Datenspezifikation "Production
and Industrial Facilities" (D2.8.III.8_v3.0) liegen die Inhalte der BImSchG-Anlagen INSPIREkonform vor. Der WMS beinhaltet 2 Layer: "ProductionFacility" (Betriebsstätte) und "ProductionInstallation" (Anlage). Der ProductionFacility-Layer wird gem. INSPIRE-Vorgaben nach Wirstschaftszweigen (BImSchG-Kategorie 1. Ordnung) untergliedert in:
- PF.PowerGeneration: Wärmeerzeugung, Bergbau und Energie (BImSchG-Kategorie: Nr. 1)
- PF.ConstructionMaterialProduction: Steine und Erden, Glas, Keramik, Baustoffe (BImSchG-Kategorie: Nr. 2)
- PF.MetalProcessingAndProduction: Stahl, Eisen und sonstige Metalle einschließlich Verarbeitung (BImSchG-Kategorie: Nr. 3)
- PF.ChemicalProcessing: Chemische Erzeugnisse, Arzneimittel, Mineralölraffination und Weiterverarbeitung
(BImSchG-Kategorie: Nr. 4)
- PF.PlasticsManufacturing: Oberflächenbehandlung mit organischen Stoffen, Herstellung von bahnenförmigen Materialien aus Kunststoffen, sonstige Verarbeitung von Harzen und Kunststoffen (BImSchGKategorie: Nr. 5)
- PF.WoodAndPaperProcessing: Holz, Zellstoff (BImSchG-Kategorie: Nr. 6)
- PF.FoodAndAgriculturalProduction: Nahrungs-, Genuss- und Futtermittel, landwirtschaftliche Erzeugnisse
(BImSchG-Kategorie: Nr. 7)
- PF.WasteProcessing: Verwertung und Beseitigung von Abfällen und sonstigen Stoffen(BImSchGKategorie:
Nr. 8)
- PF.MaterialStorage: Lagerung, Be- und Entladen von Stoffen und Gemischen(BImSchG-Kategorie: Nr. 9)
- PF.OtherProcessing: Sonstige Anlagen (BImSchG-Kategorie: Nr. 10) Maßstab: 1:500000; Bodenauflösung: nullm; Scanauflösung (DPI): null
1
2
3
4
5
…
227
228
229