Hinweise zum Abstand von Wohngebäuden zu Freileitungen und Erdkabeln Es gibt kein deutschlandweit gültiges Gesetz, das einen Mindestabstand von Hochspannungsleitungen zu Wohngebäuden vorschreibt. Seit dem Jahr 2013 gibt es ein Überspannungsverbot von Gebäuden und Gebäudeteilen, die zum dauerhaften Aufenthalt von Menschen bestimmt sind. Mindestabstände zu Hochspannungsleitungen sind aus Sicht des Strahlenschutzes nicht notwendig. Relevant ist die Einhaltung der Grenzwerte. Diese werden in Deutschland nach aktuellem Kenntnisstand an allen Orten des dauerhaften Aufenthalts eingehalten und sogar deutlich unterschritten. Es gibt kein deutschlandweit gültiges Gesetz, das einen Mindestabstand von Hochspannungsleitungen zu Wohngebäuden vorschreibt. Es gibt jedoch seit dem Jahr 2013 ein Überspannungsverbot von Gebäuden und Gebäudeteilen, die zum dauerhaften Aufenthalt von Menschen bestimmt sind. Dies betrifft den Neubau von Freileitungstrassen mit Wechselstrom, die eine Frequenz von 50 Hertz ( Hz ) und eine Nennspannung von 220 Kilovolt ( kV ) oder mehr aufweisen. Es gibt jedoch Ausnahmen, für die eine Stichtagsregelung gilt. Nicht betroffen von dem Überspannungsverbot sind bestehende Freileitungstrassen sowie entsprechende Planfeststellungsbeschlüsse, Planfeststellungs- und Plangenehmigungsverfahren, die bis zum 22. August 2013 eingereicht wurden ( § 4 Abs. 3 26. BImSchV ). Leitungen zur Höchstspannungs-Wechselstrom-Übertragung ( HWÜ ), die in den allermeisten Fällen zum Transport von elektrischer Energie in Deutschland verwendet werden, können im Falle eines Neubaus als Freileitung oder im Rahmen von Pilotprojekten als Erdkabel errichtet werden ( § 4 Bundesbedarfsplangesetz, BBPlG ). Demgegenüber sind bei der Höchstspannungs-Gleichstrom-Übertragung ( HGÜ ) bei einem Abstand zu Wohngebäuden von weniger als 400 Metern im Geltungsbereich eines Bebauungsplans oder im unbeplanten Innenbereich bzw. weniger als 200 Metern im Außenbereich Erdkabelleitungen vorgesehen und Freileitungen – mit wenigen Ausnahmen – verboten ( § 3 Abs. 4 BBPlG ). Manche Bundesländer legen bei neuen Hochspannungsleitungen Mindestabstände fest. Diese Regelungen dienen nicht dem Gesundheitsschutz. Das heißt sie sind nicht mit nachgewiesenen gesundheitsrelevanten Wirkungen begründet. Vielmehr geht es darum, Ziele der Raumordnung zu erreichen und Raumnutzungskonflikte zwischen Hochspannungsleitungen und Wohnbebauung zu verhindern. Teilweise werden die Mindestabstände auch mit dem Orts- und Landschaftsbild begründet. Grenzwerte schützen Mindestabstände zu Hochspannungsleitungen sind aus Sicht des Strahlenschutzes nicht notwendig. Dies gilt auch für verschiedene Faustformeln ("Ein Meter Abstand je kV Spannung"). Relevant ist die Einhaltung der Grenzwerte. Nach aktuellem Stand der Forschung schützt die Einhaltung der Grenzwerte Erwachsene und Kinder selbst bei einer geringen Entfernung vom Wohngebäude zur Hochspannungsleitung vor allen nachgewiesenen gesundheitlichen Wirkungen . Mit jedem Meter Abstand zu den Hochspannungsleitungen werden die dazugehörigen elektrischen und magnetischen Felder sehr schnell deutlich schwächer. Auch im Haushalt erzeugen Leitungen und Geräte elektrische und magnetische Felder. Diese können üblicherweise einen deutlich größeren Anteil an der Gesamtexposition ( d. h. der Art und Weise, wie Menschen elektrischen und magnetischen Feldern ausgesetzt sind) eines Menschen haben. Das gilt umso mehr, je weiter die Hochspannungsleitungen von den Häusern entfernt sind. Die Bundesnetzagentur oder die nach Landesrecht zuständigen Behörden genehmigen neue Hochspannungsleitungen und kontrollieren, dass die Grenzwerte eingehalten werden. Minimierung der Felder Die gesetzlichen Grenzwerte für die elektrischen und magnetischen Felder müssen an allen Orten des dauerhaften Aufenthalts nicht nur eingehalten werden, es besteht darüber hinaus noch ein Minimierungsgebot: Bei der Errichtung neuer oder der wesentlichen Änderung bestehender Hochspannungsleitungen müssen die nach dem Stand der Technik bestehenden Möglichkeiten ausgeschöpft werden, um die von der jeweiligen Anlage ausgehenden Felder zu minimieren. Was bei Messungen zu beachten ist Da die Grenzwerte in Deutschland an allen Orten des dauerhaften Aufenthalts eingehalten werden müssen, ist davon auszugehen, dass eine Messung vor Ort nur Werte deutlich unterhalb der gesetzlichen Grenzwerte liefert. Unterhalb der Grenzwerte treten nach derzeitigem Kenntnisstand keine gesundheitsgefährdenden Wirkungen auf. Wenn man trotzdem wissen möchte, wie stark die niederfrequenten Felder an einem bestimmten Ort sind, kann dies über eine Messung gezeigt werden. Diese sollte stets von Fachleuten durchgeführt werden und mindestens 24 Stunden dauern, um auch Schwankungen im Tagesverlauf zu erfassen. Für die fachgerechte Messung gibt es mehrere Möglichkeiten: Die zuständige untere Immissionsschutzbehörde des Landkreises bzw. der kreisfreien Stadt ist eine passende Anlaufstelle. Sie ist meistens Teil des Umweltamtes. Ebenso der Leitungsbetreiber, der vielleicht bereits entsprechende Messungen durchgeführt hat. Eine Kontaktaufnahme zu Technischen Universitäten oder Hochschulen könnte sich ebenfalls lohnen. Nicht zuletzt gibt es freie Anbieter am Markt. Bei diesen sollte stets auf eine geeignete Qualifikation geachtet werden. So ist zum Beispiel die Bezeichnung "Baubiologe" nicht gesetzlich geschützt, da sich jeder so nennen kann. Skeptisch sollten Auftraggeber auch werden, wenn ein Anbieter andere Grenzwerte als die gesetzlichen Werte der 26. Bundesimmissionsschutzverordnung ( 26. BImSchV ) als Maßstab heranzieht und darauf aufbauend zum Teil sehr kostspielige Abschirmmaßnahmen empfiehlt. Stand: 17.12.2025
Zielsetzung: Batterien spielen eine entscheidende Rolle in der Transformation der (Strom-)Wirtschaft zu einer CO2 neutralen Zukunft. Die Emissionsreduktion hängt primär vom vorliegenden Strom- bzw. Energiemix ab. Einerseits für den Energieaufwand während der Erzeugung, andererseits während ihres Betriebs. Überdies dürfen CO2 Emissionen für die Erzeugung, Raffinierung und den Transport von Grundmaterialien nicht vernachlässigt werden. Hier setzen die in diesem Projekt beschriebenen Innovationen an. Aktuelle State-of-the-Art LIB Batterien verwenden einerseits nicht weltweit geläufige Rohstoffe, wie Lithium, Kobalt, Nickel, Mangan und Graphit. Diese Rohstoffe werden primär in China raffiniert. Die so hergestellten Ausgangsmaterialien werden dann ihrerseits erneut über weite Strecken transportiert. Anodenseitig wird aktuell Graphit verwendet. Beispielsweise stammen sowohl natürlicher (74%) als auch synthetischer Graphit (51%) primär aus China, weswegen chinesische Exportrestriktionen auf diesen essentiellen Zellbestandteil ein zusätzliches Hemmnis für die europäische LIB Technologie darstellen. Zusätzlich bedürfen LIB Batterien deutlich mehr CO2 in der Herstellung aufgrund der Anforderung an die Trockenräume, was bei NIB zumindest mit zusätzlicher Forschung deutlich reduzierbar wäre. Im Gegensatz dazu beruhen die Materialien für hier entworfene NIB auf weltweit geläufigen Mengenrohstoffen, was sowohl Kosten, CO2 Emissionen, Umweltbelastungen, und eben auch Abhängigkeiten von außereuropäischen Ländern minimiert. Für eine Transformation hin zu einer nachhaltigen, erneuerbaren Wirtschaft sind billige Energiespeicher essenziell. Seit langem werden in den Roadmaps NIB als die beste Zukunftstechnologie bezeichnet, um möglichst kostengünstige Energiespeicher zu bauen. Daher wurde ein Konzept der vertikalen Integration entlang der Wertschöpfungskette erarbeitet, dass mit hoher Erfolgswahrscheinlichkeit, binnen von zwei Jahren zu einem NI-Batteriepack Prototyp führen soll. Der große Vorteil darin besteht in der raschen Weitergabe von Innovationssprüngen an den Prototypen und eventuellen Produkten. Die Zielsetzung ist eine Zelle mit einer Energiedichte von 180 Wh/kg zu entwickeln, welche dann in Endanwendungen wie Gabelstapler, Heimspeicher, und stationäre Speicher eingesetzt werden kann. Durch den angestrebten niedrigen Preis pro kWh für NIB’s sind alle Anwendungen mit einer niedrigen bis mittleren Energiedichte denkbar. Fazit: In diesem Projekt wurde eine Methode entwickelt, um Mangan-dotiertes preussisch Weiss deutlich langlebiger zu machen - mit Zyklenzahlen, die man auch von Lithium-Eisen-Phosphat Akkus kennt, die schon bisher als sehr langlebig gelten. Durch die Erhöhung Spannung können der wesentliche Nachteil der geringeren Energiekapazität von preussisch Weiss mitigiert werden. Das so entstandene Material kann nicht nur LFP, sondern auch NiCd und Blei-Säure Batterien ersetzen.
Das unvollständige Verständnis der Wechselwirkung von Aerosolpartikeln mit Strahlung, Wolken und Niederschlag ist eine Schlüsselfrage der Atmosphärenforschung. Detaillierte Beobachtungen sind erforderlich, um die komplexen Zusammenhänge zwischen den beteiligten Prozessen zu erfassen. Dies gilt insbesondere für die abgelegene Region der Antarktis, wo bodengestützte, vertikal aufgelöste Langzeitbeobachtungen von Aerosol, Wolken und Niederschlag selten sind und Satellitenbeobachtungen technischen Beschränkungen unterliegen. Um die Messlücke mit modernsten Beobachtungen zu schließen, wird TROPOS die Messplattform OCEANET-Atmosphere zwischen den Südsommern 2022/23 und 2023/24 an der Station Neumayer III (70,67°S, 8,27°W) einsetzen. OCEANET-Atmosphere ist ein autonomer, polar-erprobter, modifizierter 20-Fuss-Messcontainer, der erst kürzlich erfolgreich während MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) eingesetzt wurde. Die Instrumentierung während COALA umfasst ein Mehrwellenlängen-Polarisations- und ein Doppler-Lidar, ein 35-GHz-Wolkenradar, ein Mikrowellenradiometer sowie jeweils ein 1-d und 2-d-Niederschlags-Disdrometer. OCEANET ist die einzige polare Einzelcontainer-Plattform, die mit Mehrwellenlängen-Lidar, Radar und Mikrowellenradiometer Wolken und Niederschlag sowie mit Doppler-Lidar und -Radar turbulente Luftbewegungen in Wolken an verschiedenen Messstandorten beobachten kann.Die zeitliche und vertikale Auflösung des gewonnenen Datensatzes wird in der Größenordnung von 30 s (2 s für Vertikalgeschwindigkeitsbeobachtungen) und 30 m liegen. COALA ist ein 3-Jahres-Projekt. Ein Postdoktorand wird für den Einsatz von OCEANET-Atmosphere bei Neumayer III und die Datenanalyse verantwortlich sein und dabei von Experten am TROPOS unterstützt. Die Beobachtungen werden in erster Linie dazu dienen, die Schlüsselhypothese von COALA zu untersuchen, dass Aerosol aus dem Südlichen Ozean, den mittleren Breiten und den Subtropen der südlichen Hemisphäre in die Antarktis transportiert wird, wo es die Bildung und Entwicklung von Wolken und Niederschlag beeinflusst. Die Arbeiten konzentrieren sich auf (1) die Untersuchung des Ursprungs, der Häufigkeit und der Eigenschaften des Aerosols über der Station Neumayer III, (2) die Untersuchung des Einflusses von Oberflächen- und Grenzschicht-Kopplungseffekten auf die Eigenschaften und die Entwicklung von tiefen Wolken, (3) die Untersuchung des Beitrags von Dynamik (orographische Wellen), Aerosol und Meteorologie zur Verteilung der Eis- und Flüssigphase in Wolken über Neumayer III, (4) zur Untersuchung der vertikalen Struktur von Wolken und ihrer Beziehung zur Niederschlagsbildung und (5) zur Bewertung regionaler Kontraste in den Eigenschaften von Aerosolen und Wolken und den damit verbundenen Aerosol-Wolken-Wechselwirkungsprozessen, indem die Neumayer-III-Beobachtungen von vorhandenen Datensätzen aus Südchile, Zypern, Deutschland und der Arktis kontrastiert werden.
Das Unternehmen Essity Operations Mannheim GmbH ist ein Tochterunternehmen der Essity AB mit Hauptsitz in Stockholm, Schweden. Essity betätigt sich im Hygiene- und Gesundheitsbereich und vertreibt Produkte und Lösungen in rund 150 Länder. Am Standort in Mannheim betreibt es ein Sulfit-Zellstoffwerk und eine Papierfabrik zur integrierten Produktion von Sulfitzellstoff nach dem Magnesiumbisulfitverfahren und Hygienepapieren. Die bisherige Verfahrenstechnik zur Chemikalienrückgewinnung und Rauchgasreinigung einer Sulfitzellstofffabrik ist sehr komplex und erfolgt in mehreren Stufen. Der Prozess beginnt mit der Verbrennung der bei der Zellstofferzeugung anfallenden Ablauge. Diese enthält die an Schwefel gebundenen Lingninkomponenten (aus Fichten- und Buchenholz) und Magnesiumverbindungen aus dem Magnesiumbisulfit (Kochsäure), welches bei der Zellstoffkochung zum Einsatz kommt. Dabei entstehen neben der Abwärme Schwefeldioxid und Magnesiumoxid. Das entstehende Rauchgas wird über Zyklonabscheider geführt, um einen Großteil des Magnesiumoxids abzuscheiden. Da dies nicht vollständig gelingt, verbleibt nutzbares Magnesiumoxid im Rauchgas und wird in die Umwelt abgegeben. Das Rauchgas durchläuft nun eine 4-stufige Wäsche, bei der Schwefeldioxid aus dem Rauchgas ausgewaschen wird. Das nasse Rauchgas wird über einen 134 Meter hohen Kamin an die Umwelt abgegeben. Nachteile des herkömmlichen Verfahrens sind, dass schadstoffhaltige Aerosole und auch Staub, die nicht abgeschieden werden können, in die Umwelt gelangen. Zusätzlich können die genannten Prozesschemikalien nicht vollständig zurückgewonnen werden. Das Magnesiumoxid setzt sich im Kamin ab. Um diese Nachteile aufzufangen, ist geplant, einen Nasselektrofilter (NEF) zu installieren. Dadurch wird ermöglicht, dass das Rauchgas nach den vier Waschstufen in zwei verfahrenstechnisch voneinander getrennten Prozessschritten über einen Gegenstromwäscher mit darauffolgendem NEF geführt werden kann. Eine solche Prozesstrennung ist mit dem bisher in Sulfitzellstoffwerken üblichen Abgasreinigungsverfahren (Sulfitwäscher) nicht möglich, da hierbei beide Schritte unmittelbar miteinander verknüpft sind. Die Trennung hat den erheblichen Vorteil, dass sich einerseits der Waschprozess und andererseits die Entfernung der Aerosole getrennt auslegen, betreiben und optimieren lassen. Dies führt im Ergebnis zu einer effizienteren Abscheidung der Aerosole. Entsprechend können die Staub- und SO 2 -Emissionen kontrollierter und damit in unterschiedlichen Betriebszuständen reduziert werden. Darüber hinaus soll der Venturi-4-Wäscher um einen weiteren Wäscher bzw. eine zusätzliche Magnesiumoxid-Eindüsung erweitert werden. Dadurch sollen Staub und Schwefeldioxidemissionen weiter reduziert und Prozesschemikalien zurückgewonnen werden. Mit diesem Vorhaben soll der Stand der Technik zur Emissionsminderung für Chemikalienrückgewinnungskessel von Sulfitzellstoffwerken maßgeblich weiterentwickelt und die einschlägigen Emissionsgrenzwerte erheblich unterschritten werden. Es sollen bis zu 50 Tonnen Feinstaub und 50 Tonnen Schwefeldioxid pro Jahr eingespart werden. Dies entspricht jeweils mindestens einer Halbierung der Emissionsmengen in den Abgasen im Vergleich zum bisherigen Stand. Zusätzlich können durch eine erfolgreiche Umsetzung der innovativen Technik 45 Tonnen Magnesiumoxid und ca. 25 Tonnen Schwefel mehr gegenüber dem Stand der Technik zurückgewonnen werden. Daraus soll sich eine Einsparung von rund 104 Tonnen Kohlenstoffdioxid-Äquivalenten, bezogen auf die Primärherstellung von Magnesiumoxid und Schwefeldioxid, ergeben. Branche: Papier und Pappe Umweltbereich: Luft Fördernehmer: Essity Operations Mannheim GmbH Bundesland: Baden-Württemberg Laufzeit: seit 2024 Status: Laufend
<p>Hochwirksame Staubminderungsmaßnahmen und die Stilllegung veralteter Produktionsstätten in den neuen Bundesländern führten seit 1990 zu einer erheblichen Minderung der verbrennungsbedingten Schwermetall-Emissionen.</p><p>Entwicklung seit 1990</p><p>Die Emissionen der wichtigsten Schwermetalle (Cadmium, Blei und Quecksilber) sanken seit 1990 deutlich. Die Werte zeigen überwiegend Reduktionen von über 60 bis über 90 %. Der Großteil der hier betrachteten Reduktion erfolgte dabei in den frühen 1990-er Jahren, wobei wesentliche Reduktionen auch schon vor 1990 stattfanden. Vor allem die dabei angewandten hochwirksamen Staub- und Schwefeldioxid (SO2) -Minderungsmaßnahmen führten zu einer erheblichen Verringerung der Schwermetallemissionen zunächst in den alten und, nach der Wiedervereinigung, auch in den neuen Ländern, einhergehend mit Stilllegungen veralteter Produktionsstätten. In den letzten Jahren sieht man, bis auf wenige Ausnahmen, kaum weitere Verringerungen der Schwermetall-Emissionen (siehe Abb. und Tab. „Entwicklung der Schwermetall-Emissionen“).</p><p>Während die Blei-Emissionen bis zum endgültigen Verbot von verbleitem Benzin im Jahre 1997 rapide zurückgingen, folgten Zink, Kupfer und Selen im Wesentlichen der Entwicklung der Fahrleistungen im Verkehrssektor, die im langfristigen Trend seit 1990 anstieg.</p><p>Herkunft der Schwermetall-Emissionen</p><p>Schwermetalle finden sich – in unterschiedlichem Umfang – in den staub- und gasförmigen Emissionen fast aller Verbrennungs- und vieler Produktionsprozesse. Die in den Einsatzstoffen teils als Spurenelemente, teils als Hauptbestandteile enthaltenen Schwermetalle werden staubförmig oder gasförmig emittiert. Die Gesamtstaubemissionen aus diesen Quellen bestehen zwar in der Regel überwiegend aus relativ ungefährlichen Oxiden, Sulfaten und Karbonaten von Aluminium, Eisen, Kalzium, Silizium und Magnesium; durch toxische Inhaltsstoffe wie Cadmium, Blei oder Quecksilber können diese Emissionen jedoch ein hohes Gefährdungspotenzial erreichen.</p><p>Verursacher</p><p>Die wichtigste Quelle der meisten Schwermetalle ist der Brennstoffeinsatz im Energie-Bereich. Bei <em>Arsen, Quecksilber </em>und <em>Nickel</em> hat die Energiewirtschaft den größten Anteil, gefolgt von den prozessbedingten Emissionen der Industrie, vor allem aus der Herstellung von Metallen. <em>Cadmium</em> stammt sogar größtenteils aus der Metall-Herstellung. <em>Blei-, Chrom-, Kupfer- und Zink-</em>Emissionen werden überwiegend durch den Abrieb von Bremsen und Reifen im Verkehrsbereich beeinflusst: die Trends korrelieren hier direkt mit der jährlichen <a href="https://www.umweltbundesamt.de/service/glossar/f?tag=Fahrleistung#alphabar">Fahrleistung</a>. <em>Selen</em> hingegen stammt hauptsächlich aus der Mineralischen Industrie, gefolgt von den stationären und mobilen Quellen der Kategorie Energie. Andere Quellen müssen noch untersucht werden, es wird jedoch erwartet, dass sie die Gesamtentwicklung kaum beeinflussen.</p><p>Verpflichtungen</p><p>Das 1998er <a href="http://www.unece.org/env/lrtap/hm_h1.html">Aarhus Protokoll über Schwermetalle</a> unter dem CLRTAP ist Ende 2003 in Kraft getreten. Es wurde im Dezember 2012 revidiert und an den Stand der Technik angepasst. Es zielt auf drei besonders schädliche Metalle ab: Cadmium, Blei und Quecksilber. Laut einer der grundlegenden Verpflichtungen muss Deutschland seine Emissionen für diese drei Metalle unter das Niveau von 1990 reduzieren. Das Protokoll betrachtet die Emissionen aus industriellen Quellen (zum Beispiel Eisen- und Stahlindustrie, NE-Metall-Industrie), Verbrennungsprozessen (Stromerzeugung, Straßenverkehr) und aus Müllverbrennungsanlagen. Es definiert Grenzwerte für Emissionen aus stationären Quellen (zum Beispiel Kraftwerken) und verlangt die besten verfügbaren Techniken (BVT) für diese Quellen zu nutzen, etwa spezielle Filter oder Wäscher für die stationäre Verbrennung oder Quecksilber-freie Herstellungsprozesse. Das Protokoll verpflichtet die Vertragsparteien weiterhin zur Abschaffung von verbleitem Benzin. Es führt auch Maßnahmen zur Senkung von Schwermetall-Emissionen aus Produkten auf (zum Beispiel Quecksilber in Batterien) und schlägt Management-Maßnahmen für andere quecksilberhaltige Produkte wie elektrische Komponenten (Thermostate, Schalter), Messgeräte (Thermometer, Manometer, Barometer), Leuchtstofflampen, Amalgam, <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Pestizide#alphabar">Pestizide</a> und Farben vor.</p><p>Viele dieser Maßnahmen wurden in Deutschland jedoch schon deutlich früher umgesetzt, so dass bereits in den frühen 90er Jahren deutliche Reduktionen der wichtigen Schwermetalle zu verzeichnen sind.</p>
Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.
Der unbeabsichtigte Luftaustausch durch die Gebäudehülle ist eine der wesentlichen Quellen für Wärmeverluste in Gebäuden und deren Energieverbrauch. Die Quantifizierung und Identifikation einzelner Leckagen in der Gebäudehülle ist mit Stand-der-Technik Verfahren bisher anspruchsvoll, zeitaufwändig und hängt stark von der Erfahrung des jeweiligen Energieberaters ab. Das schnelle und sichere Auffinden von Leckagen spielt allerdings eine entscheidende Rolle bei einer zügigen und großflächigen Sanierung von Bestandsgebäuden. In diesem Projekt soll ein Messsystem sowie eine dafür geeignete Ultraschallquelle entwickelt werden, mit dem Ziel, Leckagen in Gebäudehüllen schnell und für Bewohner möglichst störungsfrei zu identifizieren. Das System basiert auf der Kombination von Schallquellenortung mittels Mikrofon-Array-Technologie ('Akustische Kamera') und Infrarotthermografie. Durch die kombinierte Auswertung von Akustik und Thermografie können die Vorteile beider Verfahren kombiniert und die spezifischen Nachteile der einzelnen Verfahren verringert werden. Im Labor wird untersucht, wie mit dieser Methode die energetische Relevanz (Luftaustauschrate) verschiedener Leckagen bestimmt werden kann. Entwicklungsbegleitende Tests an Sanierungsbaustellen sollen Praxisanforderungen gewährleisten und zu einer Beschleunigung der Prozesse der seriellen Gebäudesanierung führen. Abschließend ist ein Ergebnisvergleich des Systems mit einer professionellen Luftdichtheitsprüfung nach Stand der Technik geplant. Das DLR übernimmt die Koordination des Vorhabens. Neben der Durchführung von Voruntersuchungen im Feld, sowie von Praxistests und der Validierung liegt der fachliche Schwerpunkt des DLR auf den Laborarbeiten. Hier werden insbesondere die Ortung und Quantifizierbarkeit diverser Leckage-Setups im Labor bei unterschiedlichen Anregungsarten im Laborprüfstand untersucht.
Bisher wird die Sicherheit von Batteriegehäusesystemen gegenüber thermischem Durchgehen und Propagation im Wesentlichen durch zeit- und kostenintensive, iterative Experimente während der Produktentwicklungsphase überprüft. Nach aktuellem Stand der Technik werden überwiegend metallische Werkstoffe für Batteriegehäuse verwendet. Konzepte für leichtere und nachhaltigere Batteriegehäuse aus Kunststoffen stehen zwar zur Verfügung, der Nachweis der Sicherheit ist allerdings sehr aufwendig und teuer. Von einer stärkeren Integration von Simulationsmethoden wird eine deutliche Verbesserung des Entwicklungsprozesses erwartet. Ziel ist zukünftig die Sicherheit von kunststoffbasierten Batteriegehäusen bei geringeren Kosten und Entwicklungszeiten zu gewährleisten. Es käme dabei sowohl bei der Herstellung der Gehäuse als auch im Betrieb von Elektrofahrzeugen zu einer CO2-Einsparung. Das Projekt SiKuBa setzt bei der Entwicklung und Validierung von Simulationsmodellen zur Auslegung sicherer Kunststoff-Batteriegehäuse unter thermischem Durchgehen an. Die Entstehung und Ausbreitung der gefährlichen Gas- und Partikelströme sowie deren Interaktion mit Strukturelementen wird experimentell analysiert und in strömungs- und strukturmechanische Simulationsmodelle überführt. Die Modelle eröffnen eine effiziente Möglichkeit neuartige Konzepte zur Verlangsamung und Unterdrückung der Propagation virtuell zu untersuchen. Der somit mögliche Einsatz sicherer und nachhaltiger kunststoffbasierter Gehäuselösungen kann dabei einen wesentlichen Beitrag zur Akzeptanz der Elektromobilität leisten. Kautex fokussiert sich hauptsächlich auf die Entwicklung von Schutzkonzepten für den Lastfall des thermischen Durchgehens. Neben der Weiterentwicklung lokaler Schutzmaßnahmen werden neuartige Konzepte zur schnellen Abführung heißer Gase erarbeitet. Darüber hinaus ist Kautex für die Auslegung und Fertigung von Demonstratoren verantwortlich und wird die Simulationsarbeiten im Projekt unterstützen.
Im Rahmen des Bewertungssystems Nachhaltiges Bauen sollen die vorhandenen Kriteriensteckbriefe für Schallschutz und akustischen Komfort für Büro-, Unterrichts- und Laborgebäude auf Basis der normativen und arbeitsschutzrechtlichen Festlegungen und Empfehlungen inhaltlich aktualisiert werden. Bei der Festlegung der Bewertungsanforderungen erfolgt eine Abwägung zwischen Komfort- und Gesundheit, anerkannten Regeln der Technik und ökonomischer Umsetzbarkeit. Ausgangslage: Das BMUB hat für Bundesgebäude verbindliche Qualitätsvorgaben an ganzheitlich optimierte Gebäude im Leitfaden Nachhaltiges Bauen und im Bewertungssystem Nachhaltiges Bauen (BNB) festgelegt. Seit Oktober 2013 ist das Bewertungssystem BNB verpflichtend für die Planung und Realisierung von Gebäuden des Bundes anzuwenden. Im Bewertungssystem wurden auch konkrete Ansätze zum Schallschutz und raumakustischen Komfort formuliert. Im Rahmen der kürzlich abgeschlossenen Evaluierung und Harmonisierung des Bewertungssystems (BNB Version 2015) wurden die Anforderungen an den Schallschutz und den raumakustischen Komfort an die zwischenzeitlich gewonnenen Erkenntnisse im Hinblick auf weiterentwickelte Normen und Richtlinien angepasst. Diese Anpassung ist jedoch noch nicht vollständig erfolgt, da beispielweise die Fortschreibung der DIN 4109 und der VDI 2569 noch nicht abgeschlossen war. Daher ist eine weitere inhaltliche Aktualisierung unter Einbeziehung der fortgeschriebenen DIN 4109 und VDI 2569 notwendig. Ziel: Ziel des Projektes ist die inhaltliche Aktualisierung der BNB Kriteriensteckbriefe für Schallschutz und akustischen Komfort bei Büro-, Unterrichts- und Laborgebäuden unter Einbeziehung der fortgeschriebenen DIN 4109 und VDI 2569. Es wird ein realistisches und praktikables Bewertungssystem erarbeitet, mit dem die Einhaltung von Mindestanforderungen nach aktuell gültigen gesetzlichen Regeln bzw. allgemein anerkannten Regeln der Technik geprüft werden kann. Weiterhin ist eine abgestufte Bewertung höherer Qualitätsanforderungen vorgesehen, bei der eine Abwägung zwischen Komfort und Gesundheit, Regeln der Technik sowie ökonomischer Umsetzbarkeit zu treffen ist. Darüber hinaus erfolgt ein Vergleich zwischen nationalen und internationalen Vorgaben bzw. Bewertungsansätzen für Bau- und Raumakustik.
Abluftemissionen von biologischen Abfallbehandlungsanlagen zum Zweck der Komposterzeugung werden über die TA Luft geregelt. Dabei hat sich die Kombination aus Wäscher und Biofilter zur Abluftbehandlung mit dem Ziel der Staubabscheidung und Geruchsminderung weitgehend bewährt. Hauptsächliches Augenmerk liegt dabei auf der Begrenzung von Geruchsemissionen. Neben Anforderungen an die Begrenzung von geruchsintensiven Stoffen wird die effektive Reduktion aller kritischen organischen Stoffe der Klassen 1 und 2 nach Nr. 3.1.7 TA Luft zur Einhaltung der festgeschriebenen Grenzwerte gefordert. Bei der mechanisch-biologischen Behandlung von Siedlungsabfällen hat sich in Untersuchungen und Praxiserfahrungen der letzten Jahre gezeigt, dass der Biofilter nicht ausreicht, um die Abluft zu reinigen und die Anforderungen der TA Luft an eine effektive Reduktion aller kritischen organischen Stoffe der Klassen 1 und 2 zu erfüllen. Mit in Kraft treten der 30. BImSchV sind für mechanisch-biologische Restabfallbehandlungsanlagen weitergehende bzw. alternative Abluftreinigungsverfahren notwendig, so dass sich ein neuer Stand der Technik auf dem Gebiet der Abluftreinigung abzeichnen wird. Untersucht werden alternative Abluftreinigungsverfahren zur Behandlung der Emissionen von biologischen Abfallbehandlungsverfahren sowie mechanisch-biologische Restabfallbehandlungsverfahren. Das Projekt wird in Kooperation mit einem Industriepartner durchgeführt. Neben der Bilanzierung der quantitativen Emissionen sollen deren potenzielle Umweltauswirkungen auf Basis einer ökobilanziellen Abschätzung ermittelt werden, um die unterschiedlichen Systeme miteinander vergleichen zu können.
| Origin | Count |
|---|---|
| Bund | 3246 |
| Kommune | 12 |
| Land | 316 |
| Wirtschaft | 4 |
| Zivilgesellschaft | 8 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 2970 |
| Gesetzestext | 10 |
| Text | 289 |
| Umweltprüfung | 151 |
| unbekannt | 133 |
| License | Count |
|---|---|
| geschlossen | 534 |
| offen | 2956 |
| unbekannt | 64 |
| Language | Count |
|---|---|
| Deutsch | 3465 |
| Englisch | 374 |
| Resource type | Count |
|---|---|
| Archiv | 72 |
| Bild | 19 |
| Datei | 66 |
| Dokument | 344 |
| Keine | 2177 |
| Multimedia | 1 |
| Unbekannt | 8 |
| Webdienst | 5 |
| Webseite | 1085 |
| Topic | Count |
|---|---|
| Boden | 2208 |
| Lebewesen und Lebensräume | 2589 |
| Luft | 2005 |
| Mensch und Umwelt | 3543 |
| Wasser | 1793 |
| Weitere | 3554 |