This data set presents the reconstructed vegetation cover for 706 Asian sites based on harmonized pollen data from the data set LegacyPollen 2.0 and optimized RPP values. Sugita's REVEALS model (2007) was applied to all pollen records using REVEALSinR from the DISQOVER package (Theuerkauf et al. 2016). Pollen counts were translated into vegetation cover by taking into account taxon-specific pollen productivity and fall speed. Additionally, relevant source areas of pollen were also calculated using the aforementioned taxon-specific parameters and a gaussian plume model for deposition and dispersal and forest cover was reconstructed. In this optimized reconstruction, relative pollen productivity estimates for the ten most common taxa were first optimized by using reconstructed tree cover from modern pollen samples and LANDSAT remotely sensed tree cover (Sexton et al. 2013) for Asia. Values for non-optimized taxa for relative pollen productivity and fall speed were taken from the synthesis from Wiezcorek and Herzschuh (2020). The average values from all Northern Hemisphere values were used where taxon-specific continental values were not available. We present tables with optimized reconstructed vegetation cover for records in Asia. As further details we list a table with the taxon-specific parameters used and a list of parameters adjusted in the default version of REVEALSinR.
The classical point wise Cornell-McGuire probabilistic seismic hazard assessment (PSHA), which is widely used for seismic hazard mapping and development of design codes, does not allow direct estimation of multiple-location hazard for distributed structures and facilities: what is the (annual) probability that specific level of ground motion will be exceeded simultaneously in several sites? It is possible to extent the classical methodology to the multiple sites problem considering also ground-motion correlation. We study multiple-location PSHA, as compared with the classical point wise PSHA, using Monte Carlo simulation. Specific items are:(1) Development of the algorithms for multiple-location PSHA;(2) Analysis of the role of the geometry of multiple sites, correlation of ground motion, and evel of seimicity for multiple-location PSHA;(3) Study of correspondence and differences between multiple-location PSHA and classical point wise PSHA and analysis of possibility of utilization of classical PSHA procedures for simplified multiple-location hazard assessment.The project is innovative because only few attempts have been made so far regarding our research questions.
Which salt formations are suitable for storing hydrogen or compressed air? In the InSpEE-DS research project, scientists developed requirements and criteria for the assessment of suitable sites even if their exploration is still at an early stage and there is little knowledge of the salinaries’ structures. Scientists at DEEP.KBB GmbH in Hanover, worked together with their project partners at BGR and the Leibniz University Hanover, Institute for Geotechnics, to develop the planning basis for the site selection and for the construction of storage caverns in flat layered salt and multiple or double saliniferous formations. Such caverns could store renewable energy in the form of hydrogen or compressed air. While the previous project InSpEE was limited to salt formations of great thickness in Northern Germany, salt horizons of different ages have now been examined all over Germany. To estimate the potential, depth contour maps of the top and the base as well as thickness maps of the respective stratigraphic units were developed. Due to the present INSPIRE geological data model, it was necessary, in contrast to the original dataset, to classify the boundary lines of the potential storage areas in the Zechstein base and thickness layers, whereby the classification of these lines was taken from the top Zechstein layer. Consequently, the boundary element Depth criterion 2000 m (Teufe-Kriterium 2000 m) corresponds on each level to the 2000 m depth of Top Zechstein. However, the boundary of national borders and the boundary of the data basis could not be implemented in the data model and are therefore not included in the dataset. Information on compressed air and hydrogen storage potential is given for the identified areas and for the individual federal states. According to the Data Specification on Geology (D2.8.II.4_v3.0) the content of InSpEE-DS (INSPIRE) is stored in 18 INSPIRE-compliant GML files: InSpEE_DS_GeologicUnit_Isopachs_Zechstein.gml contains the Zechstein isopachs. InSpEE_DS_GeologicUnit_Isobaths_Top_Zechstein.gml and InSpEE_DS_GeologicUnit_Isobaths_Basis_Zechstein.gml contain the isobaths of the top and basis of Zechstein. The three files InSpEE_DS_GeologicStructure_ThicknessMap_Zechstein, InSpEE_DS_GeologicStructure_Top_Zechstein and InSpEE_DS_GeologicStructure_Basis_Zechstein represent the faults of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Boundary_element_Potential_areas_Zechstein.gml contains the boundary elments of the potential areas at the top and the basis of Zechstein as well as of the Zechstein body. The three files InSpEE_DS_GeologicUnit_Uncertainty_areas_ThicknessMap_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Top_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Basis_Zechstein.gml represent the uncertainty areas of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Potentially_usable_storage_areas_Storage_potential_in_the_federal_states.gml comprises the areas with storage potential for renewable energy in the form of hydrogen and compressed air. The six files InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Malm.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Keuper.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Muschelkalk.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Roet.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Zechstein.gml and InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Rotliegend.gml represent the salt distribution of the respective stratigraphic unit. InSpEE_DS_GeologicUnit_General_salt_distribution.gml represents the general salt distribution in Germany. This geographic information is product of a BMWi-funded research project "InSpEE-DS" running from the year 2015 to 2019. The acronym stands for "Information system salt: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) - double saline and flat salt layers".
This dataset contains ESRI shapefiles of mapped glacial landforms, i.e., initial cirques, cirques, moraines, and moraine crests in the region formerly occupied by the former Haslach glacier in the southern Black Forest (48° N, 8° E WGS 1984), south-west Germany. The last glaciation maximum ice extent of the former Haslach glacier, inferred from ice-marginal moraines, is also provided. Geomorphological mapping was undertaken for the selection of suitable sites for beryllium-10 surface exposure dating of moraine-boulder surfaces for the establishment of a regional glacier chronology. The mapping of glacial landforms in the region formerly occupied by the former Haslach glacier in the southern Black Forest involved the interpretation of derivatives of the high-resolution DGM1 digital elevation model (xy-resolution: 1 m) of the State Agency for Geoinformation and Land Development (LGL) of the state of Baden-Württemberg, freely available at: https://opengeodata.lgl-bw.de/#/(sidenav:product/3) (last access: 6 February 2025), coupled with extensive field campaigns in 2020-2022 CE. To achieve the greatest possible accuracy during the mapping of glacial landforms, exposures were inspected, if available. The shapefiles can be opened with open-source geographic information system software. The coordinate reference system of the shapefiles is EPSG 25832: ETRS89 / UTM Zone 32N (https://epsg.io/25832, last access: 6 February 2025).
Ready-to-use version of the Eurasian Modern Pollen Database version 2 (EMPD2; Davis et al., 2020; Chevalier et al., 2019) that includes 90 taxa and 7634 modern pollen samples with pollen sums (excluding Pinus) higher or equal to 100 pollen grains (Tables 1 to 6). Table 7 contains 394 additional sites with pollen sums less than 100 pollen grains when excluding Pinus but higher or equal to 100 pollen grains when Pinus is included. Users can merge Tables 1 and 7 (8028 modern pollen samples) if they consider pollen sums (including Pinus) equal or higher than 100 pollen grains sufficient for accurate reconstructions. This ready-to-use version of the EMPD2 was initially built to do paleoclimatic reconstructions for Southern Europe. For users willing to do paleoclimate reconstructions in regions that may need to re-include some of the taxa that were removed, the intermediate version containing all the counts for the 840 initial taxa and the first grouping to 192 taxa is also available as Table 8.
Monthly, seasonal and annual mixed layer depth (MLD) values at the 1968 sites of the modern dinocyst database by de Vernal et al. (2020). The MLD values were extracted from the World Ocean Atlas 2018 (WOA18) objectively analyzed mean field of Argo floats data of 2005-2017 using a density threshold of 0.125 kg/m3 with reference to 10 m depth. In order to get an MLD value that corresponds to each site, the MLD climatology products were interpolated to the previously published 1968 sites.
Monthly, seasonal and annual mixed layer depth (MLD) values at the 1968 sites of the modern dinocyst database by de Vernal et al. (2020). The MLD values were extracted from the World Ocean Atlas 2018 (WOA18) objectively analyzed mean field of the climate normal of 1981-2010 using a density threshold of 0.125 kg/m3 with reference to 10 m depth. In order to get an MLD value that corresponds to each site, the MLD climatology products were interpolated to the previously published 1968 sites.
Monthly, seasonal and annual mixed layer depth (MLD) values at the 1968 sites of the modern dinocyst database by de Vernal et al. (2020). The MLD values were extracted from the monthly climatology based on profile data of 1970-2021 by de Boyer Montégut (2023) using a density threshold of 0.03 kg/m3 with reference to 10 m depth. In order to get an MLD value that corresponds to each site, the MLD climatology products were interpolated to the previously published 1968 sites.
Monthly, seasonal and annual mixed layer depth (MLD) values at the 1968 sites of the modern dinocyst database by de Vernal et al. (2020). The MLD values were extracted from the monthly climatology based on Argo profiles of 2000-2021 by Holte et al. (2017). MLD values corresponding to each of the the previously published 1968 sites were determined with a density algorithm.
This data set presents the reconstructed vegetation cover for 2773 sites based on harmonized pollen data from the data set LegacyPollen 2.0 (https://doi.pangaea.de/10.1594/PANGAEA.965907). 1040 sites are located in North America, 1287 in Europe, and 446 in Asia. Sugita's REVEALS model (2007) was applied to all pollen records using REVEALSinR from the DISQOVER package (Theuerkauf et al. 2016). Pollen counts were translated into vegetation cover by accounting for taxon-specific pollen productivity and fall speed. Additionally, relevant source areas of pollen were calculated using the aforementioned taxon-specific parameters and a Gaussian plume model for deposition and dispersal. Values for relative pollen productivity and fall speed from the synthesis from Wiezcorek and Herzschuh (2010) were updated with recent studies used to reconstruct vegetation cover. The average values from all Northern Hemisphere values were used where taxon-specific continental values were unavailable. As REVEALS was conceived to reconstruct vegetation from large lakes, only records originating from large lakes (>= 50h) are marked as "valid as site" in the dataset. Reconstructions from other records can be used when spatially averaging several together. An example script to do so is provided on Zenodo (https://doi.org/10.5281/zenodo.12800290). Reconstructed tree cover was validated using modern Landsat remote sensing forest cover. Reconstructed tree cover has much lower errors than the original arboreal pollen percentages. Reconstructions of individual taxa are more uncertain. We present tables with reconstructed vegetation cover for all continents with original parameters. As further details, we list a table with the taxon-specific parameters used, metadata for all records, and a list of parameters adjusted in the default version of REVEALSinR.
| Origin | Count |
|---|---|
| Bund | 3477 |
| Europa | 6 |
| Global | 20 |
| Kommune | 1 |
| Land | 76 |
| Wissenschaft | 467 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Daten und Messstellen | 355 |
| Ereignis | 3 |
| Förderprogramm | 1933 |
| Gesetzestext | 3 |
| Kartendienst | 1 |
| Sammlung | 1 |
| Taxon | 43 |
| Text | 1190 |
| Umweltprüfung | 3 |
| unbekannt | 514 |
| License | Count |
|---|---|
| geschlossen | 1546 |
| offen | 2403 |
| unbekannt | 53 |
| Language | Count |
|---|---|
| Deutsch | 2433 |
| Englisch | 1677 |
| Resource type | Count |
|---|---|
| Archiv | 138 |
| Bild | 13 |
| Datei | 159 |
| Dokument | 1102 |
| Keine | 1937 |
| Unbekannt | 55 |
| Webdienst | 16 |
| Webseite | 640 |
| Topic | Count |
|---|---|
| Boden | 2716 |
| Lebewesen und Lebensräume | 2671 |
| Luft | 1665 |
| Mensch und Umwelt | 4002 |
| Wasser | 1763 |
| Weitere | 3652 |