This dataset contains ESRI shapefiles of mapped glacial landforms, i.e., initial cirques, cirques, moraines, and moraine crests in the region formerly occupied by the former Haslach glacier in the southern Black Forest (48° N, 8° E WGS 1984), south-west Germany. The last glaciation maximum ice extent of the former Haslach glacier, inferred from ice-marginal moraines, is also provided. Geomorphological mapping was undertaken for the selection of suitable sites for beryllium-10 surface exposure dating of moraine-boulder surfaces for the establishment of a regional glacier chronology. The mapping of glacial landforms in the region formerly occupied by the former Haslach glacier in the southern Black Forest involved the interpretation of derivatives of the high-resolution DGM1 digital elevation model (xy-resolution: 1 m) of the State Agency for Geoinformation and Land Development (LGL) of the state of Baden-Württemberg, freely available at: https://opengeodata.lgl-bw.de/#/(sidenav:product/3) (last access: 6 February 2025), coupled with extensive field campaigns in 2020-2022 CE. To achieve the greatest possible accuracy during the mapping of glacial landforms, exposures were inspected, if available. The shapefiles can be opened with open-source geographic information system software. The coordinate reference system of the shapefiles is EPSG 25832: ETRS89 / UTM Zone 32N (https://epsg.io/25832, last access: 6 February 2025).
Pasturing forest sites is mostly considered as detrimental for tree growth and, associated with that, crucial for the protective function of the forests against avalanches. New laws as well as the use of subsidies for the separation of forest and pastures shall accelerate the cessation of forest pasturing. It is however unclear whether pasturing is detrimental in any case or whether the application of an appropriate livestock system might even support tree development. The general aim of the project is to determine the effects of pasturing on mountain forest structure and dynamics under different stocking rates and pasturing period lenghts. This is a joint project headed by the Swiss Federal Institute for Snow and Avalanche Research (SLF). The part of the project which focusses on animal nutrition particularly deals with the measurement of intake and composition of the selected herbage on these pastures. Data on food intake and food quality should allow to determine the threshold levels, when food scarceness will enhance damage of trees by their use as fodder alternatives, or by tread damages. The project is carried out in the frame of the WSL Research Programme Forest-Wildlife-Landscape. The project is also in part forming a component project within the ETH polyproject 'Sustainable Primary Production in the Alpine Region' (PRIMALP).
<p>The present dataset from Germany is encompassed in the European Biodiversa BioRodDis project (Managing BIOdiversity in forests and urban green spaces: Dilution and amplification effects on RODent microbiomes and rodent-borne DISeases. Project coordinator: Nathalie Charbonnel, Senior researcher (DR2, INRAE), nathalie.charbonnel@inrae.fr - https://www6.inrae.fr/biodiversa-bioroddis). The project comes with the purpose to explore on a large scale the relationship between biodiversity of rodents, rodent-borne diseases dynamics and differences over time in a changing climate and it includes data of small terrestrial mammals from temperate forests and urban parks from the following countries: Belgium, France, Germany, Ireland and Poland. The present dataset includes records of small mammals (Rodentia) occurrences trapped in urbanised and forested areas in northeast Germany in the district of Potsdam (Brandenburg). Samplings and data collection took place throughout three years and during a total of four seasons: winter 2020, spring 2021, autumn 2021 and spring 2022. The number of sampling sites varied between 2 and 4 per seasons, with two main sites (Germany EastA and Germany EastB) being permanent in each sampling season. These variations are mainly due to the impact of SARS-CoV-2 pandemic regulations (2020, 2021) on the organisation and the execution of fieldwork and to the exclusion subsequently of forested sites with very low density of animals (≤10 individuals: Germany EastC, Germany EastB). The two main sampling sites represent different levels of anthropisation. The site Germany EastA is around the Botanical Garden belonging to the University of Potsdam with a mixture of sealed and wooded areas and a constant human presence while the site Germany EastB is a forested sub-urbanised area outside of the city composed by mixed coniferous forests, meadows, crossed by a main road and with occasional human presence (hunters, foresters). All animals were live captured (as in Schirmer et al., 2019) using a combination of Ugglan and Longworth traps for a total of 100-150 traps, depending on site and year. Traps were placed in 4 to 6 lines with 25m distance, and each line was composed by a total of 25 traps placed with 10m distance from each other. Fieldwork actions generally started with 1-4 days of pre-baiting followed by 1-10 days of trapping, according to efficiency of trapping and subprojects included. The sites Germany EastC and Germany EastD were excluded from the last two seasons because of very low trapping success during the previous seasons. All the traps were controlled daily during early morning hours and were activated again in the evening, with animals spending not more than eight hours in the trap. Baiting mixture consisted of oat flakes and apples and all traps were equipped with insulating material, like hay or wood wool. Taxonomical identification was determined in the field at species level according to morphology and previously recorded species occurrences in the sampling area (Dolch, 1995). Molecular identification of Apodemus flavicollis and Microtus individuals that were subsequently dissected was performed by the CBGP (France) using CO1 sequencing for Microtus species following Pagès et al., 2010, and DNA fingerprinting (AP-PCR) for Apodemus species (Bugarski-Stanojević et al., 2013). Dissections and body measurements were performed following the protocols described in Herbreteau et al., 2011. At the end of all seasons, a total of 620 occurrences of rodents was recorded, belonging to two main families (Muridae, Cricetidae) and four different species (Apodemus flavicollis, Apodemus agrarius, Myodes glareolus and Microtus arvalis). Additionally, for a subset of individuals (n=264), body measurements like weight, body length, head width, tail length and hind foot length as well as sexual maturity data were recorded. Animals were captured in accordance with the applicable international and institutional guidelines for the use of animals in research. The trapping and collection of rodents was performed under the permission of “Landesamt für Arbeitsschutz, Verbraucherschutz und Gesundheit Brandenburg (LAVG)“ (no. 2347-A-16-1-2020 for procedure, LUGV_RW7-4744/41+5#243052/2015 and N1 0424 for trapping) and “Landesamt für Umwelt Brandenburg (LfU)” (no. LFU-N1-4744/97+17#194297/2020, for sites and species exemptions). This project was funded through the 2018-2019 BiodivERsA joint call for research proposals, under the BiodivERsA3 ERA-Net COFUND programme, and coordinated by the German Science Foundation DFG (Germany). Citations: 1) Bugarski-Stanojević, V., Blagojević, J., Adnađević, T., Jovanović, V., & Vujošević, M. (2013). Identification of the sibling species Apodemus sylvaticus and Apodemus flavicollis (Rodentia, Muridae)—Comparison of molecular methods. Zoologischer Anzeiger - A Journal of Comparative Zoology, 252(4), 579–587. https://doi.org/10.1016/j.jcz.2012.11.004 2) Dolch, D. (1995). Naturschutz und Landschaftspflege in Brandenburg. 97. 3) Herbreteau, V., Jittapalapong, S., Rerkamnuaychoke, W., Chaval, Y., Cosson, J.-F., & Morand, S. (2011). Protocols for field and laboratory rodent studies. 56. 4) Pagès, M., Chaval, Y., Herbreteau, V., Waengsothorn, S., Cosson, J.-F., Hugot, J.-P., Morand, S., & Michaux, J. (2010). Revisiting the taxonomy of the Rattini tribe: A phylogeny-based delimitation of species boundaries. BMC Evolutionary Biology, 10(1), 184. https://doi.org/10.1186/1471-2148-10-184 5) Schirmer, A., Herde, A., Eccard, J. A., & Dammhahn, M. (2019). Individuals in space: Personality-dependent space use, movement and microhabitat use facilitate individual spatial niche specialization. Oecologia, 189(3), 647–660. https://doi.org/10.1007/s00442-019-04365-5</p>
Der INSPIRE Datensatz Schutzgebiete (PS) Hamburg setzt sich aus den Inhalten folgender Datensätze zusammen: Schutzgebietskataster Hamburg Natur- und Landschaftsschutzgebiete, Naturdenkmale; Verordnungen; EG-Vogelschutz- und FFH-Gebiete (Natura 2000), NPHW, Biosphärenreservat, Ramsar- Gebiete. Denkmalkartierung Hamburg In der Denkmalkartierung sind folgende Kategorien (Ebenen, Layer) enthalten: - Denkmalobjekte (symbolhaft): z.B. Statuen, Brunnen, Denkmalanlagen ohne klare Ausdehnung - Grenzsteine: historische Grenzsteine und Grenzmarkierungen - Baudenkmale: z.B. Gebäude, Brücken, bauliche Anlagen - Gewässer: z.B. Hafenbecken, Kanäle, Schleusen, Teiche in Parks und Gärten - Gartendenkmale: z.B. öffentliche Park- und Gartenanlagen, historische Friedhöfe - Ensembles: mindestens aus zwei Objekten bestehend Bodendenkmäler Hamburg Kartierung bekannter archäologischer Schutzgebiete - Denkmäler/Bodendenkmäler - der Freien und Hansestadt Hamburg nach dem Hamburgischen Denkmalschutzgesetz vom 5. April 2013. Auskünfte zu den fachlichen Inhalten können nur die Ansprechparten der Originaldaten geben (siehe Verweise).
Since the end of the 1980ies the geological, areal and production data of operating mining sites have been collected systematically by LGRB. The periodic update of this information is carried out every four or five years. Main reasons are 1) the preparation of the periodic follow-up of the 12 regional development plans, 2) the work on the near-surface mineral raw material maps published by LGRB, and 3) the periodical editing of the state report for near-surface mineral raw materials published by LGRB at the start of each new election period. The geological data include a detailed documentation of the thickness, petrography and quality of mined rock(s) and the overburden as well as geochemical data gained from rock samples. The areal data refer both to the permitted mining area (zones of recultivation, work and expansion) and to possible areas for the mine expansion (the latter are confidential). Due to the quick spatiotemporal variability of these data, here all mining sites are shown as point data. The confidential annual production data are the basis for the periodic raw material report. In addition, another data are collected, e.g. for the mining permission, the delivery area and the subsequent land use. All these data are stored in the mining site database of the LGRB (Rohstoffgewinnungs-stellendatenbank = RGDB). This one comprises also the data for abandoned mining sites and mines. In total, actual (2021) about 14.000 data records are stored. The name of each mining site (e.g. RG 6826-3) consists of three parts. RG is the abbreviation for "Rohstoffgewinnungsstelle". the following four-digit number means the number of the relevant topographic map 1 : 25.000. The last number means the serial number of the mining site; serial numbers 1-99 mark operating mining sites gathered since the end of the 1980ies ( (today partially already closed) , such > 100 mark abandoned mining sites collected before 1980 and such > 300 mark data of mining sites and mines collected in the course of actual raw material mapping. The mintell4eu data set comprises all mining sites with serial numbers 1-99. In addition, the most important abandoned mines of former or probably still ongoing economic importance.
Ready-to-use version of the Eurasian Modern Pollen Database version 2 (EMPD2; Davis et al., 2020; Chevalier et al., 2019) that includes 90 taxa and 7634 modern pollen samples with pollen sums (excluding Pinus) higher or equal to 100 pollen grains (Tables 1 to 6). Table 7 contains 394 additional sites with pollen sums less than 100 pollen grains when excluding Pinus but higher or equal to 100 pollen grains when Pinus is included. Users can merge Tables 1 and 7 (8028 modern pollen samples) if they consider pollen sums (including Pinus) equal or higher than 100 pollen grains sufficient for accurate reconstructions. This ready-to-use version of the EMPD2 was initially built to do paleoclimatic reconstructions for Southern Europe. For users willing to do paleoclimate reconstructions in regions that may need to re-include some of the taxa that were removed, the intermediate version containing all the counts for the 840 initial taxa and the first grouping to 192 taxa is also available as Table 8.
Monthly, seasonal and annual mixed layer depth (MLD) values at the 1968 sites of the modern dinocyst database by de Vernal et al. (2020). The MLD values were extracted from the World Ocean Atlas 2018 (WOA18) objectively analyzed mean field of Argo floats data of 2005-2017 using a density threshold of 0.125 kg/m3 with reference to 10 m depth. In order to get an MLD value that corresponds to each site, the MLD climatology products were interpolated to the previously published 1968 sites.
Monthly, seasonal and annual mixed layer depth (MLD) values at the 1968 sites of the modern dinocyst database by de Vernal et al. (2020). The MLD values were extracted from the World Ocean Atlas 2018 (WOA18) objectively analyzed mean field of the climate normal of 1981-2010 using a density threshold of 0.125 kg/m3 with reference to 10 m depth. In order to get an MLD value that corresponds to each site, the MLD climatology products were interpolated to the previously published 1968 sites.
Monthly, seasonal and annual mixed layer depth (MLD) values at the 1968 sites of the modern dinocyst database by de Vernal et al. (2020). The MLD values were extracted from the monthly climatology based on profile data of 1970-2021 by de Boyer Montégut (2023) using a density threshold of 0.03 kg/m3 with reference to 10 m depth. In order to get an MLD value that corresponds to each site, the MLD climatology products were interpolated to the previously published 1968 sites.
Monthly, seasonal and annual mixed layer depth (MLD) values at the 1968 sites of the modern dinocyst database by de Vernal et al. (2020). The MLD values were extracted from the monthly climatology based on Argo profiles of 2000-2021 by Holte et al. (2017). MLD values corresponding to each of the the previously published 1968 sites were determined with a density algorithm.
| Origin | Count |
|---|---|
| Bund | 3474 |
| Europa | 5 |
| Global | 20 |
| Kommune | 1 |
| Land | 73 |
| Wissenschaft | 469 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 356 |
| Ereignis | 3 |
| Förderprogramm | 1931 |
| Gesetzestext | 3 |
| Kartendienst | 1 |
| Repositorium | 1 |
| Taxon | 45 |
| Text | 1191 |
| Umweltprüfung | 3 |
| unbekannt | 510 |
| License | Count |
|---|---|
| geschlossen | 1548 |
| offen | 2398 |
| unbekannt | 52 |
| Language | Count |
|---|---|
| Deutsch | 2426 |
| Englisch | 1678 |
| Resource type | Count |
|---|---|
| Archiv | 138 |
| Bild | 13 |
| Datei | 158 |
| Dokument | 1102 |
| Keine | 1934 |
| Unbekannt | 57 |
| Webdienst | 16 |
| Webseite | 637 |
| Topic | Count |
|---|---|
| Boden | 2674 |
| Lebewesen und Lebensräume | 2582 |
| Luft | 1621 |
| Mensch und Umwelt | 3998 |
| Wasser | 1695 |
| Weitere | 3749 |