Auf Blatt Neumünster ist das Norddeutsche Tiefland mit dem Schleswig-Holsteinischen Wattenmeer erfasst. Bei Brunsbüttel münden der Nord-Ostsee-Kanal und die Elbe in die Nordsee. Die Morphologie des Norddeutschen Tieflandes ist eiszeitlich geprägt. Zu den glazialen Ablagerungen der Elster-, Saale- bzw. Weichselkaltzeit zählen glazilimnische Beckensedimente, Geschiebelehm der Grundmoränen, fluviatile und glazifluviatile Ablagerungen sowie äolische Sande. Im Küstenbereich wird die Sedimentverteilung von holozänen Lockergesteinen verschiedener Faziesbereiche dominiert: Meeresboden, Hallig- und Strandbereich sowie Watt- und Marschgebiete. In den Flusstälern der Elbe, Eider, Oste und Stör reichen die brackischen Ablagerungen des Holozäns weit in das Festland hinein. Die Aufbrüche von älteren Sedimentgesteinen sind an die Dynamik der Zechstein-Salze im Untergrund gebunden. In Folge des Salzauftriebs kam es zum Aufbeulen der überlagernden (mesozoischen und känozoischen) Schichten, zu tektonischen Brüchen und Verwerfungen. So tritt beispielsweise Oberkreide in der Gegend südlich von Itzehoe unter der quartären Deckschicht zu Tage; Tonsteine des Rotliegenden sind südöstlich von Elmshorn aufgeschlossen. Neben der Legende, die über Alter, Petrographie und Genese der dargestellten Einheiten informiert, gewährt ein geologischer Schnitt zusätzliche Einblicke in den Aufbau des Untergrundes. Das Nordwest-Südost-Profil schneidet die Salzstöcke von Westerhever, Oldenswort, Heide, Süderhastedt, Krempe, Elmshorn und Quickborn und veranschaulicht die Dynamik der Zechstein-Salze.
Die Pegelmessstelle Fremersdorf (ID: 439) befindet sich am Gewässer Saar im Flusseinzugsgebiet Mosel. Die Messstelle dient zur Messung des Wasserstands. Weiterhin wird der Abfluss an der Messstelle gemessen.
Die Pegelmessstelle Sarralbe (ID: 705) befindet sich am Gewässer Saar im Flusseinzugsgebiet Mosel. Die Messstelle dient zur Messung des Wasserstands.
Dieser Datensatz beschreibt die Grundwassermessstelle APP_GWMN_566 in Schleswig-Holstein. Die Messstelle liegt im Grundwasserkörper EL08 : Stör - Geest und östl. Hügelland. Es liegen insgesamt 20685 Messwerte vor. Es liegen außerdem 4 Probenentnahmen vor (siehe Resourcen).
Dieser Datensatz beschreibt die Grundwassermessstelle APP_GWMN_725 in Schleswig-Holstein. Die Messstelle liegt im Grundwasserkörper EL08 : Stör - Geest und östl. Hügelland. Es liegen insgesamt 17006 Messwerte vor. Es liegen außerdem 27 Probenentnahmen vor (siehe Resourcen).
Umweltzeichen Blauer Engel Das Umweltzeichen Blauer Engel für Mobiltelefone wurde im Jahr 2002 eingeführt. 2007 erhielt das erste Handy dieses Umweltzeichen. Zwei weitere Geräte bekamen es im September 2013, aber die Auszeichnung galt nur bis 2014. Im Oktober 2026 wurde erstmals ein Smartphone ausgezeichnet, dessen Zertifikat Ende 2018 auslief. Überarbeitung der Vergabegrundlagen 2017 und 2022 Im Jahr 2017 erschien eine überarbeitete Vergabegrundlage für das Umweltzeichen für Mobiltelefone. Neben der Absenkung für den SAR -Wert am Kopf von 0,6 Watt pro Kilogramm ( W/kg) auf max. 0,5 W/kg gibt es seither auch für den Anwendungsfall "Betrieb des Gerätes am Körper" einen Richtwert von max. 1,0 W/kg , ermittelt ohne Trennabstand zum Körper. Anfang des Jahres 2022 wurden die Strahlenschutzkriterien des Blauen Engels erneut angepasst. Mit der Änderung wurde der Richtwert für den Anwendungsfall "Betrieb des Gerätes am Körper" auf 2,0 W/kg angehoben. Erhebung der SAR -Werte von Mobiltelefonen Das Bundesamt für Strahlenschutz ( BfS ) erhebt seit 2002 regelmäßig bei den Herstellern die Spezifische Absorptionsrate ( SAR -Werte) von auf dem Markt erhältlichen Mobiltelefonen. Diese werden in einer SAR -Werte-Übersicht zusammengefasst. Die aktuelle Erhebung vom Dezember 2024 umfasst insgesamt 4120 Geräte von 91 Herstellern und 4 Netzbetreibern. Typische Verteilung der Spezifischen Absorptionsrate (SAR) an der Oberfläche des Kopfes während eines Handytelefonats. Von den Herstellern wird grundsätzlich der maximale SAR -Wert angegeben. Eine Zuordnung dieser Werte zu den verschiedenen Frequenzbändern GSM (D-, E-Netz), LTE oder 5G wird nicht vorgenommen. SAR -Werte für den Betrieb von Mobiltelefonen an den Extremitäten Mittlerweile geben fast alle Hersteller für ihre Mobiltelefone einen SAR -Wert sowohl für den Anwendungsfall "Betrieb am Kopf" als auch für den "Betrieb am Körper" an. Vereinzelt wird auch ein weiterer Wert für den Anwendungsfall "Tragen an den Extremitäten" angegeben. Hier gilt allerdings der Grenzwert von 4 W/kg . In der SAR -Werte-Übersicht werden Angaben zu den Messabständen gemacht. Am 05. April 2016 entschied die EU -Kommission, dass der Abstand bei der SAR -Messung am Körper nur wenige Millimeter betragen darf. Seit dieser Entscheidung messen die Hersteller die SAR -Werte am Körper einheitlich in einem Abstand von 0,5 cm , um vergleichbare Ergebnisse zu erzielen. Dieser Artikel wurde sprachlich mit KI überarbeitet. Stand: 17.12.2025
Der Datensatz enthält die Verkehrslage in Echtzeit (Aktualisierung alle 5 Minuten) auf dem Hamburger Straßennetz und auf größeren Straßen im direkten Hamburger Umland sowie auf den durch Hamburg verlaufenden Autobahnen südlich bis Lüneburg, Hannover und Bremen und nördlich bis Itzehoe, Flensburg und Lübeck. Die Verkehrslage ist in 4 Zustandsklassen eingeteilt, von Zustandsklasse 1, fließender Verkehr (grün) über Zustandsklasse 2, dichter Verkehr (orange) und Zustandsklasse 3, zäher Verkehr (rot) bis Zustandsklasse 4, gestauter Verkehr (dunkelrot). Liegen für einzelne Segmente dauerhaft oder zeitweise keine Daten vor, wird keine Verkehrslage angezeigt. Die Verkehrslage wird mit Hilfe eines Geschwindigkeitsindexes (GI) bestimmt. Dieser errechnet sich aus der aktuellen Geschwindigkeit geteilt durch die Geschwindigkeit bei freiem Verkehrsfluss. Die Einordnung in die Zustandsklassen ergibt sich nach folgenden Vorgaben: Zustandsklasse 1: GI > 0,7, Zustandsklasse 2: GI >= 0,4, Zustandsklasse 3: GI >= 0,2, Zustandsklasse 4: GI < 0,2 Grundlage der Verkehrslagedarstellung sind Floating Car Daten der Firma INRIX, die über die TraffGo Road GmbH bereitgestellt werden.
Laminierte Seesedimente sind unschätzbare Informationsquellen zur Geschichte der Umwelt und des Klimas direkt aus der Lebenssphäre des Menschen. Ein exzellentes Beispiel dafür ist der Sihailongwan-Maarsee aus NE-China. In einem immer noch dicht bewaldeten Vulkangebiet gelegen, bieten seine Sedimente ein ungestörtes Abbild der Monsunvariationen über zehntausende von Jahren. Nur die letzten ca. 200 Jahre zeigen einen deutlichen lokalen anthropogenen Einfluss. Das Monsunklima der Region mit Hauptniederschlägen während des Sommers und extrem kalten Wintern unter dem Einfluss des Sibirischen Hochdrucksystems bildet die Voraussetzung für die Bildung von saisonal deutlich geschichteten Sedimenten (Warven), die in dem tiefen Maarsee dann auch überwiegend ungestört erhalten bleiben. Insbesondere die Auftauphase im Frühjahr bringt einen regelmässigen Sedimenteintrag in den See, der das Gerüst für eine derzeit bis 65.000 Jahre vor heute zurückreichende Warvenchronologie bildet. Für das letzte Glazial zeigen Pollenspektren aus dem Sihailongwan-Profil Vegetationsvariationen im Gleichklang mit bekannten klimatischen Variationen des zirkum-nordatlantischen Raumes (Dansgaard-Oeschger-Zyklen) zu dieser Zeit. Der Einfluss dieser Warmphasen auf das Ökosystem See war jedoch sehr unterschiedlich. So sind die Warven aus den Dansgaard-Oeschger (D/O) Zyklen 14 bis 17 mit extrem dicken Diatomeenlagen (hauptsächlich Stephanodiscus parvus/minutulus) denen vom Beginn der spätglazialen Erwärmung zum Verwechseln ähnlich, während Warven aus dem D/O-Zyklus 8 kaum Unterschiede zu überwiegend klastischen Warven aus kalten Interstadialen aufweisen. Gradierte Ereignislagen mit umgelagertem Bodenmaterial sind deutliche Hinweise auf ein Permafrost-Regime während der Kaltphasen. Auch während des Spätglazials treten deutliche klimatische Schwankungen auf, die der in europäischen Sedimentarchiven definierten Gerzensee-Oszillation und der Jüngeren Dryas zeitlich exakt entsprechen. Das frühe Holozän ist von einer Vielzahl Chinesischer Paläoklima-Archive als Phase mit intensiverem Sommermonsun bekannt. Überraschenderweise sind die minerogenen Fluxraten im Sihailongwan-See während des frühen Holozäns trotz dichter Bewaldung des Einzugsgebietes sehr hoch. Sowohl Mikrofaziesanalysen der Sedimente als auch geochemische Untersuchungen deuten auf remoten Staub als Ursache dieses verstärkten klastischen Eintrags hin. Der insbesondere in den letzten Jahrzehnten zunehmende Einfluss des Menschen zeigt sich in den Sedimenten des Sihailongwan-Maarsees vor allem in einem wiederum zunehmenden Staubeintrag und einer Versauerung im Einzugsgebiet. Der anthropogene Einflusss auf die lokale Vegetation ist immer noch gering.
Im letzten Jahrzehnt war der grönländische Eisschild mehreren Extremereignissen ausgesetzt, mit teils unerwartet starken Auswirkungen auf die Oberflächenmassebilanz und den Eisfluss, insbesondere in den Jahren 2010, 2012 und 2015. Einige dieser Schmelzereignisse prägten sich eher lokal aus (wie in 2015), während andere fast die gesamte Eisfläche bedeckten (wie in 2010).Mit fortschreitendem Klimawandel ist zu erwarten, dass extreme Schmelzereignisse häufiger auftreten und sich verstärken bzw. länger anhalten. Bisherige Projektionen des Eisverlustes von Grönland basieren jedoch typischerweise auf Szenarien, die nur allmähliche Veränderungen des Klimas berücksichtigen, z.B. in den Representative Concentration Pathways (RCPs), wie sie im letzten IPCC-Bericht genutzt wurden. In aktuellen Projektionen werden extreme Schmelzereignisse im Allgemeinen unterschätzt - und welche Konsequenzen dies für den zukünftigen Meeresspiegelanstieg hat, bleibt eine offene Forschungsfrage.Ziel des vorgeschlagenen Projektes ist es, die Auswirkungen extremer Schmelzereignisse auf die zukünftige Entwicklung des grönländischen Eisschildes zu untersuchen. Dabei werden die unmittelbaren und dauerhaften Auswirkungen auf die Oberflächenmassenbilanz und die Eisdynamik bestimmt und somit die Beiträge zum Meeresspiegelanstieg quantifiziert. In dem Forschungsprojekt planen wir zudem, kritische Schwellenwerte in der Häufigkeit, Intensität sowie Dauer von Extremereignissen zu identifizieren, die - sobald sie einmal überschritten sind - eine großräumige Änderung in der Eisdynamik auslösen könnten.Zu diesem Zweck werden wir die dynamische Reaktion des grönländischen Eisschilds in einer Reihe von Klimaszenarien untersuchen, in denen extreme Schmelzereignisse mit unterschiedlicher Wahrscheinlichkeit zu bestimmten Zeitpunkten auftreten, und die Dauer und Stärke prognostisch variiert werden. Um indirekte Effekte durch verstärktes submarines Schmelzen hierbei berücksichtigen zu können, werden wir das etablierte Parallel Ice Sheet Model (PISM) mit dem Linearen Plume-Modell (LPM) koppeln. Das LPM berechnet das turbulente submarine Schmelzen aufgrund von Veränderungen der Meerestemperatur und des subglazialen Ausflusses. Es ist numerisch sehr effizient, so dass das gekoppelte PISM-LPM Modell Ensemble-Läufe mit hoher Auflösung ermöglicht. Folglich kann eine breite Palette von Modellparametern und Klimaszenarien in Zukunftsprojektionen in Betracht gezogen werden.Mit dem interaktiv gekoppelten Modell PISM-LPM werden wir den Beitrag Grönlands zum Meeresspiegelanstieg im 21. Jahrhundert bestimmen, unter Berücksichtigung regionaler Veränderungen von Niederschlag, Oberflächen- und Meerestemperaturen, und insbesondere der Auswirkungen von Extremereignissen. Ein Hauptergebnis wird eine Risikokarte sein, die aufzeigt, in welchen kritischen Regionen Grönlands zukünftige extreme Schmelzereignisse den stärksten Eisverlust zur Folge hätten.
Soil microorganisms can mobilize and immobilize phosphorus (P), and therefore strongly affect the availability of P to plants. In this project we hypothesize that the ratio of labile P to microbial P increases during the transition from acquiring to recycling ecosystems. Microbial and plant P uptake will be studied with 33P that will be quantified in microbial and plant biomass as well as in lipids. To what extent microorganisms immobilize and mobilize P during decomposition of soil organic matter will be explored with a 14C/33P labeled monoester. Seasonal dynamics of actual and potential P mineralization (33P dilution and phosphatase activity), and microbial P immobilization will be studied with soils of the transition from acquiring to recycling ecosystems. The contribution of litter-derived P will be explored in a litter exclusion experiment in the field. Spatial patterns of microbial and plant P mineralization in the rhizosphere will be explored by analyses of areas of high acid and alkaline (=microbial-derived) phosphatase activity by soil zymography, and their relations with areas of high rhizodeposition (14C imaging). In conclusion, we will analyse mechanisms of actual and potential microbial P mineralization and immobilization, localization, and consequences for P uptake by plants.
| Origin | Count |
|---|---|
| Bund | 6592 |
| Land | 383 |
| Wirtschaft | 1 |
| Wissenschaft | 23 |
| Zivilgesellschaft | 20 |
| Type | Count |
|---|---|
| Bildmaterial | 1 |
| Chemische Verbindung | 5 |
| Daten und Messstellen | 5961 |
| Ereignis | 5 |
| Förderprogramm | 439 |
| Hochwertiger Datensatz | 23 |
| Infrastruktur | 13 |
| Lehrmaterial | 2 |
| Taxon | 27 |
| Text | 213 |
| Umweltprüfung | 18 |
| WRRL-Maßnahme | 57 |
| unbekannt | 225 |
| License | Count |
|---|---|
| geschlossen | 6129 |
| offen | 772 |
| unbekannt | 53 |
| Language | Count |
|---|---|
| Deutsch | 6734 |
| Englisch | 6233 |
| Resource type | Count |
|---|---|
| Archiv | 18 |
| Bild | 79 |
| Datei | 5956 |
| Dokument | 192 |
| Keine | 542 |
| Multimedia | 3 |
| Unbekannt | 3 |
| Webdienst | 73 |
| Webseite | 1997 |
| Topic | Count |
|---|---|
| Boden | 1182 |
| Lebewesen und Lebensräume | 2722 |
| Luft | 938 |
| Mensch und Umwelt | 6570 |
| Wasser | 1079 |
| Weitere | 6896 |