Aktuelle Studien zeigen, dass eine reine Stromspeicherung für eine Umsetzung der Energiewende nicht realisierbar ist. Es sind daher weitere Speicherpfade z. B. durch energiebasierte Kraftstoffe notwendig. Für die Nutzung dieser Kraftstoffe sind BHKW-Motoren ein zentrales Element, da sie einen hohen Gesamtwirkungsgrad aufweisen und das bei der Verbrennung entstehende CO2 wieder für PtX-Prozesse verwendet werden kann.
Hierzu soll im Teilvorhaben ein neuartiges Großmotorkonzept für methanbasierte Kraftstoffe entwickelt werden, welches eine einfache und effiziente CO2-Abscheidung aus dem Abgas ermöglicht. Neben kohlenstoffbasierten Kraftstoffen ist Wasserstoff aus Effizienzgründen eine vielversprechende Kraftstoffoption für zukünftige BHKW-Motoren. Daher werden in Zusammenarbeit mit den Projektpartnern ottomotorische H2-Motorkonzepte erarbeitet, die Dieselmotoren in größeren, stationären Einheiten substituieren können. Mit Hilfe der energetischen Prozesswegbewertung soll zudem ein Gesamtsystemoptimum der BHKW-Anlage in Abhängigkeit vorherrschender Randbedingungen (lokale Vertrimmung / Variation des Subsystemverhaltens) gefunden werden.
Für Textilbeton als Verstärkungssystem wurde im Rahmen einer vergleichenden Ökobilanzierung eine traditionelle, 8cm dicke Spritzbetonverstärkung einer nur 1,5cm dicken Textilbetonverstärkungsschicht mit gleichem Verstärkungsgrad gegenübergestellt. Als Systemgrenze wurde dabei die gesamte Wertschöpfungskette Textilbeton betrachtet und Im2 Verstärkungsfläche als funktionale Einheit festgelegt. In der Auswertung zeigen sich die positiven Auswirkungen des geringeren Materialbedarfs und Transportgewichts. Im Indikator des kumulierten Energieaufwands sind beide Systeme in der Beispielkonfiguration jedoch nur nahezu gleichwertig. Das kann auf den Energiebedarf, zwar meist aus emeuerbaren Quellen, der Carbonfaserproduktion sowie auf eine sehr konservative Tragfähigkeitsausnutzung zurückgeführt werden. Im Textilbetonverstärkungssystem ist also noch Optimierungspotential für eine energieeffizientere Carbonfaserherstellung sowie eine höhere Ausnutzung der Tragfähigkeit.