Die im Land Brandenburg kontinuierlich ermittelten Zeitreihen verschiedenster Luftschadstoffe werden erfasst, archiviert und fortgeschrieben. Die Überwachung der Luftqualität in Brandenburg erfolgt durch ein automatisches Luftgütemessnetz nach EU-weiten Vorgaben. Zeitnah werden die aktuellen Messwerte der Schadstoffe Ozon (O3), Stickstoffdioxid (NO2), Feinstaub- Partikel (PM10), Schwefeldioxid (SO2), Kohlenmonoxid (CO) und weitere mehr im LandesUmwelt / VerbraucherInformationssystem Brandenburg (LUIS-BB) veröffentlicht. Ergänzt werden diese Ergebnisse durch eine Zusammenstellung gültiger Grenzwerte sowie Monats- und Jahresauswertungen. Das Landesamt für Umwelt (LfU) betreibt für die kontinuierliche Luftüberwachung das automatische Luftgütemessnetz mit derzeit 17 Stationen zur Überwachung der Luft in Städten und ländlichen Regionen und 5 Stationen zur Überwachung der Luft im verkehrsnahen Raum. Zusätzlich existieren Messpunkte zur Bestimmung von Inhaltsstoffen im Staubniederschlag / in der Deposition. Mehr als 100 Messgeräte liefern täglich bis zu 12.000 Messwerte, die automatisch in die Messnetzzentrale des LfU übertragen, kontrolliert und von hier veröffentlicht werden.
Aktuell kann es aus technischen Gründen zu Verzögerungen in der Bereitstellung der stündlichen Daten kommen.Die im Land Brandenburg kontinuierlich ermittelten Zeitreihen verschiedenster Luftschadstoffe werden erfasst, archiviert und fortgeschrieben. Die Überwachung der Luftqualität in Brandenburg erfolgt durch ein automatisches Luftgütemessnetz nach EU-weiten Vorgaben. Zeitnah werden die aktuellen Messwerte der Schadstoffe Ozon (O3), Stickstoffdioxid (NO2), Feinstaub- Partikel (PM10), Schwefeldioxid (SO2), Kohlenmonoxid (CO) und weitere mehr im LandesUmwelt / VerbraucherInformationssystem Brandenburg (LUIS-BB) veröffentlicht. Ergänzt werden diese Ergebnisse durch eine Zusammenstellung gültiger Grenzwerte sowie Monats- und Jahresauswertungen. Das Landesamt für Umwelt (LfU) betreibt für die kontinuierliche Luftüberwachung das automatische Luftgütemessnetz mit derzeit 17 Stationen zur Überwachung der Luft in Städten und ländlichen Regionen und 5 Stationen zur Überwachung der Luft im verkehrsnahen Raum. Zusätzlich existieren Messpunkte zur Bestimmung von Inhaltsstoffen im Staubniederschlag / in der Deposition. Mehr als 100 Messgeräte liefern täglich bis zu 12.000 Messwerte, die automatisch in die Messnetzzentrale des LfU übertragen, kontrolliert und von hier veröffentlicht werden.
Makronährstoffe, wie Phosphor, sind wichtig für das Wachstum von Meeresmikroorganismen, wie Phytoplankton. Diese sind sehr bedeutsam für die marine Nährstoffkette und Biologie. Verschiedene Phytoplanktonarten emittieren klimarelvante organische Verbindungen, z.B. DMS, welches in der Atmosphäre zu Schwefelsäure oxidiert wird und anschließend zur Bildung neuer Aerosolpartikel beiträgt. Diese können weiterhin als potentielle Wolkenkondensaktionskeime dienen. Informationen über die Verfügbarkeit von Phosphor für diese Mikroorganismen sind somit essentiell für ein besseres Verständnis der Ozean-Atmosphären-Wechselwirkung. Der Haupteintrag von Phosphor in den offenen Ozean erfolgt vorwiegend über atmosphärische Deposition. Informationen über atmosphärische Phosphorkonzentrationen, die Bioverfügbarkeit und Quellen sind notwendig, um den Verbleib in den Ozeanen zu verstehen. Dabei werden vor allem in den Regionen des tropischen Nord- und Südost-Atlantik immer noch Daten benötigt. Die wenigen verfügbaren Daten basieren zumeist auf kurzzeitigen Schiffsmessungen, die in ihrer Anwendung auf langfristige Prognosen und jahreszeitlichen Zyklen sehr begrenzt sind. Um das Verständnis über die Phosphorverfügbarkeit, -quellen, und -bioverfügbarkeit in diesen ozeanischen Gebieten zu verbessern, sollen größenaufgelöste Langzeitmessungen zur Bestimmung des Phosphorgehalts von Aerosolpartikeln durchgeführt werden. Weiterhin werden analytische Methoden entwickelt und optimiert (basierend auf der Kombination von drei Techniken). Diese sollen eine empfindliche Bestimmung von löslichem als auch dem Gesamtphosphor in feinen Partikeln ermöglichen, aufgrund der geringen Aerosolmasse in dieser Größenfraktion. Die ermittelten Daten werden benutzt, um wichtige Quellen des Phosphors in diesen Regionen zu charakterisieren, die Rolle von unterschiedlichen Quellen wie Mineralstaub, Biomassenverbrennung, sowie anthropogenen Verbrennungsaerosols auf die Speziation (organische und anorganische Zusammensetzung), Löslichkeit und atmosphärische Prozessierung des Phosphors, sowie ihre saisonale Variabilität zu untersuchen. Darüber hinaus soll eine regionale Staubmodellsimulation angewendet werden, um den Aerosoltransport und die Staupdeposition in diesen Regionen besser zu beschreiben. Die Ergebnisse sind wichtig für kombinierte Modelle zur Ozean-Atmosphäre Wechselwirkung und das Verständnis der wichtigsten Faktoren, die den Verbleib von atmosphärischem Phosphor im Ozean beeinflussen.
Laminierte Seesedimente sind unschätzbare Informationsquellen zur Geschichte der Umwelt und des Klimas direkt aus der Lebenssphäre des Menschen. Ein exzellentes Beispiel dafür ist der Sihailongwan-Maarsee aus NE-China. In einem immer noch dicht bewaldeten Vulkangebiet gelegen, bieten seine Sedimente ein ungestörtes Abbild der Monsunvariationen über zehntausende von Jahren. Nur die letzten ca. 200 Jahre zeigen einen deutlichen lokalen anthropogenen Einfluss. Das Monsunklima der Region mit Hauptniederschlägen während des Sommers und extrem kalten Wintern unter dem Einfluss des Sibirischen Hochdrucksystems bildet die Voraussetzung für die Bildung von saisonal deutlich geschichteten Sedimenten (Warven), die in dem tiefen Maarsee dann auch überwiegend ungestört erhalten bleiben. Insbesondere die Auftauphase im Frühjahr bringt einen regelmässigen Sedimenteintrag in den See, der das Gerüst für eine derzeit bis 65.000 Jahre vor heute zurückreichende Warvenchronologie bildet. Für das letzte Glazial zeigen Pollenspektren aus dem Sihailongwan-Profil Vegetationsvariationen im Gleichklang mit bekannten klimatischen Variationen des zirkum-nordatlantischen Raumes (Dansgaard-Oeschger-Zyklen) zu dieser Zeit. Der Einfluss dieser Warmphasen auf das Ökosystem See war jedoch sehr unterschiedlich. So sind die Warven aus den Dansgaard-Oeschger (D/O) Zyklen 14 bis 17 mit extrem dicken Diatomeenlagen (hauptsächlich Stephanodiscus parvus/minutulus) denen vom Beginn der spätglazialen Erwärmung zum Verwechseln ähnlich, während Warven aus dem D/O-Zyklus 8 kaum Unterschiede zu überwiegend klastischen Warven aus kalten Interstadialen aufweisen. Gradierte Ereignislagen mit umgelagertem Bodenmaterial sind deutliche Hinweise auf ein Permafrost-Regime während der Kaltphasen. Auch während des Spätglazials treten deutliche klimatische Schwankungen auf, die der in europäischen Sedimentarchiven definierten Gerzensee-Oszillation und der Jüngeren Dryas zeitlich exakt entsprechen. Das frühe Holozän ist von einer Vielzahl Chinesischer Paläoklima-Archive als Phase mit intensiverem Sommermonsun bekannt. Überraschenderweise sind die minerogenen Fluxraten im Sihailongwan-See während des frühen Holozäns trotz dichter Bewaldung des Einzugsgebietes sehr hoch. Sowohl Mikrofaziesanalysen der Sedimente als auch geochemische Untersuchungen deuten auf remoten Staub als Ursache dieses verstärkten klastischen Eintrags hin. Der insbesondere in den letzten Jahrzehnten zunehmende Einfluss des Menschen zeigt sich in den Sedimenten des Sihailongwan-Maarsees vor allem in einem wiederum zunehmenden Staubeintrag und einer Versauerung im Einzugsgebiet. Der anthropogene Einflusss auf die lokale Vegetation ist immer noch gering.
Die im Land Brandenburg kontinuierlich ermittelten Zeitreihen verschiedenster Luftschadstoffe werden erfasst, archiviert und fortgeschrieben. Die Überwachung der Luftqualität in Brandenburg erfolgt durch ein automatisches Luftgütemessnetz nach EU-weiten Vorgaben. Zeitnah werden die aktuellen Messwerte der Schadstoffe Ozon (O3), Stickstoffdioxid (NO2), Feinstaub- Partikel (PM10), Schwefeldioxid (SO2), Kohlenmonoxid (CO) und weitere mehr im LandesUmwelt / VerbraucherInformationssystem Brandenburg (LUIS-BB) veröffentlicht. Ergänzt werden diese Ergebnisse durch eine Zusammenstellung gültiger Grenzwerte sowie Monats- und Jahresauswertungen. Das Landesamt für Umwelt (LfU) betreibt für die kontinuierliche Luftüberwachung das automatische Luftgütemessnetz mit derzeit 17 Stationen zur Überwachung der Luft in Städten und ländlichen Regionen und 5 Stationen zur Überwachung der Luft im verkehrsnahen Raum. Zusätzlich existieren Messpunkte zur Bestimmung von Inhaltsstoffen im Staubniederschlag / in der Deposition. Mehr als 100 Messgeräte liefern täglich bis zu 12.000 Messwerte, die automatisch in die Messnetzzentrale des LfU übertragen, kontrolliert und von hier veröffentlicht werden. Die im Land Brandenburg kontinuierlich ermittelten Zeitreihen verschiedenster Luftschadstoffe werden erfasst, archiviert und fortgeschrieben. Die Überwachung der Luftqualität in Brandenburg erfolgt durch ein automatisches Luftgütemessnetz nach EU-weiten Vorgaben. Zeitnah werden die aktuellen Messwerte der Schadstoffe Ozon (O3), Stickstoffdioxid (NO2), Feinstaub- Partikel (PM10), Schwefeldioxid (SO2), Kohlenmonoxid (CO) und weitere mehr im LandesUmwelt / VerbraucherInformationssystem Brandenburg (LUIS-BB) veröffentlicht. Ergänzt werden diese Ergebnisse durch eine Zusammenstellung gültiger Grenzwerte sowie Monats- und Jahresauswertungen. Das Landesamt für Umwelt (LfU) betreibt für die kontinuierliche Luftüberwachung das automatische Luftgütemessnetz mit derzeit 17 Stationen zur Überwachung der Luft in Städten und ländlichen Regionen und 5 Stationen zur Überwachung der Luft im verkehrsnahen Raum. Zusätzlich existieren Messpunkte zur Bestimmung von Inhaltsstoffen im Staubniederschlag / in der Deposition. Mehr als 100 Messgeräte liefern täglich bis zu 12.000 Messwerte, die automatisch in die Messnetzzentrale des LfU übertragen, kontrolliert und von hier veröffentlicht werden.
<p>Aus der chemischen Analyse von Moosen lassen sich Rückschlüsse auf die atmosphärische Schadstoffbelastung ziehen (Biomonitoring). Seit 1990 nahm die Belastung durch Metalle deutlich ab. 2020/21 gab es jedoch bei einigen Metallen wieder einen leichten Anstieg. Für Stickstoff ist gegenüber 2005 keine Abnahme festzustellen. 2020/21 fanden erstmals auch Untersuchungen zu Mikroplastik statt.</p><p>Moose als Bioindikator</p><p>Die Methode des Moosmonitorings wurde in den späten 1960er Jahren entwickelt. Sie basiert darauf, dass Moose Stoffe direkt aus dem Niederschlag und aus trockener <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> (Ablagerungen und Aufnahme aus der Luft) beziehen. Dadurch können sie als Bioindikatoren für die Deposition von Luftschadstoffen genutzt werden, denn deponierte Schadstoffe reichern sich im Moos an (Bioakkumulation) und können durch Laboranalysen der Moosproben nachgewiesen werden. Das Moosmonitoring ist für ein flächendeckendes Screening der Belastungssituation besonders für solche Substanzen geeignet, für die sonst nur wenig Informationen zur räumlichen Verteilung der Deposition vorliegen. Dies ist z.B. bei Schwermetallen oder persistenten organische Schadstoffen (Persistent Organic Pollutants, <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=POP#alphabar">POP</a>) der Fall.</p><p>Europaweites Monitoring</p><p>Seit 1990 wird im 5-Jahreszyklus das European Moss Survey (EMS) unter der Genfer Luftreinhalteabkommens von 1979 (Convention on long-range transboundary air pollution - CLRTAP) durchgeführt. Hierzu werden stoffliche Belastungen in Moosen von quellfernen terrestrischen Ökosystemen in Europa erfasst, um daraus räumliche Depositionsmuster potenziell schädlich wirkender Stoffe abzuleiten. Durch die Analyse der zeitlichen und räumlichen Entwicklung kann die Wirksamkeit von Maßnahmen zur Luftreinhaltung evaluiert werden. Das International Cooperative Programme (ICP) Vegetation publiziert die Ergebnisse des Moosmonitorings und berichtet sie an die Working Group on Effects (WGE) der CLRTAP.</p><p>Deutsches Moosmonitoring</p><p>Nach 1990, 1995, 2000, 2005 und 2015/16 beteiligte sich Deutschland am internationalen Moosmonitoring 2020/21 (MM2020), mit dem Schwerpunkt der Analyse von (Schwer-)Metallen und Stickstoff. Der deutsche Beitrag zum MM2020 umfasst zum zweiten Mal nach dem MM2015 die Bestimmung von persistenten organischen Schadstoffen (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=POP#alphabar">POP</a>) und erstmals die Messung von Mikroplastik (MP) in Moosen. Da die Analyse der neuen Substanzen sehr aufwendig ist, wurde das zu Grunde gelegte Messnetz von zuletzt 400 Standorten (MM2015) als Pilotprojekt auf 25 (MM2020) für alle Stoffe reduziert (siehe Karte „Messtandorte für Schwermetalle und Stickstoff im Moosmonitoring 2020/21“ und Karte „Messstandorte für POPs und Mikroplastik im Moosmonitoring 2020/21“).</p><p>Ergebnisse: Schwermetalle</p><p>Der zeitliche Trend von 1990 bis 2016 zeigt für die meisten Metalle einen signifikanten und flächendeckenden Rückgang der Belastung. Allerdings wurden im MM2020 ein Anstieg bei vielen Schwermetallen gegenüber MM2015 gemessen. Insbesondere bei Quecksilber ist der Mittelwert mehr als verdreifacht. Dieser Trend wurde auch in vielen anderen Ländern des Moosmonitorings trotz einem Rückgang der berichteten Schwermetallemissionen beobachtet. Weitere Beispiele sind Arsen, Antimon, Kupfer, Zink und Chrom, bei denen eine Erhöhung festgestellt wurde. Die Metallgehalte in den Moosen zeigen in den einzelnen Jahren ähnliche räumliche Verteilungsmuster, wobei die Hot Spots sich zumeist in urban-industriell Zentren, insbesondere auch in Gebieten mit Kohlestromerzeugung, befinden (siehe Karten zu Blei, Cadmium, Kupfer, Nickel, Arsen und Antimon).</p><p>Ergebnisse: Stickstoff</p><p>Bei Stickstoff ist gegenüber der ersten Beprobung für Deutschland im Jahr 2005 im Mittel kein Rückgang der Belastung festzustellen, aber es traten etwas abweichende räumliche Muster auf. Aufgrund der wesentlich niederen Probenanzahl wurden im MM2020 in einigen Gebieten erwartbare höhere Werte (wie z.B. im Allgäu) nicht erfasst (siehe Karte zu Stickstoff).</p><p>Ergebnisse: Mikroplastik</p><p>Da Messungen von Mikroplastik in Moosen bisher noch nicht durchgeführt wurden, wurden Verfahren zur qualitativen (chemischen Zusammensetzung und Form von Mikroplastik in Moosproben) als auch zur quantitativen (Menge an Mikroplastik in Moosproben) Analyse getestet. Die Analysen zeigen, dass sich Moose als Bioindikator zum Nachweis der atmosphärischen <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> von Mikroplastik eignen. In allen untersuchten Moosproben sind Polymere, insbesondere Polyethylen (PE) und Polyethylenterephthalat (PET), nachgewiesen worden.</p><p>Ergebnisse: Persistente organische Schadstoffe (POPs)</p><p>Die Analysen für POPs bestätigen das Konzentrationsniveau aus dem MM2015 und dass sich Moose als Bioindikator zum Nachweis der atmosphärischen <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> von POPs eignen. Erste zeitliche Verläufe zeichnen sich ab, können aber aufgrund der punktuellen Ausrichtung und der geringen Anzahl an Vergleichsstandorten aus dem MM2015 nicht verallgemeinert werden. Eine erste Beschreibung der räumlichen Konzentrationsgradienten konnte im MM2020 durchgeführt werden, ebenso wie eine erste Abschätzung von Belastungen verschiedener Nutzungsstrukturen. Per- und polyfluorierte Alkylsubstanzen (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PFAS#alphabar">PFAS</a>) wurden nur vereinzelt in wenigen Proben quantifiziert. Dies bestätigt die Ergebnisse aus der Pilotmessungen im MM2015, wo nur in einer Moosprobe PFAS über der <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bestimmungsgrenze#alphabar">Bestimmungsgrenze</a> gefunden wurden.</p>
An den immissionsökologischen Dauerbeobachtungsstationen werden ganzjährig im regelmäßigen Zyklus (28-Tage) mit verschiedenen Messeinrichtungen Parameter zum Monitoring von Schadstoffen aus der Luft erfasst. Zum Monitoring eutrophierender und versauernder Einträge sind elektrisch gekühlte Niederschlagssammler (Elektrisch gekühlter Bulk, Wet only) sowie Passivsammler für die Ermittlung gasförmiger Ammoniak- und NO2-Konzentrationen installiert. Der Eintrag von Metallen wird über die Sammlung des Staubniederschlags (Bergerhoff-Methode) ermittelt. Von Mai bis November wird mit Methoden des aktiven Biomonitorings die Wirkung von Stoffeinträgen auf Pflanzen ermittelt. Die Wirkung des atmogenen Eintrags von Metallen auf Pflanzen wird mit der standardisierten Graskultur erhoben, die Wirkung organischer Schadstoffe (Dioxine/Furane, PAK, PCB) wird mit standardisierten Graskulturen und Grünkohl ermittelt. Messdaten sind gegen Bereitstellungsgebühr bei der Datenstelle des LfU erhältlich.
An den Depositionsmessstationen werden ganzjährig im regelmäßigen Zyklus (28 Tage) mit verschiedenen Messeinrichtungen Parameter zum Monitoring von Schadstoffen aus der Luft erfasst. Zum Monitoring eutrophierender und versauernder Einträge sind elektrisch gekühlte Niederschlagssammler (Elektrisch gekühlter Bulk, Wet only) sowie Passivsammler für die Ermittlung gasförmiger Ammoniak- und NO2-Konzentrationen installiert. Der Eintrag von Metallen wird über die Sammlung des Staubniederschlags (Bergerhoff-Methode) ermittelt. Messdaten sind gegen Bereitstellungsgebühr bei der Datenstelle des LfU erhältlich.
Zur Untersuchung der Nährstoff- und Schadstoffeinträge in Böden und Gewässer wird in M-V ein Depositionsmessnetz betrieben, in dem an sieben Messorten der Staubniederschlag (Gesamtdeposition) und zusätzlich an zwei dieser Standorte die nasse Deposition gemessen und analysiert wird. Neben der gravimetrischen Bestimmung des Staubniederschlags wird dieser darüber hinaus hinsichtlich seiner Inhaltsstoffe (Schwermetalle und Nährstoffe) analysiert. An zwei Standorten wird der Niederschlag auf seine Nährstoffzusammensetzung untersucht.
Der Datenbestand setzt sich aus Analysenergebnissen von Schwebstaubuntersuchungen zusammen. Neben dem Staubniederschlag werden die Schwermetalle bestimmt.
| Origin | Count |
|---|---|
| Bund | 397 |
| Kommune | 3 |
| Land | 57 |
| Wissenschaft | 5 |
| Type | Count |
|---|---|
| Chemische Verbindung | 1 |
| Daten und Messstellen | 4 |
| Förderprogramm | 184 |
| Gesetzestext | 1 |
| Text | 211 |
| unbekannt | 48 |
| License | Count |
|---|---|
| geschlossen | 46 |
| offen | 202 |
| unbekannt | 200 |
| Language | Count |
|---|---|
| Deutsch | 433 |
| Englisch | 39 |
| Resource type | Count |
|---|---|
| Archiv | 5 |
| Bild | 3 |
| Datei | 5 |
| Dokument | 25 |
| Keine | 370 |
| Unbekannt | 7 |
| Webdienst | 6 |
| Webseite | 52 |
| Topic | Count |
|---|---|
| Boden | 424 |
| Lebewesen und Lebensräume | 433 |
| Luft | 427 |
| Mensch und Umwelt | 441 |
| Wasser | 422 |
| Weitere | 448 |